metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2,2′-Bipyrid­yl)(η6-p-cymene)iodidoruthenium(II) hexa­fluorido­phosphate

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa, and bDepartment of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
*Correspondence e-mail: mansieurkelani@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 28 March 2023; accepted 2 May 2023; online 12 May 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, having the mol­ecular formula [RuI(η6-C10H14)(C10H8N2)]PF6, crystallizes in the triclinic P[\overline{1}] (Z = 2) space group as a half-sandwich complex resembling a three-legged piano stool. Important geometrical parameters include Ru—cymene centroid = 1.6902 (17) Å, Ru—I = 2.6958 (5) Å, [Ru—N]avg = 2.072 (3) Å, N1—Ru—N2 = 76.86 (12)° and a dihedral angle between the planes of the two rings of the bipyridyl system of 5.9 (2)°. The PF6 ion was treated with a twofold disorder model, refining to a 65.0 (8):35.0 (8) occupancy ratio. The crystal packing features C—H⋯F/I inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

η6-Arene–ruthenium(II) complexes have demonstrated a high tendency to exhibit anti-tumour activity through DNA binding inter­actions (Colina-Vegas et al., 2015[Colina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. & Batista, A. A. (2015). J. Inorg. Biochem. 153, 150-161.]; Yarahmadi et al., 2023[Yarahmadi, S., Jokar, E., Shamsi, Z., Nahieh, D., Moosavi, M., Fereidoonnezhad, M. & Shahsavari, H. R. (2023). New J. Chem. 47, 6266-6274.]) and protein kinase inhibition (Atilla-Gokcumen et al., 2006[Atilla-Gokcumen, G. E., Williams, D. S., Bregman, H., Pagano, N. & Meggers, E. (2006). ChemBioChem, 7, 1443-1450.]). In addition, they also exhibit catalytic properties, especially in the hydrogenation of ketones (Ngo & Do, 2020[Ngo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583-591.]). The investigation of their structural properties will provide insight into the strategic design and development of new similar ruthenium half-sandwich complexes.

The title compound (Fig. 1[link]) shows the typical piano-stool conformation with the p-cymene unit displaced by 1.6902 (17) Å from the central RuII atom, and the bipyridyl and iodido ligands taking up the remainder of the coordination sphere. The bond lengths of Ru—N1 [2.073 (3) Å] and Ru—N2 [2.072 (3) Å] are identical within experimental error, but were found to be slightly shorter than normal (CSD V5.43 September 2022 update, 785 entries with p-cymene-Ru—N,N′ bidentate; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) in 1501 samples with a mean value of 2.11 (4) Å. The coordination environment is distorted from the ideal octa­hedral shape, primarily due to the pincer movement and twisting of the bidentate ligand [N1—Ru—N2 = 76.86 (12)°, dihedral angle between the two pyridyl moieties of the bipyridyl ligand = 5.9 (2)°]. The isopropyl group is eclipsed with the iodido group, similar to what is observed for the chlorido counterpart, reported as a non-solvated (Colina-Vegas et al., 2015[Colina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. & Batista, A. A. (2015). J. Inorg. Biochem. 153, 150-161.]) and a methanol solvated form (Wu et al., 2008[Wu, X., Liu, J., Di Tommaso, D., Iggo, J. A., Catlow, C. R. A., Bacsa, J. & Xiao, J. (2008). Chem. Eur. J. 14, 7699-7715.]), although the three crystal structures are not isostructural. A superimposed drawing of the iodido and chlorido complexes shows marginal deviations with the 2,2-bypiridyl and methyl group of the cymene ligand, resulting in an overall r.s.m.d. of 0.215 and 0.175 Å for the non-solvated (Colina-Vegas et al., 2015[Colina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. & Batista, A. A. (2015). J. Inorg. Biochem. 153, 150-161.]) and methanol-solvated chlorido analogues (Wu et al., 2008[Wu, X., Liu, J., Di Tommaso, D., Iggo, J. A., Catlow, C. R. A., Bacsa, J. & Xiao, J. (2008). Chem. Eur. J. 14, 7699-7715.]), respectively (see Fig. 2[link]). The overlay is based on all non-hydrogen atoms except for the halogen atoms.

