organic compounds
6,6′-Diheptyl-3,3′-bis[(pyridin-3-yl)ethynyl]-5H,5′H-dipyrrolo[1,2-b:1′,2′-g][2,6]naphthyridine-5,5′-dione
aCollege of Chemical Engineering, Guizhou Minzu University, Guiyang,550025,Guizhou, People's Republic of China
*Correspondence e-mail: zhangyupeng2022@gzmu.edu.cn
The complete molecule of the title compound, C42H42N4O2, is generated by a crystallographic centre of symmetry. The pendant heptyl chains adopt extended conformations and the dihedral angle between the pyrrole and pyridine rings is 8.18 (15)°. In the crystal, the molecules are arranged in columnar stacks propagating in the [010] direction via slipped aromatic π–π stacking interactions.
CCDC reference: 2259343
Structure description
5H,11H-dipyrrolo[1,2-b:1′,2′-g][2,6]naphthyridine-5,11-dione (C18H16N2O2; DPND) is a cross-conjugated dye that has attracted significant attention since it was first reported by Grzybowski et al. (2016). Such a skeleton is composed of electron-rich pyrrole rings and electron-poor carbonyl groups. Several studies have shown that it has interesting electrochemical and photophysical properties and it is widely used as a fluorescent dye (Sadowski et al., 2017; Sadowski, Loebnitz, et al., 2018; Sadowski, Rode, et al., 2018). It also has become a potential candidate in singlet fission for enhancing the performance of photo-voltaic devices (Wang et al., 2020), two-photon absorption materials (Sadowski et al., 2017) and photodynamic therapy agents (Morgan, Yun, Jamhawi, et al., 2023). In order to explore the luminescence properties of such molecules in the near infrared region, the strategy of expanding the DPND by introducing a pendant pyridine unit was adapted and we synthesized the title compound C42H42N4O2, named DPND-3Py, and we now describe its structure and spectroscopic properties.
The complete molecule is generated by a crystallographic centre of symmetry (Fig. 1) and the central chromophore is almost planar (r.m.s. deviation for 16 atoms = 0.028 Å). The pyridine unit is connected to the pyrrole ring of the DPND core by an alkyne bond, which enhances the rigidity of the molecule: the dihedral angle between the N1/C1–C4 and N2/C10–C14 rings is 8.18 (15)°. The pendant heptyl chains adopt extended conformations.
In the extended structure (Fig. 2), the molecules of the title compound are arranged in [010] columnar stacks via slipped aromatic π–π stacking interactions with the shortest atom–atom contacts being 3.544 (3) Å for N1⋯C5, 3.613 (3) Å for C4⋯C1 and 3.632 (3) Å for C2⋯C6.
UV–vis spectra were recorded on a TU-1810DPC spectrometer using dichloromethane (DCM) as solvent and a concentration of 2.5 × 10 −6 mol l−1. As shown in Fig. 3, the title compound has three distinct absorption peaks in the range 250 to 800 nm, with a maximum absorption peak of 582 nm. The spectrum features strong absorption in the 500–600 nm region ascribed to an optically allowed S0 → S1 transition.
and 5 show the spectra both in solution (1.0 × 10 −5 mol l−1 in dichloromethane) and the solid state. The solution spectrum displays two peaks (maximum emission wavelength 625 nm) in the range 550 nm to 800 nm. As shown in Fig. 5, the solid-state fluorescence spectrum exhibits a strong emission peak at 767 nm, a shift of over 100 nm compared with solution, indicating strong intermolecular interactions.
