organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyridin-4-ylmethanaminium perchlorate mono­hydrate

crossmark logo

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 May 2023; accepted 24 May 2023; online 26 May 2023)

Pyridin-4-ylmethanaminium perchlorate monohydrate (synonym: 4-picolyl­ammonium perchlorate monohydrate), C6H9N2+·ClO4·H2O, crystallizes in the monoclinic system (space group P21/n) with the asymmetric unit comprising two formula units (Z′ = 2). All mol­ecular entities are located on general positions. The two crystallographically distinct 4-picolyl­ammonium cations exhibit different conformations. The two unique perchlorate anions are non-disordered, showing an r.m.s. deviation of 0.011 Å from mol­ecular Td symmetry. The supra­molecular structure in the solid state features an intricate tri-periodic network of N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The number of structurally characterized 1:1 salts of the feedstock chemical 4-picolyl­amine is limited. A search of the Cambridge Structural Database (CSD, version 5.43 with November 2022 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed nine crystal structures: the hydrogen chloride (CSD refcode: QANWOS; de Vries et al., 2005[Vries, E. J. C. de, Oliver, C. L. & Lloyd, G. O. (2005). Acta Cryst. E61, o1577-o1578.]) and hydrogen bromide (TENDUP; Zuffa et al., 2023[Zuffa, C., Cappuccino, C., Marchini, M., Contini, L., Farinella, F. & Maini, L. (2023). Faraday Discuss. 241, 448-465.]), substituted benzoic acid salts (TOHYEV, TOHYIZ; Lemmerer et al., 2008[Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750-1757.] and WEBXAE; Ding et al., 2012[Ding, X.-H., Cui, L.-F., Li, Y.-H., Wang, S. & Huang, W. (2012). New J. Chem. 36, 1884-1890.]), group 10 tetra­cyanidometallates (OFEWUT, OFEXII and OFEXUU; Karaağaç et al., 2013[Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73-80.]) and a deca­vanadate (HEBJOR; Msaadi et al., 2022[Msaadi, I., Rayes, A., Benito, M., Issaoui, N., Molins, E. & Ayed, B. (2022). J. Mol. Struct. 1262, 133085.]). We herein report the crystal structure of the monohydrate of the perchlorate salt of 4-picolyl­amine, (1).

As shown in Fig. 1[link], the asymmetric unit of (1) comprises two formula units C6H9N2+ClO4·H2O (Z′ = 2). The amino group of 4-picolyl­amine, which is the more basic site (pKa = 8.30; Milletti et al., 2010[Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270-4279.]) compared to the pyridine nitro­gen atom, is in a protonated state. The two crystallographically distinct 4-picolyl­ammonium cations differ in their conformations. The C3—C4—C7—N2 torsion angle is 67.4 (3)° in mol­ecule 1 and 13.2 (3)° in mol­ecule 2. The difference is ascribable to inter­molecular inter­actions and packing effects in the solid state. In the nine crystal structures containing 4-picolyl­ammonium ions deposited with the CSD, the torsion angles range from 6.4° in HEBJOR to 88.5° in WEBXAE, indicating great conformational flexibility. The mol­ecular structure of cation 2 in (1) exhibits an r.m.s. deviation from CS point group symmetry of 0.082 Å, as calculated with MOLSYM in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The two crystallographically distinct perchlorate anions are non-disordered, both showing an r.m.s. deviation of 0.011 Å from mol­ecular Td point group symmetry.

[Figure 1]
Figure 1
Asymmetric unit of (1). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are represented by small spheres of arbitrary radius. The number after the underscore indicates unique mol­ecules 1 and 2 in each case. Dashed lines represent O—H⋯O and O—H⋯N hydrogen bonds.

