organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6,6′-Di­heptyl-3,3′-bis­­[(pyridin-3-yl)ethyn­yl]-5H,5′H-di­pyrrolo­[1,2-b:1′,2′-g][2,6]naphthyridine-5,5′-dione

crossmark logo

aCollege of Chemical Engineering, Guizhou Minzu University, Guiyang,550025,Guizhou, People's Republic of China
*Correspondence e-mail: zhangyupeng2022@gzmu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 22 May 2023; accepted 8 June 2023; online 9 June 2023)

The complete mol­ecule of the title compound, C42H42N4O2, is generated by a crystallographic centre of symmetry. The pendant heptyl chains adopt extended conformations and the dihedral angle between the pyrrole and pyridine rings is 8.18 (15)°. In the crystal, the mol­ecules are arranged in columnar stacks propagating in the [010] direction via slipped aromatic ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5H,11H-di­pyrrolo­[1,2-b:1′,2′-g][2,6]naphthyridine-5,11-dione (C18H16N2O2; DPND) is a cross-conjugated dye that has attracted significant attention since it was first reported by Grzybowski et al. (2016[Grzybowski, M., Deperasińska, I., Chotkowski, M., Banasiewicz, M., Makarewicz, A., Kozankiewicz, B. & Gryko, D. T. (2016). Chem. Commun. 52, 5108-5111.]). Such a skeleton is composed of electron-rich pyrrole rings and electron-poor carbonyl groups. Several studies have shown that it has inter­esting electrochemical and photophysical properties and it is widely used as a fluorescent dye (Sadowski et al., 2017[Sadowski, B., Kita, H., Grzybowski, M., Kamada, K. & Gryko, D. T. (2017). J. Org. Chem. 82, 7254-7264.]; Sadowski, Loebnitz, et al., 2018[Sadowski, B., Loebnitz, M., Dombrowski, D. R., Friese, D. H. & Gryko, D. T. (2018). J. Org. Chem. 83, 11645-11653.]; Sadowski, Rode, et al., 2018[Sadowski, B., Rode, M. F. & Gryko, D. T. (2018). Chem. Eur. J. 24, 855-864.]). It also has become a potential candidate in singlet fission for enhancing the performance of photo-voltaic devices (Wang et al., 2020[Wang, L. L. L., Lin, L., Yang, J., Wu, Y., Wang, H., Zhu, J., Yao, J. & Fu, H. (2020). J. Am. Chem. Soc. 142, 10235-10239.]), two-photon absorption materials (Sadowski et al., 2017[Sadowski, B., Kita, H., Grzybowski, M., Kamada, K. & Gryko, D. T. (2017). J. Org. Chem. 82, 7254-7264.]) and photodynamic therapy agents (Morgan, Yun, Jamhawi, et al., 2023[Morgan, J., Yun, Y. J., Jamhawi, A. M., Islam, S. M. & Ayitou, A. J. (2023). Photochem. & Photobiol. 99, 761-768.]). In order to explore the luminescence properties of such mol­ecules in the near infrared region, the strategy of expanding the DPND conjugated system by introducing a pendant pyridine unit was adapted and we synthesized the title compound C42H42N4O2, named DPND-3Py, and we now describe its structure and spectroscopic properties.

The complete mol­ecule is generated by a crystallographic centre of symmetry (Fig. 1[link]) and the central chromophore is almost planar (r.m.s. deviation for 16 atoms = 0.028 Å). The pyridine unit is connected to the pyrrole ring of the DPND core by an alkyne bond, which enhances the rigidity of the mol­ecule: the dihedral angle between the N1/C1–C4 and N2/C10–C14 rings is 8.18 (15)°. The pendant heptyl chains adopt extended conformations.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code for the primed atoms: 1 − x, 2 − y, 1 − z.

In the extended structure (Fig. 2[link]), the mol­ecules of the title compound are arranged in [010] columnar stacks via slipped aromatic ππ stacking inter­actions with the shortest atom–atom contacts being 3.544 (3) Å for N1⋯C5, 3.613 (3) Å for C4⋯C1 and 3.632 (3) Å for C2⋯C6.

[Figure 2]
Figure 2
The packing arrangement of the title compound, which shows a slip-stack pattern with a ππ distance of 3.402 Å between the closest planes of these two mol­ecules.