spectra were recorded on a F-320 spectrometer or HORIB Fluorolog-3. Figs. 4Synthesis and crystallization
In a reaction flask containing a magnetic stirring bar was placed: 3,3′-dibromo-6,6′-diheptyl-5H,5′H-dipyrrolo[1,2-b:1′,2′-g][2,6]naphthyridine-5,5′-dione (59.04 mg, 0.100 mmol), CuI (1.9 mg, 0.01 mmol), Pd(PPh3)4 (5.78 mg, 0.005 mmol) and 3-pyridine-acetylene (30.94 mg, 0.300 mmol). The vessel was evacuated and backfilled with argon (three times) and anhydrous, degassed tetrahydrofuran (THF) was added (3 ml) followed by dry triethylamine (56 µl, 0.40 mmol). The vessel was tightly closed and again carefully evacuated (until the mixture started to boil) and backfilled with argon (3 times). The content of the flask was stirred for 20 h at 70°C (above the boiling point), and it was cooled to room temperature. Dichloromethane (DCM) was added to dilute the reaction solution, which was washed three times with water and dried over sodium sulfate. The solvent was evaporated and the product was purified using (silica, petroleum ether: ethyl acetate = 5:1), and recrystallized from mixed solvents of DCM and methanol to obtain a dark-purple solid (38.5 mg, yield of 35%) (Grzybowski et al., 2016). Figure S1 in the supporting information shows the 1H NMR spectrum of the title compound. The title compound dissolved in methylene chloride and methanol solution grew dark-red crystals suitable for crystallographic studies by slowly volatilizing the solvents.
Refinement
Crystal data, data collection, and structure .
details are summarized in Table 1Structural data
CCDC reference: 2259343
https://doi.org/10.1107/S2414314623005138/hb4432sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623005138/hb4432Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623005138/hb4432Isup4.tif
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020).C42H42N4O2 | F(000) = 676 |
Mr = 634.79 | Dx = 1.146 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.3973 (4) Å | Cell parameters from 4194 reflections |
b = 4.76620 (15) Å | θ = 3.6–76.0° |
c = 31.5382 (10) Å | µ = 0.56 mm−1 |
β = 99.318 (3)° | T = 300 K |
V = 1838.94 (10) Å3 | Needle, clear light black |
Z = 2 | 0.24 × 0.06 × 0.04 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3568 independent reflections |
Radiation source: Rotating-anodeX-raytube | 2494 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.035 |
fαndωscans | θmax = 76.5°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | h = −15→15 |
Tmin = 0.288, Tmax = 1.000 | k = −5→4 |
