organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

L-Me­thion­yl-L-tyrosine monohydrate

crossmark logo

aDepartment of Biological Science, Hampton University, Hampton, VA 23668, USA, bSchool of Science, Hampton University, Hampton, VA 23668, USA, cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and dDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA
*Correspondence e-mail: biosainath@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 June 2023; accepted 22 June 2023; online 30 June 2023)

The study of the oxidation of various proteins necessitates scrutiny of the amino acid sequence. Since me­thio­nine (Met) and tyrosine (Tyr) are easily oxidized, peptides that contain these amino acids are frequently studied using a variety of oxidation methods, including, but not limited to, pulse radiolysis, electrochemical oxidation, and laser flash photolysis. To date, the oxidation of the Met–Tyr dipeptide is not fully understood. Several investigators have proposed a mechanism of intra­molecular electron transfer between the sulfide radical of Met and the Tyr residue. Our elucidation of the structure and absolute configuration of L-Met–L-Tyr monohydrate, C14H20N2O4S·H2O (systematic name: (2S)-2-{[(2S)-2-amino-4-methyl­sulfanyl­butano­yl]amino}-3-(4-hy­droxy­phen­yl)propanoic acid monohydrate) is presented herein and provides information about the zwitterionic nature of the dipeptide. We suspect that the zwitterionic state of the dipeptide and its inter­action within the solvent medium may play a major role in the oxidation of the dipeptide. In the crystal, all the potential donor atoms inter­act via strong N—H⋯O, C—H⋯O, O—H⋯S, and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Protein oxidation is an important physiological and pathological mechanism (Berlett & Stadtman, 1997[Berlett, B. S. & Stadtman, E. R. (1997). J. Biol. Chem. 272, 20313-20316.]; Wojcik et al., 2008[Wojcik, A., Łukaszewicz, A., Brede, O. & Marciniak, B. (2008). J. Photochem. Photobiol. Chem. 198, 111-118.]). Oxidation of tyrosine (Tyr) and me­thio­nine (Met) residues play a role in the etiology of inflammatory diseases (Gu et al., 2015[Gu, S. X., Stevens, J. W. & Lentz, S. R. (2015). Blood, 125, 3851-3859.]; Meredith et al., 2014[Meredith, S., Parekh, G., Towler, J., Schouten, J., Davis, P., Griffiths, H. & Spickett, C. (2014). Free Radical Biol. Med. 75, S50.]). Studies have shown that the Met–Tyr dipeptide has a significant antioxidant activity against the radical cation of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+.) and peroxyl radicals, while the Tyr–Met dipeptide does not have any reaction with those radicals (Torkova et al., 2015[Torkova, A., Koroleva, O., Khrameeva, E., Fedorova, T. & Tsentalovich, M. (2015). Int. J. Mol. Sci. 16, 25353-25376.]). The presence of a C-terminal Met group to Tyr had somewhat conflicting results with many oxidation systems (Zhang et al., 2009[Zhang, H., Zielonka, J., Sikora, A., Joseph, J., Xu, Y. & Kalyanaraman, B. (2009). Arch. Biochem. Biophys. 484, 134-145.]; Wojcik et al., 2008[Wojcik, A., Łukaszewicz, A., Brede, O. & Marciniak, B. (2008). J. Photochem. Photobiol. Chem. 198, 111-118.]; Nagy et al., 2009[Nagy, P., Kettle, A. J. & Winterbourn, C. C. (2009). J. Biol. Chem. 284, 14723-14733.]). Several studies have suggested that the mechanism of oxidation is through intramol­ecular electron transfer from Met to Tyr phen­oxy radicals (Bergès et al., 2011[Bergès, J., Trouillas, P. & Houée-Lévin, C. (2011). J. Phys. Conf. Ser. 261, e012003.]; Houée-Lévin et al., 2015[Houée-Lévin, C., Bobrowski, K., Horakova, L., Karademir, B., Schöneich, C., Davies, M. J. & Spickett, C. M. (2015). Free Radical Res. 49, 347-373.]; Kciuk et al., 2005[Kciuk, G., Mirkowski, J., Bobrowski, K. & Hug, G. L. (2005). Radiat. Chem. Phys, Radiat. Technol. pp. 20-22.]; Zhang et al., 2009[Zhang, H., Zielonka, J., Sikora, A., Joseph, J., Xu, Y. & Kalyanaraman, B. (2009). Arch. Biochem. Biophys. 484, 134-145.]). The diverse oxidation ability of the dipeptides could be attributed to the structural differences, particularly the configuration of the zwitterion and their inter­action with solvent mol­ecules. With this in mind, we have elucidated the structure of L-Met–L-Tyr to better understand its role in the oxidation and nitration process.

