organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-(4-meth­­oxy­phen­yl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbo­nitrile acetic acid monosolvate

crossmark logo

aDepartment of Chemistry, Assam University, Silchar 788011, India, and bCentre for Soft Matter, Department of Chemistry, Assam University, Silchar 788011, India
*Correspondence e-mail: sudip.choudhury@aus.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 March 2023; accepted 23 June 2023; online 30 June 2023)

In the title co-crystal, C20H14N2O4·C2H4O2, the expected proton transfer from acetic acid to amine has not occurred. In the crystal, the chromene mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds to generate [100] columns. The acetic acid mol­ecules form inversion dimers linked by pairwise O—H⋯O hydrogen bonds and occupy voids between the columns.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrano[3,2-c]chromene derivatives enjoy attention from researchers due to their pharmacological activity (Siziani et al., 2022[Siziani, D., Ziani, B. E. C., Abdi, Y., Bensouilah, N., Boutemeur-Kheddis, B., Ziani, C., Boukkena, L., Hamdi, M., Talhi, O., Bachari, K. & Silva, A. M. S. (2022). J. Mol. Struct. 1264, 133236.]; Tashrifi et al., 2020[Tashrifi, Z., Mohammadi-Khanaposhtani, M., Hamedifar, H., Larijani, B., Ansari, S. & Mahdavi, M. (2020). Mol. Divers. 24, 1385-1431.]), heavy metal chemisensing (Mohajer et al., 2022[Mohajer, F., Soltani HasanKiadeh, F., Mohammadi Ziarani, G., Zandiyeh, M., Badiei, A. & Varma, R. S. (2022). Opt. Mater.: X, 15, 100182.]), semiconductivity (Mal et al., 2022[Mal, K. & Mukhopadhyay, C. (2022). J. Mol. Struct. 1253, 132213.]), etc. As part of our studies in this area, the crystal structure of the 1:1 co-crystal of 2-amino-4-(4-meth­oxy­phen­yl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbo­nitrile and acetic acid is now reported. The compound was crystallized from acetic acid, but the expected proton transfer from the carb­oxy­lic acid to the amine group did not occur.

The title compound crystallizes in the triclinic space group P[\overline{1}] with one pyrano[3,2-c]chromene mol­ecule and one acetic acid mol­ecule in the asymmetric unit (Fig. 1[link]). Unexpectedly, although crystallized from a solvent of glacial acetic acid, the –NH2 group present in the pyran­ochromene framework was not protonated. The dihedral angle between the planes of the C1–C12/O2/O3 fused ring (r.m.s. deviation = 0.079 Å) and the pendant C14–C19 ring is 89.00 (6)°, and the C atom of the meth­oxy substituent deviates by 0.132 (2) Å from its attached ring.

[Figure 1]
Figure 1
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the pyrano[3,2-c]chromene mol­ecules are linked by N1—H11⋯N2i hydrogen bonds (Table 1[link]) to generate centrosymmetric R22(12) loops and the dimers are linked into [100] chains by N1—H10⋯O1ii links to generate [100] columns. The acetic acid mol­ecules maintain their hydrogen-bonded dimeric form (via pairwise O6—H15⋯O5iii links) without any directional inter­actions with the pyrano[3,2-c]chromene columns (Fig. 2[link]). The acetic acid dimers occupy the space between pyran­ochromene columns (about 7.4 Å) and are positioned approximately parallel to the pyran­ochromene plane of the host mol­ecule; a weak C15—H6⋯O5 hydrogen bond occurs between host and guest. The significant difference between the lengths of the C21—O5 [1.197 (3) Å] and C21—O6 [1.284 (3) Å] bonds infers that the acetic acid mol­ecule remains in its protonated state.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N2i 0.85 (2) 2.22 (2) 3.062 (2) 172 (2)
N1—H10⋯O1ii 0.81 (2) 2.31 (2) 3.111 (2) 168 (2)
O6—H15⋯O5iii 1.00 (4) 1.67 (4) 2.664 (3) 172 (3)
C15—H6⋯O5 0.93 2.39 3.251 (2) 154
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+2].