[Figure 1]
Figure 1
The molecular entities of the title compound with 50% probability displacement ellipsoids with and without the second component of the PF6 disorder (hydrogen atoms are omitted for clarity).
[Figure 2]
Figure 2
An overlay displaying the geometrical alignment between the title compound (in red) with the non-solvated chlorido analogue (Colina-Vegas et al., 2015[Colina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. & Batista, A. A. (2015). J. Inorg. Biochem. 153, 150-161.], in blue), and the methanol-solvated chlorido analogue (Wu et al., 2008[Wu, X., Liu, J., Di Tommaso, D., Iggo, J. A., Catlow, C. R. A., Bacsa, J. & Xiao, J. (2008). Chem. Eur. J. 14, 7699-7715.], in green) with r.m.s.d.s of 0.215 and 0.175 Å, respectively.

Several non-classical hydrogen bonds exist between a C—H group (from the Ru complex) and the F atom of the PF6 anion, as well as one to an I atom of a neighbouring mol­ecule (Fig. 3[link] and Table 1[link]). No discernible packing motifs were observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F2Bi 0.93 2.44 3.136 (13) 132
C7—H7⋯F4Bii 0.93 2.65 3.41 (2) 140
C9—H9⋯F1Aiii 0.93 2.45 3.159 (7) 134
C10—H10⋯Iiv 0.93 3.23 4.131 (5) 164
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y, -z+2].
[Figure 3]
Figure 3
Non-classical hydrogen-bonding inter­actions observed in the crystal-packing arrangement between C—H and F, I. Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) −x + 1, −y, −z + 1; (iv) −x + 1, −y, −z + 2.

Synthesis and crystallization

To a solution of (p-cymene)di­iodido ruthenium(II) dimer (200 mg, 0.20 mmol, 1 eq.) in methanol was added bi­pyridine (127 mg, 0.82 mmol, 4 eq.), resulting in the formation of an orange precipitate within 2 min. The reaction mixture was refluxed for 6 h, after which it was cooled to room temperature. NH4PF6 (100 mg, 0.61 mmol, 3 eq) was added and stirred for 1 h, and then concentrated in vacuo. The residue was purified by column chromatography using silica gel and the solvent system, CH2Cl2: MeOH = 99:1 (Rf = 0.36), as eluent to obtain an orange compound (108 mg, 0.20 mmol). The compound was crystallized by slow evaporation from a mixture of toluene and acetone. Yield, 99%, 1H NMR (500 MHz, DMSO-d6): δ 9.47 (d, J = 5.5 Hz, 2H), 8.65 (d, J = 8.0 Hz, 2H), 8.25 (t, J = 7.5 and 8.0 Hz, 2H), 7.75 (t, J = 6.0 and 7.0 Hz, 2H), 6.15 (d, J = 6.5 Hz, 2H), 6.01 (d, J = 6.0 Hz, 2H), 2.71 (m, J = 7.0 Hz, 1H), 2.40 (s, 3H), 0.97 (d, J = 7.0 Hz, 6H); 13C NMR (125 MHz, DMSO-d6): δ 155.70 (CH), 154.29 (C), 139.82 (CH), 127.46 (CH), 123.69 (CH), 103.65 (C), 103.57 (C), 86.60 (CH), 83.84 (CH), 30.30 (CH), 21.54 (CH3), 18.20 (CH3); 13C DEPT NMR (125 MHz, DMSO-d6): 155.47 (CH), 139.59 (CH), 127.23 (CH), 123.45 (CH), 86.37 (CH), 83.60 (CH), 30.06 (CH), 21.31 (CH3), 17.96 (CH3); FTIR (neat, cm−1): 2924, 2854, 1604 (C=C), 1442, 1381, 830, 763, 555.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The PF6 counter-ion had elongated thermal displacement ellipsoids and was treated using a twofold disorder model. Refinement of the disorder was kept stable with SADI distance restraints and ellipsoid sizes by SIMU with e.s.d.'s of 0.02 Å and 0.02 Å2, respectively. The distribution of the disorder model over the two sites was coupled to a free variable that will refine to unity for the two components. The final ratio was 65.0 (8):35.0 (8) for parts A:B.