The title compound, L-Met–L-Tyr monohydrate, C14H20N2O4S·H2O (Fig. 1[link]), has been analyzed as part of broader studies on the redox properties of Met-containing dipeptides. Within the dipeptide, the amine group of Met is protonated and the carboxyl group of tyrosine is deprotonated, thereby generating a zwitterionic configuration. The conformation of the dipeptide mol­ecule can be qu­anti­fied by four torsion angles. Besides the expected essentially planar peptide linkage, the tyrosine portion has C10—N1—C8—C7 = 165.36 (17)° and N1—C8—C7—C4 = −71.1 (2)°. The me­thio­nine portion has C10—C11—C12—C13 = −45.6 (2)° and the sulfur-containing substituent shows an extended conformation with C11—C12—C13—S1 = −173.31 (13)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, shown with 50% probability displacement ellipsoids.

This structure has been reported recently (Babu et al., 2023[Babu, S., Claville, M. O., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (No. 2260065). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2fvsbf]). The title compound (Fig. 1[link]), derived from two amino acids, L-Met and L-Tyr, crystallized as a monohydrate and was structurally analyzed as a part of broader studies on the redox properties of Met dipeptides. The absolute configuration determined from the X-ray data agrees with that of the starting materials.

In the crystal, the mol­ecules inter­act with each other via strong inter­molecular N—H⋯O, C—H⋯O, O—H⋯S, and O—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link] and Fig. 2[link]). All the hydrogen-bond donors in the hy­droxy, amidine, and carboxyl­ate groups, as well as the solvent water mol­ecule, are involved. It is inter­esting to note that the dipeptide crystallized as a monohydrate. The water mol­ecule is approximately tetra­hedrally surrounded by four hydrogen bonds. In particular, a hydrogen bond exists between atom O1W of the water mol­ecule and atom O3 of the Tyr carboxyl­ate group and atom S1 of Met. The amine N1 group of Met forms hydrogen bonds with atoms O2 and O3 of the Tyr carboxyl­ate group, while the protonated amine N2 group of Met hydrogen bonds not only with atoms O2 and O3 of the Tyr carboxyl­ate group, but also with atom O1W of the water mol­ecule. Several weak C—H⋯O hydrogen bonds also occur (Table 1[link]). The unit cell is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.97 (3) 1.95 (3) 2.863 (2) 156 (2)
N2—H21N⋯O1Wii 0.91 (3) 2.01 (3) 2.805 (2) 145 (2)
N2—H22N⋯O3iii 0.95 (3) 1.91 (3) 2.827 (2) 162 (2)
N2—H23N⋯O2iv 0.95 (3) 1.80 (3) 2.743 (2) 171 (2)
C6—H6⋯O1W 0.95 2.61 3.290 (3) 129
C11—H11⋯O1v 1.00 2.66 3.359 (2) 127
C11—H11⋯O4i 1.00 2.49 3.108 (2) 119
C12—H12A⋯O2i 0.99 2.65 3.440 (2) 137
C13—H13B⋯O2iv 0.99 2.53 3.472 (2) 159
O1W—H1W⋯S1vi 0.85 (3) 2.54 (3) 3.3674 (16) 165 (3)
O1W—H2W⋯O3vii 0.90 (3) 1.82 (3) 2.716 (2) 179 (3)
Symmetry codes: (i) [x-1, y, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen-bonding network, showing only the H atoms involved in hydrogen bonds.
[Figure 3]
Figure 3
The unit cell, viewed approximately down [100].