[Figure 2]
Figure 2
Packing arrangement of the title compound. Hydrogen bonds are shown as dotted lines.

Synthesis and crystallization

4-Hy­droxy­coumarin or 4-hy­droxy-2H-benzo[h]chromen-2-one (1.00 mmol), 4-meth­oxy­benzaldehyde (1.00 mmol), malono­nitrile (1.00 mmol) and catalyst DABCO (10 mol%) were ground with a mortar and pestle for about 10 min. Upon completion of the reaction, the product was washed several times with ethanol to get the pure product, a white solid. The purity of the compound was confirmed by fluorescent HPTLC (Merck) and melting point (observed 238°C, reported 237°C; Shaabani et al., 2007[Shaabani, A., Samadi, S. & Rahmati, A. (2007). Synth. Commun. 37, 491-499.]). FT–IR (KBr, cm−1): 3360, 3184, 2980, 1726, 1596, 1462; 1H NMR (400 MHz, DMSO-d6): 3.73 (s, 3H), 4.40 (s, 1H), 6.89 (d, 2H, J = 8.8 Hz, 7.19 (d, 2H, J = 8.4 Hz), 7.35 (s, 2H), 7.52–7.40 (m, 2H), 7.73 (dt, 1H, J = 8.8, 1.6 Hz), 7.92 (dd, J = 8.0, 1.6 Hz); 13C NMR (100 MHz, DMSO-d6): 36.1, 55.0, 58.3, 104.3, 112.9, 113.9, 116.5, 119.2, 122.4, 124.6, 128.7, 132.8, 135.4, 152.1, 153.1, 157.9, 158.3, 159.5. Suitable crystals of the title compound were grown by dissolving the compound in glacial acetic acid. The solution was kept undisturbed for a period of two weeks in an NMR tube (OD 5 mm) and the grown crystals were carefully recovered and washed with hexane and dried.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H14N2O4·C2H4O2
Mr 406.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.9303 (6), 11.2977 (9), 11.9988 (9)
α, β, γ (°) 82.468 (4), 77.379 (4), 73.419 (4)
V3) 1002.71 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.36 × 0.36 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 17101, 4807, 3457
Rint 0.025
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.06
No. of reflections 4807
No. of parameters 285
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.25
Computer programs: APEX2 and SAINT (Bruker 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: SAINT (Bruker 2015); cell refinement: APEX2 (Bruker 2015); data reduction: SAINT (Bruker 2015); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

2-Amino-4-(4-methoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile acetic acid monosolvate top
Crystal data top
C20H14N2O4·C2H4O2F(000) = 424
Mr = 406.38Dx = 1.346 Mg m3
Triclinic, P1Melting point: 511.15 K
a = 7.9303 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2977 (9) ÅCell parameters from 5371 reflections