Table 2
Experimental details

Crystal data
Chemical formula [RuI(C10H14)(C10H8N2)]PF6
Mr 663.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.3020 (8), 10.4068 (9), 12.0732 (11)
α, β, γ (°) 86.046 (2), 82.838 (2), 88.953 (2)
V3) 1156.80 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.14
Crystal size (mm) 0.39 × 0.24 × 0.08
 
Data collection
Diffractometer Bruker APEX DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.657, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 41246, 4700, 3595
Rint 0.060
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.05
No. of reflections 4700
No. of parameters 345
No. of restraints 312
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).

(2,2'-Bipyridyl)(η6-p-cymene)iodidoruthenium(II) hexafluoridophosphate top
Crystal data top
[RuI(C10H14)(C10H8N2)]PF6Z = 2
Mr = 663.33F(000) = 644
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3020 (8) ÅCell parameters from 6634 reflections
b = 10.4068 (9) Åθ = 2.2–20.9°
c = 12.0732 (11) ŵ = 2.14 mm1
α = 86.046 (2)°T = 293 K
β = 82.838 (2)°Block, orange
γ = 88.953 (2)°0.39 × 0.24 × 0.08 mm
V = 1156.80 (18) Å3
Data collection top
Bruker APEX DUO
diffractometer
4700 independent reflections
Radiation source: sealed-tube3595 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.060
Detector resolution: 8.4 pixels mm-1θmax = 26.4°, θmin = 2.0°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.657, Tmax = 0.746l = 1515
41246 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.7508P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.003
S = 1.05Δρmax = 0.51 e Å3
4700 reflectionsΔρmin = 0.67 e Å3
345 parametersExtinction correction: SHELXL (Sheldrick 2015b)
312 restraintsExtinction coefficient: 0.0017 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were refined isotropically in their idealized geometrical positions while riding on their anisotropic parent atoms with Uiso = 1.2Ueq for the aromatic and methine protons, and Uiso = 1.5Ueq for the methyl protons, the latter was refined as a fixed rotor and adjusted to match the hydrogen atoms electron density from the Fourier difference map.