Synthesis and crystallization

The dipeptide L-Met–L-Tyr was obtained commercially (Chemimpex Inter­national, Inc., Wood Dale, IL, USA). To about 100 mg of the dipeptide in a small tube, 2 ml of ethanol was added and mixed throughly on a vortex mixer. Additional solvent was added as required in small increments, while mixing on a vortex mixer and keeping the contents at 60 °C in a water bath. A small amount of water was added at the end to dissolve the peptide completely. The solution was left undisturbed at room temperature for slow evaporation and crystallization.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H20N2O4S·H2O
Mr 330.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.4826 (3), 12.4971 (7), 23.5451 (13)
V3) 1613.23 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.01
Crystal size (mm) 0.29 × 0.08 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.777, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 14990, 3002, 2854
Rint 0.040
(sin θ/λ)max−1) 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.06
No. of reflections 3002
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Absolute structure Flack x determined using 1154 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.031 (7)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

L-Methionyl-L-tyrosine monohydrate top
Crystal data top
C14H20N2O4S·H2ODx = 1.360 Mg m3
Mr = 330.39Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 7969 reflections
a = 5.4826 (3) Åθ = 3.8–69.4°
b = 12.4971 (7) ŵ = 2.01 mm1
c = 23.5451 (13) ÅT = 100 K
V = 1613.23 (15) Å3Lath, colourless
Z = 40.29 × 0.08 × 0.02 mm
F(000) = 704
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
3002 independent reflections
Radiation source: IµS microfocus2854 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.040
φ and ω scansθmax = 69.4°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 46
Tmin = 0.777, Tmax = 0.961k = 1415
14990 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.033P)2 + 0.2455P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.22 e Å3
3002 reflectionsΔρmin = 0.18 e Å3
221 parametersAbsolute structure: Flack x determined using 1154 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.031 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in difference maps and those on C atoms were treated thereafter as riding in geometrically idealized positions, with C—H = 0.95 Å for phenyl, 0.99 Å for CH2 and 0.98 Å for methyl H atoms. The coordinates of the N—H and O—H H atoms were refined. The Uiso(H) values were assigned as 1.5Ueq of the attached atom methyl, OH, and ammonium H atoms, and as 1.2Ueq otherwise.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45672 (10)0.72942 (4)0.10139 (2)0.01932 (13)
O10.6522 (3)0.64462 (13)0.60560 (7)0.0234 (3)
H1OH0.526 (6)0.613 (2)0.6171 (13)0.035*
O21.2758 (2)0.52566 (10)0.29568 (6)0.0150 (3)
O30.9501 (3)0.54361 (10)0.23911 (6)0.0152 (3)
O40.8826 (2)0.79919 (11)0.28382 (6)0.0159 (3)
N10.6958 (3)0.65289 (13)0.32141 (7)0.0131 (3)
H1N0.543 (5)0.6144 (19)0.3235 (10)0.016*
N20.4517 (3)0.90575 (13)0.27842 (7)0.0143 (3)