c = 11.9988 (9) Åθ = 2.7–27.9°
α = 82.468 (4)°µ = 0.10 mm1
β = 77.379 (4)°T = 296 K
γ = 73.419 (4)°Block, white
V = 1002.71 (14) Å30.36 × 0.36 × 0.30 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3457 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.1°, θmin = 2.7°
φ and ω scansh = 1010
17101 measured reflectionsk = 1414
4807 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.1068P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.30 e Å3
4807 reflectionsΔρmin = 0.24 e Å3
285 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.037 (6)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28503 (19)0.15224 (13)0.94770 (12)0.0398 (3)
C20.46268 (18)0.13992 (12)0.87929 (11)0.0343 (3)
C30.59600 (18)0.14624 (12)0.92882 (11)0.0351 (3)
C40.5684 (2)0.16975 (12)1.04776 (11)0.0388 (3)
C50.3950 (2)0.18548 (13)1.10966 (11)0.0416 (3)
C60.7039 (2)0.17741 (15)1.10147 (13)0.0506 (4)
H40.8206490.1672231.0607690.061*
C70.6624 (3)0.20027 (18)1.21552 (15)0.0649 (5)
H30.7521150.2044681.2522810.078*
C80.4892 (3)0.21697 (18)1.27573 (14)0.0662 (5)
H20.4634550.2333141.3524870.079*
C90.3539 (3)0.20992 (16)1.22439 (13)0.0566 (4)
H10.2373230.2212731.2655660.068*
C100.81505 (19)0.09187 (13)0.76421 (11)0.0372 (3)
C110.69033 (18)0.08117 (12)0.70792 (11)0.0350 (3)
C120.49036 (17)0.12492 (12)0.75303 (10)0.0339 (3)
H50.4345980.0609820.7429690.041*
C130.74784 (19)0.03627 (13)0.59735 (12)0.0414 (3)
C140.40507 (17)0.24512 (12)0.68869 (10)0.0345 (3)
C150.4317 (2)0.35587 (13)0.70738 (13)0.0471 (4)
H60.4996340.3567970.7611940.056*
C160.3594 (2)0.46567 (14)0.64780 (14)0.0506 (4)
H70.3784730.5394100.6618150.061*
C170.2593 (2)0.46490 (14)0.56784 (13)0.0478 (4)
C180.2344 (2)0.35441 (16)0.54666 (14)0.0506 (4)
H80.1685380.3533810.4916190.061*
C190.3064 (2)0.24558 (14)0.60666 (12)0.0423 (3)
H90.2885350.1717680.5917920.051*
C200.1897 (3)0.68441 (18)0.5279 (2)0.0792 (6)
H120.1348920.6993230.6062600.119*
H130.1277140.7475930.4783380.119*
H140.3129300.6858320.5151770.119*
N10.99246 (18)0.06727 (16)0.73010 (13)0.0548 (4)
H111.045 (3)0.044 (2)0.664 (2)0.082*
H101.050 (3)0.0795 (18)0.7738 (17)0.063 (6)*
N20.7914 (2)0.00034 (16)0.50810 (12)0.0636 (4)
O10.15733 (14)0.14244 (11)0.91391 (10)0.0554 (3)
O20.25831 (14)0.17565 (10)1.06096 (8)0.0469 (3)
O30.76834 (13)0.13240 (10)0.87243 (8)0.0438 (3)
O40.18023 (18)0.56733 (12)0.50445 (12)0.0718 (4)
C210.7402 (3)0.47407 (18)0.9117 (2)0.0699 (5)
C220.9237 (4)0.4564 (3)0.8413 (3)0.1178 (10)
H160.9176080.4623590.7616490.177*