The highest electron density of 0.51 e Å-3 is 1.17 Å away from F2A, while the deepest electron density of -0.67 e Å-3 is 0.76 Å away from I.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5308 (5)0.5045 (4)0.7571 (4)0.0556 (11)
H10.6129280.5185540.7912350.067*
C20.4614 (6)0.6082 (5)0.7105 (5)0.0696 (14)
H20.4958870.691160.7126640.084*
C30.3415 (6)0.5875 (5)0.6610 (5)0.0762 (16)
H30.2939690.6567420.6281530.091*
C40.2900 (5)0.4654 (5)0.6593 (4)0.0641 (13)
H40.2076180.4509720.625660.077*
C50.3623 (4)0.3646 (4)0.7081 (3)0.0440 (10)
C60.3159 (4)0.2297 (4)0.7163 (3)0.0426 (9)
C70.1884 (5)0.1895 (5)0.6822 (4)0.0543 (11)
H70.1275320.2488570.6496230.065*
C80.1521 (5)0.0614 (5)0.6966 (4)0.0609 (13)
H80.0684480.0324090.6718650.073*
C90.2417 (5)0.0223 (5)0.7483 (4)0.0570 (12)
H90.2177380.1088960.761060.068*
C100.3674 (5)0.0218 (4)0.7812 (4)0.0507 (11)
H100.4276660.0363110.815810.061*
C110.6930 (6)0.0835 (6)0.5697 (4)0.0772 (16)
H11A0.6671820.0057380.581850.116*
H11B0.6116720.1327820.5478090.116*
H11C0.7731640.0930520.5115290.116*
C120.7349 (5)0.1308 (4)0.6755 (4)0.0497 (11)
C130.7263 (4)0.0484 (4)0.7755 (4)0.0500 (11)
H130.6985560.0367430.7737990.06*
C140.7587 (4)0.0931 (4)0.8761 (4)0.0456 (10)
H140.7500750.0377720.9403590.055*
C150.8048 (4)0.2219 (4)0.8814 (4)0.0438 (10)
C160.8137 (4)0.3028 (4)0.7834 (4)0.0478 (10)
H160.8437530.3874010.7844320.057*
C170.7776 (4)0.2574 (4)0.6824 (4)0.0504 (11)
H170.7824980.3137870.6189030.06*
C180.8431 (5)0.2662 (5)0.9902 (4)0.0560 (12)
H180.7813360.2193941.0508760.067*
C190.9994 (6)0.2249 (7)1.0001 (5)0.098 (2)
H19A1.0268840.2519011.0689030.147*
H19B1.0075330.1328150.9995770.147*
H19C1.0620470.2638440.9382180.147*
C200.8194 (6)0.4082 (5)1.0047 (5)0.0799 (16)
H20A0.8462720.428381.0757070.12*
H20B0.8777950.4569420.9458220.12*
H20C0.7190640.4296421.0018010.12*
P1A1.0857 (7)0.2942 (8)0.3645 (6)0.0509 (15)0.650 (8)
F1A0.9648 (8)0.2426 (9)0.3031 (6)0.123 (3)0.650 (8)
F2A0.9658 (11)0.3420 (10)0.4545 (9)0.131 (4)0.650 (8)
F3A1.2007 (9)0.3421 (12)0.4310 (6)0.143 (4)0.650 (8)
F4A1.2077 (10)0.2504 (10)0.2745 (8)0.137 (4)0.650 (8)
F5A1.0855 (11)0.1606 (6)0.4316 (8)0.159 (4)0.650 (8)
F6A1.0734 (12)0.4250 (7)0.3012 (9)0.148 (4)0.650 (8)
P1B1.0955 (16)0.2986 (17)0.3578 (12)0.069 (4)0.350 (8)
F1B0.992 (2)0.373 (2)0.2882 (14)0.146 (6)0.350 (8)
F2B1.1987 (17)0.3187 (18)0.2475 (11)0.101 (5)0.350 (8)
F3B1.2132 (17)0.2278 (16)0.4181 (13)0.127 (5)0.350 (8)
F4B0.994 (2)0.283 (2)0.4678 (17)0.129 (6)0.350 (8)