H21N0.507 (5)0.927 (2)0.3129 (12)0.022*
H22N0.298 (5)0.938 (2)0.2718 (11)0.022*
H23N0.557 (5)0.941 (2)0.2526 (11)0.022*
C10.6961 (4)0.61434 (16)0.55052 (9)0.0177 (4)
C20.9078 (4)0.65037 (18)0.52474 (9)0.0206 (4)
H21.01620.69600.54480.025*
C30.9612 (4)0.61967 (16)0.46948 (9)0.0188 (4)
H31.10610.64520.45200.023*
C40.8066 (4)0.55226 (16)0.43912 (8)0.0151 (4)
C50.5910 (4)0.52002 (16)0.46491 (9)0.0183 (4)
H50.47960.47650.44440.022*
C60.5353 (4)0.55030 (17)0.52031 (9)0.0193 (4)
H60.38740.52720.53740.023*
C70.8751 (4)0.51252 (15)0.38059 (9)0.0153 (4)
H7A0.74220.46610.36630.018*
H7B1.02370.46790.38380.018*
C80.9225 (4)0.60106 (15)0.33686 (8)0.0127 (4)
H81.03080.65580.35490.015*
C91.0589 (4)0.55304 (14)0.28579 (8)0.0127 (4)
C100.6979 (3)0.74683 (14)0.29371 (8)0.0117 (4)
C110.4474 (4)0.78691 (14)0.27481 (8)0.0136 (4)
H110.32160.75920.30180.016*
C120.3816 (3)0.75003 (16)0.21469 (8)0.0156 (4)
H12A0.33360.67370.21630.019*
H12B0.23760.79120.20170.019*
C130.5835 (4)0.76236 (17)0.17061 (8)0.0171 (4)
H13A0.72070.71370.17960.020*
H13B0.64540.83680.17060.020*
C140.7332 (5)0.7195 (2)0.06034 (11)0.0367 (6)
H14A0.81490.78930.05960.055*
H14B0.69350.69760.02150.055*
H14C0.84150.66640.07760.055*
O1W0.2853 (3)0.50422 (12)0.64496 (7)0.0195 (3)
H1W0.240 (5)0.447 (2)0.6281 (13)0.029*
H2W0.372 (6)0.487 (2)0.6762 (14)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (2)0.0196 (2)0.0143 (2)0.0005 (2)0.0008 (2)0.00063 (19)
O10.0273 (8)0.0285 (8)0.0144 (7)0.0058 (7)0.0056 (7)0.0028 (6)
O20.0133 (7)0.0133 (6)0.0185 (7)0.0011 (5)0.0002 (6)0.0008 (6)
O30.0163 (7)0.0156 (6)0.0136 (6)0.0017 (6)0.0017 (6)0.0014 (5)
O40.0127 (7)0.0136 (7)0.0214 (7)0.0007 (5)0.0007 (5)0.0018 (5)
N10.0116 (8)0.0115 (7)0.0161 (8)0.0002 (7)0.0001 (6)0.0010 (6)
N20.0142 (8)0.0134 (8)0.0154 (8)0.0014 (7)0.0003 (7)0.0010 (7)
C10.0229 (11)0.0181 (10)0.0123 (10)0.0032 (8)0.0012 (8)0.0002 (8)
C20.0220 (11)0.0228 (10)0.0171 (10)0.0029 (9)0.0004 (9)0.0016 (8)
C30.0165 (9)0.0229 (10)0.0169 (10)0.0017 (9)0.0018 (9)0.0018 (8)
C40.0181 (10)0.0133 (9)0.0139 (10)0.0042 (8)0.0005 (8)0.0038 (8)
C50.0210 (11)0.0179 (9)0.0160 (10)0.0031 (8)0.0017 (8)0.0009 (8)
C60.0180 (10)0.0226 (10)0.0175 (10)0.0008 (9)0.0023 (9)0.0021 (8)
C70.0181 (10)0.0120 (9)0.0158 (10)0.0015 (8)0.0012 (8)0.0017 (7)
C80.0141 (10)0.0117 (8)0.0124 (9)0.0009 (8)0.0007 (8)0.0006 (7)
C90.0135 (9)0.0076 (8)0.0169 (10)0.0029 (8)0.0000 (8)0.0010 (7)
C100.0136 (9)0.0109 (9)0.0105 (9)0.0012 (7)0.0015 (7)0.0018 (7)
C110.0141 (9)0.0122 (9)0.0145 (9)0.0001 (8)0.0010 (8)0.0019 (7)
C120.0149 (9)0.0162 (9)0.0158 (10)0.0023 (7)0.0025 (7)0.0014 (8)
C130.0186 (10)0.0177 (9)0.0149 (10)0.0014 (8)0.0012 (8)0.0016 (7)
C140.0377 (14)0.0502 (16)0.0222 (13)0.0036 (13)0.0064 (10)0.0097 (12)
O1W0.0249 (8)0.0188 (7)0.0147 (7)0.0028 (6)0.0006 (6)0.0001 (6)
Geometric parameters (Å, º) top
S1—C141.802 (3)C5—C61.392 (3)
S1—C131.819 (2)C5—H50.9500
O1—C11.372 (3)C6—H60.9500
O1—H1OH0.84 (3)C7—C81.534 (3)
O2—C91.259 (3)C7—H7A0.9900
O3—C91.256 (2)C7—H7B0.9900
O4—C101.228 (2)C8—C91.538 (3)
N1—C101.343 (2)C8—H81.0000
N1—C81.448 (3)C10—C111.528 (3)
N1—H1N0.97 (3)C11—C121.532 (3)