Apart from Coulombic inter­actions, the supra­molecular structure in (1) is dominated by classical N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. Fig. 2[link] depicts a part of the crystal structure, illustrating the crystallographically unique hydrogen bonds. As hydrogen-bond donors, the water mol­ecules join the 4-picolyl­ammonium and perchlorate ions through O—H⋯Npyridine and O—H⋯O hydrogen bonds, respectively. Towards the protonated amino groups, the water mol­ecules act as hydrogen-bond acceptors for N—H⋯O hydrogen bonds, resulting in hydrogen-bonded chains propagating parallel to the c-axis direction. The remaining hydrogen-bond donor sites of the 4-picolyl­ammonium ions form donating bifurcated N—H⋯O hydrogen bonds to perchlorate oxygen atoms, resulting in an intricate tri-periodic network. Table 1[link] lists numerical details of the relevant hydrogen bonds in (1), which are characteristic of strong hydrogen bonds (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2_1—H2A_1⋯O5_1i 0.90 (2) 1.96 (2) 2.862 (3) 176 (2)
N2_1—H2B_1⋯O1_1ii 0.90 (2) 2.20 (2) 2.916 (2) 136 (2)
N2_1—H2B_1⋯O4_2iii 0.90 (2) 2.32 (2) 2.924 (2) 125 (2)
N2_1—H2C_1⋯O5_2iv 0.90 (2) 1.95 (2) 2.838 (3) 168 (2)
O5_1—H5A_1⋯N1_2 0.84 (2) 1.91 (2) 2.751 (2) 176 (3)
O5_1—H5B_1⋯O1_2 0.83 (2) 2.21 (2) 2.986 (2) 156 (3)
N2_2—H2A_2⋯O5_1iv 0.92 (2) 1.92 (2) 2.839 (3) 173 (2)
N2_2—H2B_2⋯O4_1iii 0.91 (2) 2.42 (2) 3.079 (3) 130 (2)
N2_2—H2B_2⋯O1_2iii 0.91 (2) 2.19 (2) 2.979 (2) 144 (2)
N2_2—H2C_2⋯O5_2iv 0.90 (2) 1.98 (2) 2.872 (3) 177 (2)
O5_2—H5A_2⋯N1_1 0.83 (2) 1.93 (2) 2.761 (2) 175 (3)
O5_2—H5B_2⋯O1_1 0.83 (2) 2.09 (2) 2.874 (2) 160 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of (1) viewed approximately along the a-axis direction towards the origin, showing N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds (dashed lines). The number after the underscore indicates unique mol­ecules 1 and 2 in each case. Carbon-bound hydrogen atoms are omitted for clarity. Symmetry codes refer to Table 1[link].

Synthesis and crystallization

Compound (1) was synthesized by adding a solution of 4-picolyl­amine (216 mg, 2 mmol) in 40 ml of ethanol to 40 ml of 0.1 M perchloric acid. The reaction mixture was stirred for 4 h at room temperature and then left at ambient conditions. After one week, the precipitate was collected by filtration and air-dried. Colourless crystals of (1) suitable for X-ray diffraction were grown from a methanol/water solution at room temperature over a period of three weeks, while the solvents were allowed to evaporate slowly. Caution: organic perchlorate salts are potentially explosive and should be handled with care!

Refinement

Crystal data, data collection and structure refinement details are listed in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·ClO4·H2O
Mr 226.62
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 9.1239 (2), 22.1397 (6), 9.5463 (3)
β (°) 101.799 (3)
V3) 1887.62 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.28 × 0.20 × 0.10
 
Data collection
Diffractometer Xcalibur2, Oxford Diffraction
Absorption correction Multi-scan (ABSPACK in CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16791, 4422, 3163
Rint 0.041
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 1.04
No. of reflections 4422
No. of parameters 299
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).