F5B1.1733 (19)0.4249 (12)0.3872 (13)0.110 (5)0.350 (8)
F6B1.060 (2)0.1721 (12)0.3120 (14)0.125 (5)0.350 (8)
I0.43771 (3)0.24106 (3)1.01101 (2)0.05001 (11)
N10.4841 (3)0.3832 (3)0.7551 (3)0.0407 (8)
N20.4055 (3)0.1461 (3)0.7650 (3)0.0396 (7)
Ru0.59395 (3)0.22026 (3)0.80932 (3)0.03486 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (3)0.041 (3)0.074 (3)0.000 (2)0.013 (2)0.001 (2)
C20.071 (4)0.040 (3)0.097 (4)0.007 (2)0.013 (3)0.003 (3)
C30.079 (4)0.050 (3)0.102 (4)0.013 (3)0.029 (3)0.010 (3)
C40.061 (3)0.059 (3)0.075 (3)0.009 (2)0.023 (3)0.000 (3)
C50.037 (2)0.044 (2)0.052 (2)0.0039 (18)0.0120 (19)0.0007 (19)
C60.040 (2)0.045 (2)0.042 (2)0.0011 (19)0.0029 (18)0.0044 (18)
C70.046 (3)0.068 (3)0.052 (3)0.002 (2)0.016 (2)0.006 (2)
C80.049 (3)0.072 (3)0.065 (3)0.021 (2)0.011 (2)0.017 (3)
C90.059 (3)0.057 (3)0.057 (3)0.019 (2)0.009 (2)0.009 (2)
C100.055 (3)0.045 (3)0.053 (3)0.010 (2)0.010 (2)0.000 (2)
C110.090 (4)0.092 (4)0.051 (3)0.016 (3)0.006 (3)0.026 (3)
C120.044 (2)0.057 (3)0.046 (2)0.007 (2)0.0045 (19)0.008 (2)
C130.043 (2)0.038 (2)0.067 (3)0.0080 (19)0.001 (2)0.006 (2)
C140.040 (2)0.045 (2)0.051 (3)0.0042 (19)0.0067 (19)0.0052 (19)
C150.028 (2)0.051 (3)0.052 (2)0.0037 (18)0.0063 (18)0.002 (2)
C160.031 (2)0.049 (3)0.062 (3)0.0072 (18)0.0017 (19)0.004 (2)
C170.041 (2)0.059 (3)0.047 (3)0.000 (2)0.0058 (19)0.006 (2)
C180.046 (3)0.068 (3)0.056 (3)0.010 (2)0.015 (2)0.004 (2)
C190.060 (4)0.146 (6)0.097 (5)0.009 (4)0.039 (3)0.028 (4)
C200.080 (4)0.079 (4)0.085 (4)0.025 (3)0.013 (3)0.023 (3)
P1A0.051 (2)0.051 (3)0.050 (3)0.004 (2)0.006 (2)0.004 (2)
F1A0.100 (5)0.145 (7)0.135 (5)0.058 (5)0.045 (4)0.017 (5)
F2A0.117 (6)0.130 (8)0.130 (7)0.020 (5)0.055 (5)0.023 (6)
F3A0.135 (6)0.198 (11)0.109 (6)0.061 (8)0.051 (5)0.018 (7)
F4A0.124 (6)0.134 (8)0.143 (8)0.024 (6)0.043 (5)0.050 (6)
F5A0.189 (8)0.093 (5)0.197 (8)0.001 (5)0.067 (7)0.059 (5)
F6A0.178 (9)0.078 (5)0.181 (8)0.046 (5)0.031 (7)0.069 (5)
P1B0.075 (6)0.061 (6)0.066 (6)0.010 (5)0.014 (5)0.010 (5)
F1B0.115 (11)0.180 (14)0.146 (10)0.071 (10)0.043 (9)0.008 (11)
F2B0.099 (9)0.131 (12)0.073 (7)0.066 (9)0.008 (6)0.010 (7)
F3B0.122 (10)0.106 (9)0.159 (11)0.026 (9)0.056 (8)0.023 (9)
F4B0.114 (10)0.154 (15)0.095 (8)0.013 (10)0.062 (8)0.032 (10)
F5B0.150 (11)0.070 (7)0.109 (10)0.033 (7)0.008 (9)0.030 (7)
F6B0.148 (11)0.061 (7)0.174 (11)0.033 (7)0.021 (10)0.039 (7)
I0.04595 (18)0.0559 (2)0.04652 (18)0.00287 (13)0.00127 (13)0.00340 (13)
N10.0388 (19)0.0358 (18)0.0468 (19)0.0039 (14)0.0044 (15)0.0014 (15)