UV–vis spectra were recorded on a TU-1810DPC spectrometer using di­chloro­methane (DCM) as solvent and a concentration of 2.5 × 10 −6 mol l−1. As shown in Fig. 3[link], the title compound has three distinct absorption peaks in the range 250 to 800 nm, with a maximum absorption peak of 582 nm. The spectrum features strong absorption in the 500–600 nm region ascribed to an optically allowed S0S1 transition.

[Figure 3]
Figure 3
UV–vis absorption spectrum of the title compound.

Photoluminescence spectra were recorded on a F-320 spectrometer or HORIB Fluoro­log-3. Figs. 4[link] and 5[link] show the photoluminescence spectra both in solution (1.0 × 10 −5 mol l−1 in di­chloro­methane) and the solid state. The solution spectrum displays two peaks (maximum emission wavelength 625 nm) in the range 550 nm to 800 nm. As shown in Fig. 5[link], the solid-state fluorescence spectrum exhibits a strong emission peak at 767 nm, a shift of over 100 nm compared with solution, indicating strong inter­molecular inter­actions.

[Figure 4]
Figure 4
Fluorescence spectrum of the title compound dissolved in DCM.
[Figure 5]
Figure 5
Solid-state emission spectrum of the title compound at an excitation wavelength of 470 nm.

Synthesis and crystallization

In a reaction flask containing a magnetic stirring bar was placed: 3,3′-di­bromo-6,6′-diheptyl-5H,5′H-di­pyrrolo­[1,2-b:1′,2′-g][2,6]naphthyridine-5,5′-dione (59.04 mg, 0.100 mmol), CuI (1.9 mg, 0.01 mmol), Pd(PPh3)4 (5.78 mg, 0.005 mmol) and 3-pyridine-acetyl­ene (30.94 mg, 0.300 mmol). The vessel was evacuated and backfilled with argon (three times) and anhydrous, degassed tetra­hydro­furan (THF) was added (3 ml) followed by dry tri­ethyl­amine (56 µl, 0.40 mmol). The vessel was tightly closed and again carefully evacuated (until the mixture started to boil) and backfilled with argon (3 times). The content of the flask was stirred for 20 h at 70°C (above the boiling point), and it was cooled to room temperature. Di­chloro­methane (DCM) was added to dilute the reaction solution, which was washed three times with water and dried over sodium sulfate. The solvent was evaporated and the product was purified using column chromatography (silica, petroleum ether: ethyl acetate = 5:1), and recrystallized from mixed solvents of DCM and methanol to obtain a dark-purple solid (38.5 mg, yield of 35%) (Grzybowski et al., 2016[Grzybowski, M., Deperasińska, I., Chotkowski, M., Banasiewicz, M., Makarewicz, A., Kozankiewicz, B. & Gryko, D. T. (2016). Chem. Commun. 52, 5108-5111.]). Figure S1 in the supporting information shows the 1H NMR spectrum of the title compound. The title compound dissolved in methyl­ene chloride and methanol solution grew dark-red crystals suitable for crystallographic studies by slowly volatilizing the solvents.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C42H42N4O2
Mr 634.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 12.3973 (4), 4.76620 (15), 31.5382 (10)
β (°) 99.318 (3)
V3) 1838.94 (10)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.56
Crystal size (mm) 0.24 × 0.06 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.288, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10392, 3568, 2494
Rint 0.035
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.255, 1.05
No. of reflections 3568
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020).