H170.9749230.5192980.8551370.177*
H180.9971160.3763030.8616550.177*
O50.6192 (2)0.4549 (2)0.87859 (14)0.1048 (6)
O60.7183 (3)0.51493 (19)1.01024 (16)0.0988 (6)
H150.594 (5)0.518 (3)1.052 (3)0.139 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (7)0.0454 (7)0.0371 (7)0.0108 (6)0.0012 (6)0.0037 (5)
C20.0324 (7)0.0380 (6)0.0312 (6)0.0091 (5)0.0030 (5)0.0035 (5)
C30.0335 (7)0.0403 (7)0.0302 (6)0.0096 (6)0.0023 (5)0.0047 (5)
C40.0451 (8)0.0401 (7)0.0304 (6)0.0095 (6)0.0066 (6)0.0051 (5)
C50.0478 (9)0.0398 (7)0.0337 (7)0.0098 (6)0.0024 (6)0.0032 (5)
C60.0531 (10)0.0607 (9)0.0406 (8)0.0132 (8)0.0120 (7)0.0119 (7)
C70.0770 (13)0.0790 (12)0.0458 (9)0.0182 (10)0.0217 (9)0.0178 (8)
C80.0889 (15)0.0741 (11)0.0341 (8)0.0165 (11)0.0079 (9)0.0174 (8)
C90.0674 (11)0.0580 (9)0.0369 (7)0.0129 (8)0.0051 (7)0.0104 (7)
C100.0343 (7)0.0459 (7)0.0304 (6)0.0098 (6)0.0025 (5)0.0073 (5)
C110.0342 (7)0.0404 (7)0.0303 (6)0.0107 (6)0.0018 (5)0.0072 (5)
C120.0321 (7)0.0398 (6)0.0321 (6)0.0123 (6)0.0054 (5)0.0060 (5)
C130.0351 (8)0.0517 (8)0.0395 (7)0.0145 (6)0.0022 (6)0.0121 (6)
C140.0307 (7)0.0434 (7)0.0301 (6)0.0105 (6)0.0044 (5)0.0058 (5)
C150.0541 (9)0.0471 (8)0.0470 (8)0.0148 (7)0.0214 (7)0.0051 (6)
C160.0561 (10)0.0423 (7)0.0578 (9)0.0149 (7)0.0172 (8)0.0039 (6)
C170.0379 (8)0.0505 (8)0.0515 (8)0.0089 (7)0.0104 (7)0.0051 (7)
C180.0455 (9)0.0646 (10)0.0477 (8)0.0164 (8)0.0222 (7)0.0009 (7)
C190.0402 (8)0.0517 (8)0.0412 (7)0.0179 (7)0.0113 (6)0.0064 (6)
C200.0751 (14)0.0545 (10)0.1034 (16)0.0150 (10)0.0250 (12)0.0192 (10)
N10.0308 (7)0.0912 (11)0.0429 (7)0.0141 (7)0.0023 (6)0.0193 (7)
N20.0572 (9)0.0925 (11)0.0472 (8)0.0284 (8)0.0044 (7)0.0316 (7)
O10.0353 (6)0.0801 (8)0.0527 (6)0.0193 (6)0.0039 (5)0.0101 (6)
O20.0403 (6)0.0604 (6)0.0357 (5)0.0130 (5)0.0036 (4)0.0076 (4)
O30.0319 (5)0.0684 (7)0.0334 (5)0.0147 (5)0.0026 (4)0.0144 (4)
O40.0689 (9)0.0603 (7)0.0882 (9)0.0144 (6)0.0377 (7)0.0201 (6)
C210.0617 (13)0.0648 (11)0.0844 (14)0.0198 (10)0.0065 (11)0.0153 (10)
C220.0723 (17)0.126 (2)0.137 (3)0.0156 (16)0.0149 (16)0.0281 (19)
O50.0846 (12)0.1625 (17)0.0870 (11)0.0550 (12)0.0017 (9)0.0599 (11)
O60.0784 (12)0.1447 (16)0.0913 (12)0.0462 (11)0.0156 (10)0.0361 (11)
Geometric parameters (Å, º) top
C2—C11.4459 (19)C18—H80.9300
C2—C31.3435 (19)C18—C191.380 (2)
C3—C41.4439 (18)C19—C141.3834 (19)
C4—C61.396 (2)C19—H90.9300
C5—C41.387 (2)C20—H120.9600
C5—C91.389 (2)C20—H130.9600
C6—H40.9300C20—H140.9600
C7—C61.377 (2)N1—C101.3339 (19)