N20.0384 (18)0.0385 (18)0.0416 (18)0.0042 (15)0.0047 (14)0.0004 (14)
Ru0.03218 (18)0.03300 (18)0.03900 (19)0.00260 (13)0.00394 (13)0.00021 (13)
Geometric parameters (Å, º) top
C1—N11.346 (5)C14—H140.93
C1—C21.371 (6)C15—C161.399 (6)
C1—H10.93C15—C181.507 (6)
C2—C31.356 (7)C16—C171.417 (6)
C2—H20.93C16—H160.93
C3—C41.368 (7)C17—H170.93
C3—H30.93C18—C201.509 (7)
C4—C51.374 (6)C18—C191.525 (7)
C4—H40.93C18—H180.98
C5—N11.352 (5)C19—H19A0.96
C5—C61.470 (5)C19—H19B0.96
C6—N21.350 (5)C19—H19C0.96
C6—C71.384 (6)C20—H20A0.96
C7—C81.375 (6)C20—H20B0.96
C7—H70.93C20—H20C0.96
C8—C91.368 (7)P1A—F6A1.524 (8)
C8—H80.93P1A—F3A1.525 (8)
C9—C101.378 (6)P1A—F1A1.546 (8)
C9—H90.93P1A—F4A1.555 (8)
C10—N21.343 (5)P1A—F2A1.557 (10)
C10—H100.93P1A—F5A1.560 (8)
C11—C121.499 (6)P1B—F6B1.52 (2)
C11—H11A0.96P1B—F1B1.523 (12)
C11—H11B0.96P1B—F4B1.53 (2)
C11—H11C0.96P1B—F3B1.538 (12)
C12—C171.394 (6)P1B—F2B1.546 (13)
C12—C131.426 (6)P1B—F5B1.59 (2)
C13—C141.398 (6)I—Ru2.6958 (5)
C13—H130.93N1—Ru2.073 (3)
C14—C151.423 (6)N2—Ru2.072 (3)
N1—C1—C2122.2 (4)C20—C18—C19111.9 (4)
N1—C1—H1118.9C15—C18—H18107.4
C2—C1—H1118.9C20—C18—H18107.4
C3—C2—C1118.8 (5)C19—C18—H18107.4
C3—C2—H2120.6C18—C19—H19A109.5
C1—C2—H2120.6C18—C19—H19B109.5
C2—C3—C4120.4 (5)H19A—C19—H19B109.5
C2—C3—H3119.8C18—C19—H19C109.5
C4—C3—H3119.8H19A—C19—H19C109.5
C3—C4—C5118.8 (5)H19B—C19—H19C109.5
C3—C4—H4120.6C18—C20—H20A109.5
C5—C4—H4120.6C18—C20—H20B109.5
N1—C5—C4121.6 (4)H20A—C20—H20B109.5
N1—C5—C6113.9 (3)C18—C20—H20C109.5
C4—C5—C6124.5 (4)H20A—C20—H20C109.5
N2—C6—C7121.5 (4)H20B—C20—H20C109.5
N2—C6—C5114.4 (3)F6A—P1A—F3A92.4 (6)
C7—C6—C5124.0 (4)F6A—P1A—F1A89.7 (5)
C8—C7—C6119.7 (4)F3A—P1A—F1A176.9 (6)
C8—C7—H7120.2F6A—P1A—F4A91.5 (7)
C6—C7—H7120.2F3A—P1A—F4A89.5 (5)
C9—C8—C7118.5 (4)F1A—P1A—F4A92.8 (6)
C9—C8—H8120.7F6A—P1A—F2A87.3 (7)
C7—C8—H8120.7F3A—P1A—F2A89.4 (6)
C8—C9—C10119.9 (4)F1A—P1A—F2A88.4 (6)
C8—C9—H9120F4A—P1A—F2A178.3 (8)
C10—C9—H9120F6A—P1A—F5A175.6 (7)
N2—C10—C9122.0 (4)F3A—P1A—F5A90.3 (5)
N2—C10—H10119F1A—P1A—F5A87.5 (6)
C9—C10—H10119F4A—P1A—F5A92.0 (7)
C12—C11—H11A109.5F2A—P1A—F5A89.3 (6)
C12—C11—H11B109.5F6B—P1B—F1B91.8 (13)
H11A—C11—H11B109.5F6B—P1B—F4B97.1 (14)
C12—C11—H11C109.5F1B—P1B—F4B98.2 (13)
H11A—C11—H11C109.5F6B—P1B—F3B89.1 (13)
H11B—C11—H11C109.5F1B—P1B—F3B173.7 (16)
C17—C12—C13117.1 (4)F4B—P1B—F3B87.9 (12)
C17—C12—C11122.1 (4)F6B—P1B—F2B84.6 (11)
C13—C12—C11120.8 (4)F1B—P1B—F2B81.6 (12)
C14—C13—C12121.3 (4)F4B—P1B—F2B178.3 (18)
C14—C13—H13119.3F3B—P1B—F2B92.3 (11)