6,6'-Diheptyl-3,3'-bis[(pyridin-3-yl)ethynyl]-5H,5'H-dipyrrolo[1,2-b:1',2'-g][2,6]naphthyridine-5,5'-dione top
Crystal data top
C42H42N4O2F(000) = 676
Mr = 634.79Dx = 1.146 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.3973 (4) ÅCell parameters from 4194 reflections
b = 4.76620 (15) Åθ = 3.6–76.0°
c = 31.5382 (10) ŵ = 0.56 mm1
β = 99.318 (3)°T = 300 K
V = 1838.94 (10) Å3Needle, clear light black
Z = 20.24 × 0.06 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3568 independent reflections
Radiation source: Rotating-anodeX-raytube2494 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.035
fαndωscansθmax = 76.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1515
Tmin = 0.288, Tmax = 1.000k = 54
10392 measured reflectionsl = 3639
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.255 w = 1/[σ2(Fo2) + (0.1846P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3568 reflectionsΔρmax = 0.23 e Å3
218 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36140 (17)0.5877 (4)0.44237 (5)0.1191 (7)
N10.32675 (13)0.7409 (3)0.50605 (5)0.0727 (5)
N20.0384 (2)0.2956 (5)0.38938 (10)0.1224 (8)
C70.51047 (16)1.0897 (3)0.51924 (6)0.0707 (5)
C40.34537 (16)0.9202 (4)0.54140 (6)0.0744 (5)
C30.23135 (17)0.5896 (4)0.50748 (7)0.0832 (6)
C50.39073 (17)0.7351 (4)0.47350 (6)0.0788 (6)
C60.43898 (16)1.0958 (4)0.54828 (6)0.0715 (5)
C150.45368 (17)1.2647 (4)0.58936 (6)0.0786 (6)
H15A0.38281.30050.59750.094*
H15B0.48671.44400.58460.094*
C100.09962 (17)0.0370 (4)0.41748 (8)0.0877 (6)
C10.26186 (19)0.8770 (4)0.56470 (8)0.0874 (6)
H10.25320.96850.59000.105*
C110.0089 (2)0.1250 (5)0.41994 (9)0.0959 (7)
H110.02150.11370.44500.115*
C80.18723 (18)0.3892 (4)0.47647 (8)0.0891 (7)
C20.1927 (2)0.6726 (5)0.54376 (9)0.0948 (7)
H20.13030.60340.55300.114*
C160.5257 (2)1.1103 (4)0.62572 (6)0.0847 (6)
H16A0.48770.94270.63270.102*
H16B0.59221.05120.61580.102*
C120.0069 (3)0.3101 (8)0.35413 (13)0.1385 (12)
H120.02520.42740.33210.166*
C90.14449 (18)0.2220 (4)0.45104 (8)0.0920 (7)
C170.5558 (2)1.2804 (5)0.66556 (7)0.1010 (8)
H17A0.48921.34490.67490.121*
H17B0.59561.44500.65870.121*
C180.6239 (2)1.1297 (6)0.70235 (7)0.1040 (8)
H18A0.58350.96550.70900.125*
H18B0.68981.06360.69270.125*
C190.6565 (3)1.2890 (7)0.74240 (9)0.1299 (12)
H19A0.59051.35110.75240.156*
H19B0.69521.45560.73560.156*
C140.1440 (3)0.0156 (9)0.38057 (11)0.1317 (11)
H140.20510.12100.37710.158*
C130.0965 (3)0.1660 (10)0.34829 (13)0.1589 (15)
H130.12610.18700.32320.191*
C200.7258 (4)1.1427 (10)0.77840 (10)0.1596 (17)
H20A0.69010.96770.78350.192*
H20B0.79451.09540.76920.192*
C210.7502 (5)1.2915 (11)0.81890 (12)0.188 (2)
H21A0.78591.46560.81460.282*
H21B0.79741.17880.83930.282*
H21C0.68351.32870.82970.282*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1286 (15)0.1399 (14)0.0870 (10)0.0598 (12)0.0124 (10)0.0351 (10)
N10.0735 (9)0.0680 (8)0.0707 (9)0.0054 (6)0.0064 (7)0.0048 (6)