C7—H30.9300N1—H110.85 (2)
C8—C71.378 (3)N1—H100.81 (2)
C8—H20.9300N2—C131.1416 (18)
C9—C81.374 (3)O1—C11.2072 (17)
C9—H10.9300O2—C11.3776 (17)
C11—C101.3529 (19)O2—C51.3753 (18)
C11—C131.4161 (18)O3—C31.3608 (16)
C12—C21.5075 (17)O3—C101.3718 (15)
C12—C111.5165 (18)O4—C171.3691 (18)
C12—H50.9800O4—C201.414 (2)
C14—C121.5253 (18)C22—C211.488 (3)
C14—C151.380 (2)C22—H160.9600
C15—H60.9300C22—H170.9600
C15—C161.385 (2)C22—H180.9600
C16—H70.9300O5—C211.197 (3)
C17—C161.375 (2)O6—C211.284 (3)
C17—C181.381 (2)O6—H151.00 (4)
O1—C1—C2125.22 (13)C15—C14—C12120.49 (12)
O1—C1—O2116.85 (13)C15—C14—C19118.23 (13)
O2—C1—C2117.93 (12)C19—C14—C12121.21 (12)
C1—C2—C12118.49 (12)C14—C15—H6119.2
C3—C2—C1119.38 (12)C14—C15—C16121.51 (13)
C3—C2—C12122.09 (12)C16—C15—H6119.2
C2—C3—C4122.65 (13)C15—C16—H7120.2
C2—C3—O3123.72 (11)C17—C16—C15119.55 (14)
O3—C3—C4113.62 (12)C17—C16—H7120.2
C5—C4—C3116.32 (13)C16—C17—C18119.60 (14)
C5—C4—C6119.71 (13)O4—C17—C16124.86 (15)
C6—C4—C3123.98 (14)O4—C17—C18115.54 (14)
C4—C5—C9120.82 (15)C17—C18—H8119.8
O2—C5—C4121.65 (12)C19—C18—C17120.42 (13)
O2—C5—C9117.52 (14)C19—C18—H8119.8
C4—C6—H4120.5C14—C19—H9119.7
C7—C6—C4119.07 (16)C18—C19—C14120.67 (13)
C7—C6—H4120.5C18—C19—H9119.7
C6—C7—H3119.7H12—C20—H13109.5
C6—C7—C8120.64 (17)H12—C20—H14109.5
C8—C7—H3119.7H13—C20—H14109.5
C7—C8—H2119.4O4—C20—H12109.5
C9—C8—C7121.17 (15)O4—C20—H13109.5
C9—C8—H2119.4O4—C20—H14109.5
C5—C9—H1120.7C10—N1—H11122.0 (16)
C8—C9—C5118.59 (17)C10—N1—H10117.6 (14)
C8—C9—H1120.7H11—N1—H10120 (2)
C11—C10—O3121.49 (12)C5—O2—C1121.99 (11)
N1—C10—C11129.17 (13)C3—O3—C10118.34 (11)
N1—C10—O3109.34 (12)C17—O4—C20118.28 (15)
C10—C11—C12123.19 (11)O5—C21—C22123.0 (2)
C10—C11—C13118.66 (12)O5—C21—O6121.7 (2)
C13—C11—C12117.94 (12)O6—C21—C22115.3 (2)
C2—C12—C11107.92 (10)C21—C22—H16109.5
C2—C12—H5108.6C21—C22—H17109.5
C2—C12—C14111.51 (10)C21—C22—H18109.5
C11—C12—H5108.6H17—C22—H16109.5
C11—C12—C14111.56 (10)H18—C22—H16109.5
C14—C12—H5108.6H18—C22—H17109.5
N2—C13—C11178.91 (16)C21—O6—H15108.3 (19)
C1—C2—C3—C42.4 (2)C12—C11—C10—N1173.68 (14)
C1—C2—C3—O3178.15 (12)C12—C11—C10—O36.6 (2)
C1—O2—C5—C41.4 (2)C12—C14—C15—C16178.31 (14)
C1—O2—C5—C9179.66 (13)C13—C11—C10—N11.0 (2)
C2—C3—C4—C50.2 (2)C13—C11—C10—O3178.68 (12)
C2—C3—C4—C6179.69 (13)C14—C12—C2—C171.60 (15)
C2—C12—C11—C1018.04 (17)C14—C12—C2—C3106.15 (14)
C2—C12—C11—C13167.21 (11)C14—C12—C11—C10104.78 (14)
C3—C2—C1—O1176.40 (14)C14—C12—C11—C1369.97 (15)
C3—C2—C1—O22.84 (19)C14—C15—C16—C170.2 (3)