C12—C13—H13119.3F6B—P1B—F5B164.9 (14)
C13—C14—C15121.0 (4)F1B—P1B—F5B93.7 (14)
C13—C14—H14119.5F4B—P1B—F5B96.1 (14)
C15—C14—H14119.5F3B—P1B—F5B83.9 (11)
C16—C15—C14117.8 (4)F2B—P1B—F5B82.3 (11)
C16—C15—C18122.4 (4)C1—N1—C5118.2 (4)
C14—C15—C18119.8 (4)C1—N1—Ru124.5 (3)
C15—C16—C17120.8 (4)C5—N1—Ru117.1 (3)
C15—C16—H16119.6C10—N2—C6118.4 (4)
C17—C16—H16119.6C10—N2—Ru124.6 (3)
C12—C17—C16122.0 (4)C6—N2—Ru117.1 (3)
C12—C17—H17119N2—Ru—N176.86 (12)
C16—C17—H17119N2—Ru—I84.69 (9)
C15—C18—C20114.7 (4)N1—Ru—I86.99 (9)
C15—C18—C19107.6 (4)
N1—C1—C2—C30.2 (8)C18—C15—C16—C17179.6 (4)
C1—C2—C3—C40.9 (9)C13—C12—C17—C161.1 (6)
C2—C3—C4—C50.2 (8)C11—C12—C17—C16178.4 (4)
C3—C4—C5—N11.5 (7)C15—C16—C17—C121.4 (6)
C3—C4—C5—C6177.4 (5)C16—C15—C18—C2029.0 (6)
N1—C5—C6—N22.7 (5)C14—C15—C18—C20151.5 (4)
C4—C5—C6—N2178.3 (4)C16—C15—C18—C1996.3 (5)
N1—C5—C6—C7174.6 (4)C14—C15—C18—C1983.2 (5)
C4—C5—C6—C74.4 (7)C2—C1—N1—C51.9 (7)
N2—C6—C7—C80.8 (6)C2—C1—N1—Ru173.6 (4)
C5—C6—C7—C8177.9 (4)C4—C5—N1—C12.5 (6)
C6—C7—C8—C92.2 (7)C6—C5—N1—C1176.5 (4)
C7—C8—C9—C102.0 (7)C4—C5—N1—Ru173.2 (3)
C8—C9—C10—N20.4 (7)C6—C5—N1—Ru7.7 (4)
C17—C12—C13—C140.3 (6)C9—C10—N2—C61.0 (6)
C11—C12—C13—C14177.0 (4)C9—C10—N2—Ru178.9 (3)
C12—C13—C14—C151.5 (6)C7—C6—N2—C100.8 (6)
C13—C14—C15—C161.2 (6)C5—C6—N2—C10176.5 (4)
C13—C14—C15—C18178.2 (4)C7—C6—N2—Ru179.1 (3)
C14—C15—C16—C170.2 (6)C5—C6—N2—Ru3.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F2Bi0.932.443.136 (13)132
C7—H7···F4Bii0.932.653.41 (2)140
C9—H9···F1Aiii0.932.453.159 (7)134
C10—H10···Iiv0.933.234.131 (5)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+2.
 

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

First citationAtilla-Gokcumen, G. E., Williams, D. S., Bregman, H., Pagano, N. & Meggers, E. (2006). ChemBioChem, 7, 1443–1450.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationColina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. & Batista, A. A. (2015). J. Inorg. Biochem. 153, 150–161.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNgo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583–591.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X., Liu, J., Di Tommaso, D., Iggo, J. A., Catlow, C. R. A., Bacsa, J. & Xiao, J. (2008). Chem. Eur. J. 14, 7699–7715.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYarahmadi, S., Jokar, E., Shamsi, Z., Nahieh, D., Moosavi, M., Fereidoonnezhad, M. & Shahsavari, H. R. (2023). New J. Chem. 47, 6266–6274.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146