10392 measured reflections | l = −36→39 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.090 | H-atom parameters constrained |
wR(F2) = 0.255 | w = 1/[σ2(Fo2) + (0.1846P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3568 reflections | Δρmax = 0.23 e Å−3 |
218 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.36140 (17) | 0.5877 (4) | 0.44237 (5) | 0.1191 (7) | |
N1 | 0.32675 (13) | 0.7409 (3) | 0.50605 (5) | 0.0727 (5) | |
N2 | −0.0384 (2) | −0.2956 (5) | 0.38938 (10) | 0.1224 (8) | |
C7 | 0.51047 (16) | 1.0897 (3) | 0.51924 (6) | 0.0707 (5) | |
C4 | 0.34537 (16) | 0.9202 (4) | 0.54140 (6) | 0.0744 (5) | |
C3 | 0.23135 (17) | 0.5896 (4) | 0.50748 (7) | 0.0832 (6) | |
C5 | 0.39073 (17) | 0.7351 (4) | 0.47350 (6) | 0.0788 (6) | |
C6 | 0.43898 (16) | 1.0958 (4) | 0.54828 (6) | 0.0715 (5) | |
C15 | 0.45368 (17) | 1.2647 (4) | 0.58936 (6) | 0.0786 (6) | |
H15A | 0.3828 | 1.3005 | 0.5975 | 0.094* | |
H15B | 0.4867 | 1.4440 | 0.5846 | 0.094* | |
C10 | 0.09962 (17) | 0.0370 (4) | 0.41748 (8) | 0.0877 (6) | |
C1 | 0.26186 (19) | 0.8770 (4) | 0.56470 (8) | 0.0874 (6) | |
H1 | 0.2532 | 0.9685 | 0.5900 | 0.105* | |
C11 | 0.0089 (2) | −0.1250 (5) | 0.41994 (9) | 0.0959 (7) | |
H11 | −0.0215 | −0.1137 | 0.4450 | 0.115* | |
C8 | 0.18723 (18) | 0.3892 (4) | 0.47647 (8) | 0.0891 (7) | |
C2 | 0.1927 (2) | 0.6726 (5) | 0.54376 (9) | 0.0948 (7) | |
H2 | 0.1303 | 0.6034 | 0.5530 | 0.114* | |
C16 | 0.5257 (2) | 1.1103 (4) | 0.62572 (6) | 0.0847 (6) | |
H16A | 0.4877 | 0.9427 | 0.6327 | 0.102* | |
H16B | 0.5922 | 1.0512 | 0.6158 | 0.102* | |
C12 | 0.0069 (3) | −0.3101 (8) | 0.35413 (13) | 0.1385 (12) | |
H12 | −0.0252 | −0.4274 | 0.3321 | 0.166* | |
C9 | 0.14449 (18) | 0.2220 (4) | 0.45104 (8) | 0.0920 (7) | |
C17 | 0.5558 (2) | 1.2804 (5) | 0.66556 (7) | 0.1010 (8) | |
H17A | 0.4892 | 1.3449 | 0.6749 | 0.121* | |
H17B | 0.5956 | 1.4450 | 0.6587 | 0.121* | |
C18 | 0.6239 (2) | 1.1297 (6) | 0.70235 (7) | 0.1040 (8) | |
H18A | 0.5835 | 0.9655 | 0.7090 | 0.125* | |
H18B | 0.6898 | 1.0636 | 0.6927 | 0.125* | |
C19 | 0.6565 (3) | 1.2890 (7) | 0.74240 (9) | 0.1299 (12) | |
H19A | 0.5905 | 1.3511 | 0.7524 | 0.156* | |
H19B | 0.6952 | 1.4556 | 0.7356 | 0.156* | |
C14 | 0.1440 (3) | 0.0156 (9) | 0.38057 (11) | 0.1317 (11) | |
H14 | 0.2051 | 0.1210 | 0.3771 | 0.158* | |
C13 | 0.0965 (3) | −0.1660 (10) | 0.34829 (13) | 0.1589 (15) | |
H13 | 0.1261 | −0.1870 | 0.3232 | 0.191* | |
C20 | 0.7258 (4) | 1.1427 (10) | 0.77840 (10) | 0.1596 (17) | |
H20A | 0.6901 | 0.9677 | 0.7835 | 0.192* | |
H20B | 0.7945 | 1.0954 | 0.7692 | 0.192* | |