Pyridin-4-ylmethanaminium perchlorate monohydrate top
Crystal data top
C6H9N2+·ClO4·H2OF(000) = 944
Mr = 226.62Dx = 1.595 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1239 (2) ÅCell parameters from 4316 reflections
b = 22.1397 (6) Åθ = 3.6–28.4°
c = 9.5463 (3) ŵ = 0.41 mm1
β = 101.799 (3)°T = 110 K
V = 1887.62 (9) Å3Prism, colourless
Z = 80.28 × 0.20 × 0.10 mm
Data collection top
Xcalibur2, Oxford Diffraction
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.4171 pixels mm-1θmax = 28.9°, θmin = 2.8°
ω scansh = 1211
Absorption correction: multi-scan
(ABSPACK in CrysAlisPro; Rigaku OD, 2022)
k = 2927
Tmin = 0.894, Tmax = 1.000l = 1112
16791 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.2652P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.44 e Å3
10 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Nitrogen-bound and water hydrogen atoms were located from difference-Fourier maps and were refined with N—H and O—H distances restrained to target values of 0.91 (2) and 0.84 (2) Å, respectively. The respective Uiso(H) values were refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2_10.5915 (3)0.25285 (10)0.3275 (3)0.0236 (5)
H2_10.6139520.2199210.3921160.028*
C3_10.6384 (3)0.30978 (10)0.3757 (3)0.0211 (5)
H3_10.6917040.3156290.4712010.025*
C4_10.6065 (2)0.35838 (9)0.2826 (2)0.0173 (5)
C5_10.5272 (3)0.34736 (10)0.1463 (3)0.0235 (5)
H5_10.5018770.3795500.0800130.028*
C6_10.4846 (3)0.28865 (11)0.1070 (3)0.0260 (6)
H6_10.4298160.2816880.0125090.031*
C7_10.6564 (3)0.42157 (10)0.3275 (3)0.0206 (5)
H7A_10.6107550.4504630.2519890.025*
H7B_10.6222190.4322070.4163600.025*
N1_10.5162 (2)0.24152 (8)0.1945 (2)0.0214 (4)
N2_10.8230 (2)0.42629 (9)0.3526 (2)0.0171 (4)
H2A_10.854 (3)0.4114 (11)0.276 (2)0.027 (7)*
H2B_10.853 (3)0.4645 (8)0.371 (3)0.020 (6)*
H2C_10.861 (3)0.4058 (11)0.434 (2)0.034 (8)*
Cl1_10.71953 (6)0.05644 (2)0.38455 (5)0.01373 (13)
O1_10.70326 (17)0.05322 (6)0.23033 (16)0.0180 (3)
O2_10.7178 (2)0.11825 (7)0.42615 (17)0.0287 (4)
O3_10.85768 (17)0.02837 (7)0.45115 (18)0.0251 (4)
O4_10.59712 (18)0.02479 (8)0.42438 (18)0.0268 (4)
O5_10.43372 (18)0.11734 (7)0.61174 (17)0.0181 (3)
H5A_10.453 (3)0.1534 (9)0.638 (3)0.041 (9)*
H5B_10.513 (2)0.0983 (12)0.620 (3)0.042 (9)*
C2_20.6473 (3)0.24806 (10)0.7655 (3)0.0221 (5)
H2_20.7168220.2161140.7925950.027 (7)*
C3_20.6939 (3)0.30644 (10)0.8024 (2)0.0195 (5)