N20.1047 (16)0.1198 (16)0.134 (2)0.0282 (13)0.0080 (15)0.0193 (14)
C70.0774 (11)0.0665 (9)0.0618 (9)0.0030 (8)0.0083 (8)0.0020 (7)
C40.0786 (11)0.0704 (9)0.0691 (10)0.0029 (8)0.0034 (9)0.0059 (7)
C30.0769 (12)0.0730 (10)0.0930 (14)0.0106 (9)0.0064 (10)0.0129 (9)
C50.0828 (12)0.0779 (11)0.0694 (11)0.0107 (9)0.0067 (9)0.0006 (8)
C60.0772 (11)0.0672 (9)0.0639 (9)0.0028 (8)0.0071 (8)0.0044 (7)
C150.0868 (13)0.0763 (10)0.0676 (11)0.0057 (9)0.0032 (9)0.0035 (8)
C100.0705 (11)0.0816 (11)0.1037 (15)0.0044 (9)0.0073 (11)0.0043 (11)
C10.0882 (14)0.0868 (12)0.0859 (12)0.0009 (10)0.0100 (11)0.0094 (10)
C110.0850 (14)0.0896 (13)0.1082 (16)0.0149 (11)0.0008 (12)0.0049 (12)
C80.0763 (12)0.0753 (11)0.1081 (16)0.0108 (9)0.0082 (11)0.0152 (10)
C20.0845 (14)0.0918 (13)0.1073 (17)0.0084 (11)0.0131 (12)0.0155 (12)
C160.0983 (14)0.0830 (12)0.0673 (11)0.0077 (10)0.0031 (10)0.0001 (8)
C120.126 (3)0.152 (3)0.129 (3)0.018 (2)0.004 (2)0.036 (2)
C90.0744 (12)0.0784 (11)0.1149 (17)0.0124 (9)0.0097 (12)0.0100 (11)
C170.1199 (19)0.1020 (15)0.0712 (13)0.0131 (13)0.0143 (12)0.0085 (10)
C180.1181 (19)0.1188 (17)0.0680 (12)0.0100 (14)0.0066 (12)0.0023 (11)
C190.151 (3)0.141 (2)0.0823 (16)0.0299 (19)0.0262 (17)0.0199 (14)
C140.0939 (18)0.171 (3)0.132 (2)0.0288 (19)0.0242 (17)0.007 (2)
C130.135 (3)0.218 (4)0.127 (3)0.023 (3)0.032 (2)0.048 (3)
C200.186 (4)0.195 (4)0.0822 (17)0.057 (3)0.023 (2)0.0110 (19)
C210.225 (5)0.216 (4)0.101 (2)0.065 (4)0.044 (3)0.030 (2)
Geometric parameters (Å, º) top
O1—C51.214 (2)C2—H20.9300
N1—C31.392 (3)C16—C171.491 (3)
N1—C41.394 (2)C16—H16A0.9700
N1—C51.396 (3)C16—H16B0.9700
N2—C111.323 (3)C12—C131.343 (6)
N2—C121.327 (5)C12—H120.9300
C7—C61.374 (3)C17—C181.502 (3)
C7—C5i1.470 (3)C17—H17A0.9700
C7—C7i1.473 (3)C17—H17B0.9700
C4—C11.378 (3)C18—C191.473 (3)
C4—C61.419 (3)C18—H18A0.9700
C3—C21.368 (4)C18—H18B0.9700
C3—C81.413 (3)C19—C201.483 (4)
C5—C7i1.470 (3)C19—H19A0.9700
C6—C151.511 (3)C19—H19B0.9700
C15—C161.524 (3)C14—C131.392 (5)
C15—H15A0.9700C14—H140.9300
C15—H15B0.9700C13—H130.9300
C10—C141.370 (4)C20—C211.450 (5)
C10—C111.377 (3)C20—H20A0.9700
C10—C91.420 (3)C20—H20B0.9700
C1—C21.392 (3)C21—H21A0.9600
C1—H10.9300C21—H21B0.9600
C11—H110.9300C21—H21C0.9600
C8—C91.192 (3)
C3—N1—C4108.86 (18)C15—C16—H16B108.7
C3—N1—C5126.90 (16)H16A—C16—H16B107.6
C4—N1—C5124.08 (16)N2—C12—C13124.1 (3)
C11—N2—C12116.4 (3)N2—C12—H12118.0
C6—C7—C5i119.69 (17)C13—C12—H12118.0
C6—C7—C7i121.0 (2)C8—C9—C10173.9 (3)
C5i—C7—C7i119.3 (2)C16—C17—C18115.0 (2)
C1—C4—N1107.06 (17)C16—C17—H17A108.5
C1—C4—C6132.29 (19)C18—C17—H17A108.5
N1—C4—C6120.62 (19)C16—C17—H17B108.5
C2—C3—N1106.95 (18)C18—C17—H17B108.5
C2—C3—C8128.7 (2)H17A—C17—H17B107.5
N1—C3—C8124.3 (2)C19—C18—C17117.2 (2)
O1—C5—N1118.36 (19)C19—C18—H18A108.0
O1—C5—C7i126.0 (2)C17—C18—H18A108.0
N1—C5—C7i115.64 (16)C19—C18—H18B108.0
C7—C6—C4119.04 (17)C17—C18—H18B108.0
C7—C6—C15125.57 (18)H18A—C18—H18B107.2
C4—C6—C15115.30 (19)C18—C19—C20117.3 (3)