C21 | 0.7502 (5) | 1.2915 (11) | 0.81890 (12) | 0.188 (2) | |
H21A | 0.7859 | 1.4656 | 0.8146 | 0.282* | |
H21B | 0.7974 | 1.1788 | 0.8393 | 0.282* | |
H21C | 0.6835 | 1.3287 | 0.8297 | 0.282* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1286 (15) | 0.1399 (14) | 0.0870 (10) | −0.0598 (12) | 0.0124 (10) | −0.0351 (10) |
N1 | 0.0735 (9) | 0.0680 (8) | 0.0707 (9) | −0.0054 (6) | −0.0064 (7) | 0.0048 (6) |
N2 | 0.1047 (16) | 0.1198 (16) | 0.134 (2) | −0.0282 (13) | −0.0080 (15) | −0.0193 (14) |
C7 | 0.0774 (11) | 0.0665 (9) | 0.0618 (9) | −0.0030 (8) | −0.0083 (8) | 0.0020 (7) |
C4 | 0.0786 (11) | 0.0704 (9) | 0.0691 (10) | 0.0029 (8) | −0.0034 (9) | 0.0059 (7) |
C3 | 0.0769 (12) | 0.0730 (10) | 0.0930 (14) | −0.0106 (9) | −0.0064 (10) | 0.0129 (9) |
C5 | 0.0828 (12) | 0.0779 (11) | 0.0694 (11) | −0.0107 (9) | −0.0067 (9) | −0.0006 (8) |
C6 | 0.0772 (11) | 0.0672 (9) | 0.0639 (9) | 0.0028 (8) | −0.0071 (8) | 0.0044 (7) |
C15 | 0.0868 (13) | 0.0763 (10) | 0.0676 (11) | 0.0057 (9) | −0.0032 (9) | −0.0035 (8) |
C10 | 0.0705 (11) | 0.0816 (11) | 0.1037 (15) | −0.0044 (9) | −0.0073 (11) | 0.0043 (11) |
C1 | 0.0882 (14) | 0.0868 (12) | 0.0859 (12) | 0.0009 (10) | 0.0100 (11) | 0.0094 (10) |
C11 | 0.0850 (14) | 0.0896 (13) | 0.1082 (16) | −0.0149 (11) | 0.0008 (12) | −0.0049 (12) |
C8 | 0.0763 (12) | 0.0753 (11) | 0.1081 (16) | −0.0108 (9) | −0.0082 (11) | 0.0152 (10) |
C2 | 0.0845 (14) | 0.0918 (13) | 0.1073 (17) | −0.0084 (11) | 0.0131 (12) | 0.0155 (12) |
C16 | 0.0983 (14) | 0.0830 (12) | 0.0673 (11) | 0.0077 (10) | −0.0031 (10) | 0.0001 (8) |
C12 | 0.126 (3) | 0.152 (3) | 0.129 (3) | −0.018 (2) | −0.004 (2) | −0.036 (2) |
C9 | 0.0744 (12) | 0.0784 (11) | 0.1149 (17) | −0.0124 (9) | −0.0097 (12) | 0.0100 (11) |
C17 | 0.1199 (19) | 0.1020 (15) | 0.0712 (13) | 0.0131 (13) | −0.0143 (12) | −0.0085 (10) |
C18 | 0.1181 (19) | 0.1188 (17) | 0.0680 (12) | 0.0100 (14) | −0.0066 (12) | 0.0023 (11) |
C19 | 0.151 (3) | 0.141 (2) | 0.0823 (16) | 0.0299 (19) | −0.0262 (17) | −0.0199 (14) |
C14 | 0.0939 (18) | 0.171 (3) | 0.132 (2) | −0.0288 (19) | 0.0242 (17) | −0.007 (2) |
C13 | 0.135 (3) | 0.218 (4) | 0.127 (3) | −0.023 (3) | 0.032 (2) | −0.048 (3) |
C20 | 0.186 (4) | 0.195 (4) | 0.0822 (17) | 0.057 (3) | −0.023 (2) | −0.0110 (19) |
C21 | 0.225 (5) | 0.216 (4) | 0.101 (2) | 0.065 (4) | −0.044 (3) | −0.030 (2) |
O1—C5 | 1.214 (2) | C2—H2 | 0.9300 |
N1—C3 | 1.392 (3) | C16—C17 | 1.491 (3) |
N1—C4 | 1.394 (2) | C16—H16A | 0.9700 |
N1—C5 | 1.396 (3) | C16—H16B | 0.9700 |
N2—C11 | 1.323 (3) | C12—C13 | 1.343 (6) |