H3_20.7928660.3139410.8537650.026 (7)*
C4_20.5946 (2)0.35391 (9)0.7636 (2)0.0160 (5)
C5_20.4506 (3)0.33949 (10)0.6910 (2)0.0202 (5)
H5_20.3780750.3703850.6639960.020 (6)*
C6_20.4143 (3)0.28017 (10)0.6587 (2)0.0218 (5)
H6_20.3156010.2712890.6084340.025 (7)*
C7_20.6330 (2)0.41931 (10)0.7943 (3)0.0193 (5)
H7A_20.5945210.4433330.7070700.018 (6)*
H7B_20.5818620.4336080.8701880.022 (6)*
N1_20.5099 (2)0.23416 (8)0.6940 (2)0.0218 (4)
N2_20.7960 (2)0.43016 (9)0.8405 (2)0.0175 (4)
H2A_20.833 (3)0.4138 (10)0.9295 (19)0.022 (6)*
H2B_20.818 (3)0.4699 (8)0.854 (3)0.028 (7)*
H2C_20.841 (3)0.4149 (11)0.773 (2)0.033 (8)*
Cl1_20.72640 (6)0.05939 (2)0.88521 (5)0.01431 (13)
O1_20.72928 (19)0.06090 (7)0.73443 (17)0.0231 (4)
O2_20.67297 (19)0.11607 (7)0.92682 (17)0.0224 (4)
O3_20.87356 (17)0.04688 (7)0.96603 (18)0.0249 (4)
O4_20.62605 (18)0.01185 (7)0.90900 (17)0.0234 (4)
O5_20.43738 (18)0.12300 (7)0.12765 (17)0.0181 (3)
H5A_20.458 (3)0.1593 (8)0.142 (3)0.044 (9)*
H5B_20.518 (2)0.1049 (12)0.137 (3)0.049 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2_10.0233 (12)0.0177 (11)0.0287 (14)0.0016 (10)0.0028 (10)0.0043 (10)
C3_10.0231 (13)0.0192 (11)0.0199 (12)0.0000 (10)0.0016 (10)0.0005 (9)
C4_10.0121 (10)0.0149 (11)0.0257 (13)0.0010 (9)0.0056 (9)0.0017 (9)
C5_10.0205 (12)0.0223 (12)0.0253 (13)0.0012 (10)0.0009 (10)0.0089 (10)
C6_10.0226 (13)0.0297 (13)0.0227 (13)0.0063 (11)0.0024 (10)0.0006 (10)
C7_10.0164 (11)0.0143 (11)0.0321 (14)0.0005 (9)0.0070 (10)0.0004 (9)
N1_10.0172 (10)0.0190 (10)0.0279 (12)0.0034 (8)0.0042 (9)0.0031 (8)
N2_10.0198 (10)0.0133 (10)0.0180 (11)0.0027 (8)0.0036 (8)0.0018 (8)
Cl1_10.0121 (2)0.0130 (2)0.0158 (3)0.0005 (2)0.00203 (19)0.0011 (2)
O1_10.0223 (8)0.0173 (8)0.0146 (8)0.0006 (7)0.0041 (7)0.0003 (6)
O2_10.0453 (11)0.0146 (8)0.0230 (9)0.0030 (8)0.0003 (8)0.0031 (7)
O3_10.0149 (8)0.0331 (10)0.0259 (9)0.0092 (7)0.0004 (7)0.0041 (7)
O4_10.0186 (9)0.0366 (10)0.0254 (10)0.0081 (8)0.0048 (7)0.0079 (8)
O5_10.0170 (8)0.0149 (8)0.0217 (9)0.0018 (7)0.0021 (7)0.0022 (7)
C2_20.0209 (12)0.0160 (11)0.0289 (14)0.0022 (10)0.0042 (10)0.0025 (10)
C3_20.0158 (11)0.0180 (11)0.0238 (13)0.0006 (9)0.0017 (10)0.0022 (9)
C4_20.0185 (11)0.0142 (10)0.0163 (11)0.0000 (9)0.0058 (9)0.0001 (8)
C5_20.0169 (11)0.0227 (12)0.0202 (12)0.0060 (10)0.0017 (9)0.0001 (9)
C6_20.0164 (12)0.0274 (12)0.0207 (13)0.0020 (10)0.0018 (10)0.0019 (10)