N2—C111.488 (2)C11—H111.0000
N2—H21N0.91 (3)C12—C131.525 (3)
N2—H22N0.95 (3)C12—H12A0.9900
N2—H23N0.95 (3)C12—H12B0.9900
C1—C21.385 (3)C13—H13A0.9900
C1—C61.387 (3)C13—H13B0.9900
C2—C31.388 (3)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.392 (3)C14—H14C0.9800
C3—H30.9500O1W—H1W0.85 (3)
C4—C51.388 (3)O1W—H2W0.90 (3)
C4—C71.512 (3)
C14—S1—C13100.05 (11)N1—C8—C9113.30 (16)
C1—O1—H1OH109 (2)C7—C8—C9109.01 (15)
C10—N1—C8120.38 (16)N1—C8—H8108.0
C10—N1—H1N117.9 (14)C7—C8—H8108.0
C8—N1—H1N120.5 (14)C9—C8—H8108.0
C11—N2—H21N110.3 (16)O3—C9—O2125.79 (19)
C11—N2—H22N113.9 (16)O3—C9—C8119.33 (17)
H21N—N2—H22N109 (2)O2—C9—C8114.87 (17)
C11—N2—H23N116.0 (16)O4—C10—N1124.39 (18)
H21N—N2—H23N104 (2)O4—C10—C11120.75 (16)
H22N—N2—H23N104 (2)N1—C10—C11114.86 (16)
O1—C1—C2118.13 (19)N2—C11—C10107.23 (16)
O1—C1—C6122.15 (19)N2—C11—C12110.91 (15)
C2—C1—C6119.7 (2)C10—C11—C12112.47 (16)
C1—C2—C3119.8 (2)N2—C11—H11108.7
C1—C2—H2120.1C10—C11—H11108.7
C3—C2—H2120.1C12—C11—H11108.7
C2—C3—C4121.3 (2)C13—C12—C11115.31 (16)
C2—C3—H3119.3C13—C12—H12A108.4
C4—C3—H3119.3C11—C12—H12A108.4
C5—C4—C3117.98 (19)C13—C12—H12B108.4
C5—C4—C7120.98 (19)C11—C12—H12B108.4
C3—C4—C7121.01 (19)H12A—C12—H12B107.5
C4—C5—C6121.2 (2)C12—C13—S1108.02 (14)
C4—C5—H5119.4C12—C13—H13A110.1
C6—C5—H5119.4S1—C13—H13A110.1
C1—C6—C5119.9 (2)C12—C13—H13B110.1
C1—C6—H6120.1S1—C13—H13B110.1
C5—C6—H6120.1H13A—C13—H13B108.4
C4—C7—C8114.64 (16)S1—C14—H14A109.5
C4—C7—H7A108.6S1—C14—H14B109.5
C8—C7—H7A108.6H14A—C14—H14B109.5
C4—C7—H7B108.6S1—C14—H14C109.5
C8—C7—H7B108.6H14A—C14—H14C109.5
H7A—C7—H7B107.6H14B—C14—H14C109.5
N1—C8—C7110.24 (16)H1W—O1W—H2W110 (3)
O1—C1—C2—C3178.66 (19)C4—C7—C8—C9163.90 (16)
C6—C1—C2—C31.9 (3)N1—C8—C9—O313.3 (2)
C1—C2—C3—C40.5 (3)C7—C8—C9—O3109.8 (2)
C2—C3—C4—C52.7 (3)N1—C8—C9—O2167.13 (16)
C2—C3—C4—C7175.37 (19)C7—C8—C9—O269.7 (2)
C3—C4—C5—C62.7 (3)C8—N1—C10—O46.3 (3)
C7—C4—C5—C6175.42 (19)C8—N1—C10—C11174.12 (16)
O1—C1—C6—C5178.65 (19)O4—C10—C11—N233.4 (2)
C2—C1—C6—C51.9 (3)N1—C10—C11—N2146.24 (16)
C4—C5—C6—C10.4 (3)O4—C10—C11—C1288.8 (2)
C5—C4—C7—C8123.7 (2)N1—C10—C11—C1291.57 (19)
C3—C4—C7—C858.3 (3)N2—C11—C12—C1374.5 (2)
C10—N1—C8—C7165.36 (17)C10—C11—C12—C1345.6 (2)
C10—N1—C8—C972.2 (2)C11—C12—C13—S1173.31 (13)
C4—C7—C8—N171.1 (2)C14—S1—C13—C12167.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.97 (3)1.95 (3)2.863 (2)156 (2)
N2—H21N···O1Wii0.91 (3)2.01 (3)2.805 (2)145 (2)
N2—H22N···O3iii0.95 (3)1.91 (3)2.827 (2)162 (2)
N2—H23N···O2iv0.95 (3)1.80 (3)2.743 (2)171 (2)
C6—H6···O1W0.952.613.290 (3)129
C11—H11···O1v1.002.663.359 (2)127
C11—H11···O4i1.002.493.108 (2)119
C12—H12A···O2i0.992.653.440 (2)137
C13—H13B···O2iv0.992.533.472 (2)159
O1W—H1W···S1vi0.85 (3)2.54 (3)3.3674 (16)165 (3)
O1W—H2W···O3vii0.90 (3)1.82 (3)2.716 (2)179 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1/2, y+3/2, z+1; (vi) x+1/2, y+1, z+1/2; (vii) x+3/2, y+1, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. 0847742 to M. O. Claville; award No. 1238838 to M. O. Claville); Louisiana Board of Regents (grant No. LEQSF (1999–2000)-ENH-TR-13 to Frank Fronczek).