N2—C12 | 1.327 (5) | C12—H12 | 0.9300 |
C7—C6 | 1.374 (3) | C17—C18 | 1.502 (3) |
C7—C5i | 1.470 (3) | C17—H17A | 0.9700 |
C7—C7i | 1.473 (3) | C17—H17B | 0.9700 |
C4—C1 | 1.378 (3) | C18—C19 | 1.473 (3) |
C4—C6 | 1.419 (3) | C18—H18A | 0.9700 |
C3—C2 | 1.368 (4) | C18—H18B | 0.9700 |
C3—C8 | 1.413 (3) | C19—C20 | 1.483 (4) |
C5—C7i | 1.470 (3) | C19—H19A | 0.9700 |
C6—C15 | 1.511 (3) | C19—H19B | 0.9700 |
C15—C16 | 1.524 (3) | C14—C13 | 1.392 (5) |
C15—H15A | 0.9700 | C14—H14 | 0.9300 |
C15—H15B | 0.9700 | C13—H13 | 0.9300 |
C10—C14 | 1.370 (4) | C20—C21 | 1.450 (5) |
C10—C11 | 1.377 (3) | C20—H20A | 0.9700 |
C10—C9 | 1.420 (3) | C20—H20B | 0.9700 |
C1—C2 | 1.392 (3) | C21—H21A | 0.9600 |
C1—H1 | 0.9300 | C21—H21B | 0.9600 |
C11—H11 | 0.9300 | C21—H21C | 0.9600 |
C8—C9 | 1.192 (3) | ||
C3—N1—C4 | 108.86 (18) | C15—C16—H16B | 108.7 |
C3—N1—C5 | 126.90 (16) | H16A—C16—H16B | 107.6 |
C4—N1—C5 | 124.08 (16) | N2—C12—C13 | 124.1 (3) |
C11—N2—C12 | 116.4 (3) | N2—C12—H12 | 118.0 |
C6—C7—C5i | 119.69 (17) | C13—C12—H12 | 118.0 |
C6—C7—C7i | 121.0 (2) | C8—C9—C10 | 173.9 (3) |
C5i—C7—C7i | 119.3 (2) | C16—C17—C18 | 115.0 (2) |
C1—C4—N1 | 107.06 (17) | C16—C17—H17A | 108.5 |
C1—C4—C6 | 132.29 (19) | C18—C17—H17A | 108.5 |
N1—C4—C6 | 120.62 (19) | C16—C17—H17B | 108.5 |
C2—C3—N1 | 106.95 (18) | C18—C17—H17B | 108.5 |
C2—C3—C8 | 128.7 (2) | H17A—C17—H17B | 107.5 |
N1—C3—C8 | 124.3 (2) | C19—C18—C17 | 117.2 (2) |
O1—C5—N1 | 118.36 (19) | C19—C18—H18A | 108.0 |
O1—C5—C7i | 126.0 (2) | C17—C18—H18A | 108.0 |
N1—C5—C7i | 115.64 (16) | C19—C18—H18B | 108.0 |
C7—C6—C4 | 119.04 (17) | C17—C18—H18B | 108.0 |
C7—C6—C15 | 125.57 (18) | H18A—C18—H18B | 107.2 |
C4—C6—C15 | 115.30 (19) | C18—C19—C20 | 117.3 (3) |
C6—C15—C16 | 111.27 (15) | C18—C19—H19A | 108.0 |
C6—C15—H15A | 109.4 | C20—C19—H19A | 108.0 |
C16—C15—H15A | 109.4 | C18—C19—H19B | 108.0 |
C6—C15—H15B | 109.4 | C20—C19—H19B | 108.0 |
C16—C15—H15B | 109.4 | H19A—C19—H19B | 107.2 |
H15A—C15—H15B | 108.0 | C10—C14—C13 | 119.1 (3) |
C14—C10—C11 | 116.8 (2) | C10—C14—H14 | 120.4 |
C14—C10—C9 | 121.1 (2) | C13—C14—H14 | 120.4 |
C11—C10—C9 | 122.1 (3) | C12—C13—C14 | 118.6 (4) |
C4—C1—C2 | 108.0 (2) | C12—C13—H13 | 120.7 |
C4—C1—H1 | 126.0 | C14—C13—H13 | 120.7 |
C2—C1—H1 | 126.0 | C21—C20—C19 | 117.2 (3) |
N2—C11—C10 | 125.0 (3) | C21—C20—H20A | 108.0 |
N2—C11—H11 | 117.5 | C19—C20—H20A | 108.0 |
C10—C11—H11 | 117.5 | C21—C20—H20B | 108.0 |
C9—C8—C3 | 176.3 (3) | C19—C20—H20B | 108.0 |
C3—C2—C1 | 109.1 (2) | H20A—C20—H20B | 107.2 |
C3—C2—H2 | 125.5 | C20—C21—H21A | 109.5 |