C6—C15—C16111.27 (15)C18—C19—H19A108.0
C6—C15—H15A109.4C20—C19—H19A108.0
C16—C15—H15A109.4C18—C19—H19B108.0
C6—C15—H15B109.4C20—C19—H19B108.0
C16—C15—H15B109.4H19A—C19—H19B107.2
H15A—C15—H15B108.0C10—C14—C13119.1 (3)
C14—C10—C11116.8 (2)C10—C14—H14120.4
C14—C10—C9121.1 (2)C13—C14—H14120.4
C11—C10—C9122.1 (3)C12—C13—C14118.6 (4)
C4—C1—C2108.0 (2)C12—C13—H13120.7
C4—C1—H1126.0C14—C13—H13120.7
C2—C1—H1126.0C21—C20—C19117.2 (3)
N2—C11—C10125.0 (3)C21—C20—H20A108.0
N2—C11—H11117.5C19—C20—H20A108.0
C10—C11—H11117.5C21—C20—H20B108.0
C9—C8—C3176.3 (3)C19—C20—H20B108.0
C3—C2—C1109.1 (2)H20A—C20—H20B107.2
C3—C2—H2125.5C20—C21—H21A109.5
C1—C2—H2125.5C20—C21—H21B109.5
C17—C16—C15114.06 (17)H21A—C21—H21B109.5
C17—C16—H16A108.7C20—C21—H21C109.5
C15—C16—H16A108.7H21A—C21—H21C109.5
C17—C16—H16B108.7H21B—C21—H21C109.5
C3—N1—C4—C10.5 (2)C7—C6—C15—C1683.8 (2)
C5—N1—C4—C1176.21 (16)C4—C6—C15—C1692.7 (2)
C3—N1—C4—C6178.77 (15)N1—C4—C1—C20.1 (2)
C5—N1—C4—C65.5 (3)C6—C4—C1—C2177.94 (19)
C4—N1—C3—C20.9 (2)C12—N2—C11—C100.6 (4)
C5—N1—C3—C2176.42 (18)C14—C10—C11—N20.7 (4)
C4—N1—C3—C8179.55 (17)C9—C10—C11—N2178.1 (2)
C5—N1—C3—C84.0 (3)N1—C3—C2—C10.9 (2)
C3—N1—C5—O11.3 (3)C8—C3—C2—C1179.55 (19)
C4—N1—C5—O1173.68 (18)C4—C1—C2—C30.6 (3)
C3—N1—C5—C7i178.28 (15)C6—C15—C16—C17172.3 (2)
C4—N1—C5—C7i6.8 (3)C11—N2—C12—C130.5 (6)
C5i—C7—C6—C4178.44 (15)C15—C16—C17—C18178.2 (2)
C7i—C7—C6—C41.8 (3)C16—C17—C18—C19179.6 (3)
C5i—C7—C6—C152.1 (3)C17—C18—C19—C20178.6 (3)
C7i—C7—C6—C15178.13 (18)C11—C10—C14—C130.3 (5)
C1—C4—C6—C7178.65 (19)C9—C10—C14—C13179.2 (3)
N1—C4—C6—C70.9 (2)N2—C12—C13—C141.5 (7)
C1—C4—C6—C151.9 (3)C10—C14—C13—C121.4 (6)
N1—C4—C6—C15175.86 (14)C18—C19—C20—C21175.0 (4)
Symmetry code: (i) x+1, y+2, z+1.
 

Funding information

We gratefully acknowledge support by the Guizhou Provincial Science and Technology Projects (grant No. ZK[2021]1Y 048).

References

First citationGrzybowski, M., Deperasińska, I., Chotkowski, M., Banasiewicz, M., Makarewicz, A., Kozankiewicz, B. & Gryko, D. T. (2016). Chem. Commun. 52, 5108–5111.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorgan, J., Yun, Y. J., Jamhawi, A. M., Islam, S. M. & Ayitou, A. J. (2023). Photochem. & Photobiol. 99, 761–768.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSadowski, B., Kita, H., Grzybowski, M., Kamada, K. & Gryko, D. T. (2017). J. Org. Chem. 82, 7254–7264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSadowski, B., Loebnitz, M., Dombrowski, D. R., Friese, D. H. & Gryko, D. T. (2018). J. Org. Chem. 83, 11645–11653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSadowski, B., Rode, M. F. & Gryko, D. T. (2018). Chem. Eur. J. 24, 855–864.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, L. L. L., Lin, L., Yang, J., Wu, Y., Wang, H., Zhu, J., Yao, J. & Fu, H. (2020). J. Am. Chem. Soc. 142, 10235–10239.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146