References

First citationBabu, S., Claville, M. O., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (No. 2260065). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2fvsbf  Google Scholar
First citationBergès, J., Trouillas, P. & Houée-Lévin, C. (2011). J. Phys. Conf. Ser. 261, e012003.  Google Scholar
First citationBerlett, B. S. & Stadtman, E. R. (1997). J. Biol. Chem. 272, 20313–20316.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, S. X., Stevens, J. W. & Lentz, S. R. (2015). Blood, 125, 3851–3859.  CrossRef CAS PubMed Google Scholar
First citationHouée-Lévin, C., Bobrowski, K., Horakova, L., Karademir, B., Schöneich, C., Davies, M. J. & Spickett, C. M. (2015). Free Radical Res. 49, 347–373.  Google Scholar
First citationKciuk, G., Mirkowski, J., Bobrowski, K. & Hug, G. L. (2005). Radiat. Chem. Phys, Radiat. Technol. pp. 20–22.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeredith, S., Parekh, G., Towler, J., Schouten, J., Davis, P., Griffiths, H. & Spickett, C. (2014). Free Radical Biol. Med. 75, S50.  CrossRef Google Scholar
First citationNagy, P., Kettle, A. J. & Winterbourn, C. C. (2009). J. Biol. Chem. 284, 14723–14733.  CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorkova, A., Koroleva, O., Khrameeva, E., Fedorova, T. & Tsentalovich, M. (2015). Int. J. Mol. Sci. 16, 25353–25376.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojcik, A., Łukaszewicz, A., Brede, O. & Marciniak, B. (2008). J. Photochem. Photobiol. Chem. 198, 111–118.  CrossRef CAS Google Scholar
First citationZhang, H., Zielonka, J., Sikora, A., Joseph, J., Xu, Y. & Kalyanaraman, B. (2009). Arch. Biochem. Biophys. 484, 134–145.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146