C1—C2—H2 | 125.5 | C20—C21—H21B | 109.5 |
C17—C16—C15 | 114.06 (17) | H21A—C21—H21B | 109.5 |
C17—C16—H16A | 108.7 | C20—C21—H21C | 109.5 |
C15—C16—H16A | 108.7 | H21A—C21—H21C | 109.5 |
C17—C16—H16B | 108.7 | H21B—C21—H21C | 109.5 |
C3—N1—C4—C1 | 0.5 (2) | C7—C6—C15—C16 | −83.8 (2) |
C5—N1—C4—C1 | 176.21 (16) | C4—C6—C15—C16 | 92.7 (2) |
C3—N1—C4—C6 | 178.77 (15) | N1—C4—C1—C2 | 0.1 (2) |
C5—N1—C4—C6 | −5.5 (3) | C6—C4—C1—C2 | −177.94 (19) |
C4—N1—C3—C2 | −0.9 (2) | C12—N2—C11—C10 | 0.6 (4) |
C5—N1—C3—C2 | −176.42 (18) | C14—C10—C11—N2 | −0.7 (4) |
C4—N1—C3—C8 | 179.55 (17) | C9—C10—C11—N2 | 178.1 (2) |
C5—N1—C3—C8 | 4.0 (3) | N1—C3—C2—C1 | 0.9 (2) |
C3—N1—C5—O1 | 1.3 (3) | C8—C3—C2—C1 | −179.55 (19) |
C4—N1—C5—O1 | −173.68 (18) | C4—C1—C2—C3 | −0.6 (3) |
C3—N1—C5—C7i | −178.28 (15) | C6—C15—C16—C17 | 172.3 (2) |
C4—N1—C5—C7i | 6.8 (3) | C11—N2—C12—C13 | 0.5 (6) |
C5i—C7—C6—C4 | −178.44 (15) | C15—C16—C17—C18 | 178.2 (2) |
C7i—C7—C6—C4 | 1.8 (3) | C16—C17—C18—C19 | 179.6 (3) |
C5i—C7—C6—C15 | −2.1 (3) | C17—C18—C19—C20 | −178.6 (3) |
C7i—C7—C6—C15 | 178.13 (18) | C11—C10—C14—C13 | −0.3 (5) |
C1—C4—C6—C7 | 178.65 (19) | C9—C10—C14—C13 | −179.2 (3) |
N1—C4—C6—C7 | 0.9 (2) | N2—C12—C13—C14 | −1.5 (7) |
C1—C4—C6—C15 | 1.9 (3) | C10—C14—C13—C12 | 1.4 (6) |
N1—C4—C6—C15 | −175.86 (14) | C18—C19—C20—C21 | −175.0 (4) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Funding information
We gratefully acknowledge support by the Guizhou Provincial Science and Technology Projects (grant No. ZK[2021]1Y 048).
References
Grzybowski, M., Deperasińska, I., Chotkowski, M., Banasiewicz, M., Makarewicz, A., Kozankiewicz, B. & Gryko, D. T. (2016). Chem. Commun. 52, 5108–5111. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morgan, J., Yun, Y. J., Jamhawi, A. M., Islam, S. M. & Ayitou, A. J. (2023). Photochem. & Photobiol. 99, 761–768. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sadowski, B., Kita, H., Grzybowski, M., Kamada, K. & Gryko, D. T. (2017). J. Org. Chem. 82, 7254–7264. Web of Science CrossRef CAS PubMed Google Scholar
Sadowski, B., Loebnitz, M., Dombrowski, D. R., Friese, D. H. & Gryko, D. T. (2018). J. Org. Chem. 83, 11645–11653. Web of Science CrossRef CAS PubMed Google Scholar
Sadowski, B., Rode, M. F. & Gryko, D. T. (2018). Chem. Eur. J. 24, 855–864. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, L. L. L., Lin, L., Yang, J., Wu, Y., Wang, H., Zhu, J., Yao, J. & Fu, H. (2020). J. Am. Chem. Soc. 142, 10235–10239. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.