C7_20.0161 (11)0.0153 (11)0.0262 (13)0.0016 (9)0.0041 (10)0.0000 (9)
N1_20.0210 (10)0.0193 (10)0.0255 (11)0.0026 (8)0.0054 (9)0.0006 (8)
N2_20.0223 (11)0.0145 (10)0.0157 (10)0.0026 (8)0.0038 (8)0.0000 (8)
Cl1_20.0141 (3)0.0136 (2)0.0150 (3)0.0009 (2)0.00248 (19)0.0008 (2)
O1_20.0318 (10)0.0214 (8)0.0173 (9)0.0018 (7)0.0078 (7)0.0028 (7)
O2_20.0278 (9)0.0155 (8)0.0231 (9)0.0072 (7)0.0034 (7)0.0020 (7)
O3_20.0139 (8)0.0318 (9)0.0269 (9)0.0061 (7)0.0010 (7)0.0015 (7)
O4_20.0250 (9)0.0202 (8)0.0245 (9)0.0084 (7)0.0040 (7)0.0029 (7)
O5_20.0176 (9)0.0147 (8)0.0214 (9)0.0007 (7)0.0022 (7)0.0013 (7)
Geometric parameters (Å, º) top
C2_1—N1_11.338 (3)C2_2—N1_21.335 (3)
C2_1—C3_11.380 (3)C2_2—C3_21.384 (3)
C2_1—H2_10.9500C2_2—H2_20.9500
C3_1—C4_11.388 (3)C3_2—C4_21.387 (3)
C3_1—H3_10.9500C3_2—H3_20.9500
C4_1—C5_11.375 (3)C4_2—C5_21.391 (3)
C4_1—C7_11.506 (3)C4_2—C7_21.504 (3)
C5_1—C6_11.386 (3)C5_2—C6_21.374 (3)
C5_1—H5_10.9500C5_2—H5_20.9500
C6_1—N1_11.331 (3)C6_2—N1_21.339 (3)
C6_1—H6_10.9500C6_2—H6_20.9500
C7_1—N2_11.493 (3)C7_2—N2_21.482 (3)
C7_1—H7A_10.9900C7_2—H7A_20.9900
C7_1—H7B_10.9900C7_2—H7B_20.9900
N2_1—H2A_10.900 (16)N2_2—H2A_20.921 (16)
N2_1—H2B_10.895 (16)N2_2—H2B_20.907 (16)
N2_1—H2C_10.903 (17)N2_2—H2C_20.897 (17)
Cl1_1—O2_11.4260 (16)Cl1_2—O2_21.4316 (15)
Cl1_1—O3_11.4323 (16)Cl1_2—O3_21.4322 (16)
Cl1_1—O4_11.4341 (16)Cl1_2—O4_21.4431 (16)
Cl1_1—O1_11.4508 (15)Cl1_2—O1_21.4454 (16)
O5_1—H5A_10.843 (17)O5_2—H5A_20.831 (17)
O5_1—H5B_10.827 (17)O5_2—H5B_20.825 (17)
N1_1—C2_1—C3_1123.5 (2)N1_2—C2_2—C3_2123.6 (2)
N1_1—C2_1—H2_1118.2N1_2—C2_2—H2_2118.2
C3_1—C2_1—H2_1118.2C3_2—C2_2—H2_2118.2
C2_1—C3_1—C4_1119.0 (2)C2_2—C3_2—C4_2119.3 (2)
C2_1—C3_1—H3_1120.5C2_2—C3_2—H3_2120.3
C4_1—C3_1—H3_1120.5C4_2—C3_2—H3_2120.3
C5_1—C4_1—C3_1118.0 (2)C3_2—C4_2—C5_2117.2 (2)
C5_1—C4_1—C7_1120.3 (2)C3_2—C4_2—C7_2124.3 (2)
C3_1—C4_1—C7_1121.7 (2)C5_2—C4_2—C7_2118.44 (19)
C4_1—C5_1—C6_1119.1 (2)C6_2—C5_2—C4_2119.4 (2)
C4_1—C5_1—H5_1120.4C6_2—C5_2—H5_2120.3
C6_1—C5_1—H5_1120.4C4_2—C5_2—H5_2120.3
N1_1—C6_1—C5_1123.5 (2)N1_2—C6_2—C5_2123.7 (2)
N1_1—C6_1—H6_1118.2N1_2—C6_2—H6_2118.1
C5_1—C6_1—H6_1118.2C5_2—C6_2—H6_2118.1
N2_1—C7_1—C4_1110.46 (18)N2_2—C7_2—C4_2113.15 (18)
N2_1—C7_1—H7A_1109.6N2_2—C7_2—H7A_2108.9
C4_1—C7_1—H7A_1109.6C4_2—C7_2—H7A_2108.9
N2_1—C7_1—H7B_1109.6N2_2—C7_2—H7B_2108.9
C4_1—C7_1—H7B_1109.6C4_2—C7_2—H7B_2108.9