C3—C4—C6—C7179.99 (14)C15—C14—C12—C247.04 (17)
C3—O3—C10—C118.62 (19)C15—C14—C12—C1173.70 (16)
C3—O3—C10—N1171.14 (12)C16—C17—C18—C191.2 (3)
C4—C5—C9—C80.7 (2)C17—C18—C19—C140.1 (2)
C5—C4—C6—C70.2 (2)C18—C17—C16—C151.0 (3)
C5—C9—C8—C70.0 (3)C18—C19—C14—C12178.09 (13)
C5—O2—C1—C20.99 (19)C18—C19—C14—C151.0 (2)
C5—O2—C1—O1178.31 (12)C19—C14—C12—C2135.97 (13)
C8—C7—C6—C40.8 (3)C19—C14—C12—C11103.28 (14)
C9—C5—C4—C3179.26 (12)C19—C14—C15—C161.2 (2)
C9—C5—C4—C60.6 (2)C20—O4—C17—C165.0 (3)
C9—C8—C7—C60.8 (3)C20—O4—C17—C18175.46 (17)
C10—O3—C3—C210.0 (2)O2—C5—C4—C31.79 (19)
C10—O3—C3—C4170.56 (11)O2—C5—C4—C6178.36 (13)
C11—C12—C2—C1165.55 (11)O2—C5—C9—C8178.34 (14)
C11—C12—C2—C316.70 (17)O3—C3—C4—C5179.61 (12)
C12—C2—C1—O15.8 (2)O3—C3—C4—C60.2 (2)
C12—C2—C1—O2174.98 (11)O4—C17—C16—C15179.48 (15)
C12—C2—C3—C4175.29 (11)O4—C17—C18—C19179.25 (14)
C12—C2—C3—O34.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N2i0.85 (2)2.22 (2)3.062 (2)172 (2)
N1—H10···O1ii0.81 (2)2.31 (2)3.111 (2)168 (2)
O6—H15···O5iii1.00 (4)1.67 (4)2.664 (3)172 (3)
C15—H6···O50.932.393.251 (2)154
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge DST–FIST (Chemistry Department) of Assam University and USIC, Gauhati University, India, for recording of the X-ray data.

Funding information

Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, India (scholarship No. INSPIRE to Saurav Paul); University Grants Commission (scholarship to Bimal Bhushan Chakraborty); Department of Science and Technology, Ministry of Science and Technology, India, Science and Engineering Research Board (grant to Sudip Choudhury).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMal, K. & Mukhopadhyay, C. (2022). J. Mol. Struct. 1253, 132213.  CrossRef Google Scholar
First citationMohajer, F., Soltani HasanKiadeh, F., Mohammadi Ziarani, G., Zandiyeh, M., Badiei, A. & Varma, R. S. (2022). Opt. Mater.: X, 15, 100182.  Google Scholar
First citationShaabani, A., Samadi, S. & Rahmati, A. (2007). Synth. Commun. 37, 491–499.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiziani, D., Ziani, B. E. C., Abdi, Y., Bensouilah, N., Boutemeur-Kheddis, B., Ziani, C., Boukkena, L., Hamdi, M., Talhi, O., Bachari, K. & Silva, A. M. S. (2022). J. Mol. Struct. 1264, 133236.  CrossRef Google Scholar
First citationTashrifi, Z., Mohammadi-Khanaposhtani, M., Hamedifar, H., Larijani, B., Ansari, S. & Mahdavi, M. (2020). Mol. Divers. 24, 1385–1431.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146