H7A_1—C7_1—H7B_1108.1H7A_2—C7_2—H7B_2107.8
C6_1—N1_1—C2_1116.9 (2)C2_2—N1_2—C6_2116.7 (2)
C7_1—N2_1—H2A_1109.1 (17)C7_2—N2_2—H2A_2111.7 (16)
C7_1—N2_1—H2B_1111.0 (16)C7_2—N2_2—H2B_2112.4 (17)
H2A_1—N2_1—H2B_1112 (2)H2A_2—N2_2—H2B_2102 (2)
C7_1—N2_1—H2C_1107.8 (18)C7_2—N2_2—H2C_2108.0 (18)
H2A_1—N2_1—H2C_1112 (2)H2A_2—N2_2—H2C_2112 (2)
H2B_1—N2_1—H2C_1105 (2)H2B_2—N2_2—H2C_2110 (2)
O2_1—Cl1_1—O3_1110.58 (10)O2_2—Cl1_2—O3_2110.79 (10)
O2_1—Cl1_1—O4_1109.98 (11)O2_2—Cl1_2—O4_2109.43 (10)
O3_1—Cl1_1—O4_1109.43 (10)O3_2—Cl1_2—O4_2109.22 (10)
O2_1—Cl1_1—O1_1108.97 (9)O2_2—Cl1_2—O1_2109.43 (9)
O3_1—Cl1_1—O1_1109.10 (9)O3_2—Cl1_2—O1_2109.58 (10)
O4_1—Cl1_1—O1_1108.75 (10)O4_2—Cl1_2—O1_2108.36 (10)
H5A_1—O5_1—H5B_1109 (3)H5A_2—O5_2—H5B_2107 (3)
C3_1—C4_1—C7_1—N2_167.4 (3)C3_2—C4_2—C7_2—N2_213.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2_1—H2A_1···O5_1i0.90 (2)1.96 (2)2.862 (3)176 (2)
N2_1—H2B_1···O1_1ii0.90 (2)2.20 (2)2.916 (2)136 (2)
N2_1—H2B_1···O4_2iii0.90 (2)2.32 (2)2.924 (2)125 (2)
N2_1—H2B_1···O4_2i0.90 (2)2.50 (2)3.034 (3)119 (2)
N2_1—H2C_1···O5_2iv0.90 (2)1.95 (2)2.838 (3)168 (2)
O5_1—H5A_1···N1_20.84 (2)1.91 (2)2.751 (2)176 (3)
O5_1—H5B_1···O1_20.83 (2)2.21 (2)2.986 (2)156 (3)
N2_2—H2A_2···O5_1iv0.92 (2)1.92 (2)2.839 (3)173 (2)
N2_2—H2B_2···O4_1iii0.91 (2)2.42 (2)3.079 (3)130 (2)
N2_2—H2B_2···O1_2iii0.91 (2)2.19 (2)2.979 (2)144 (2)
N2_2—H2C_2···O5_2iv0.90 (2)1.98 (2)2.872 (3)177 (2)
O5_2—H5A_2···N1_10.83 (2)1.93 (2)2.761 (2)175 (3)
O5_2—H5B_2···O1_10.83 (2)2.09 (2)2.874 (2)160 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the late Professor William S. Sheldrick for his support of this research.

Funding information

Funding for this research was provided by: Open Access Publishing by the DFG .

References

First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDing, X.-H., Cui, L.-F., Li, Y.-H., Wang, S. & Huang, W. (2012). New J. Chem. 36, 1884–1890.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaraağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80.  Google Scholar
First citationLemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750–1757.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMsaadi, I., Rayes, A., Benito, M., Issaoui, N., Molins, E. & Ayed, B. (2022). J. Mol. Struct. 1262, 133085.  CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationVries, E. J. C. de, Oliver, C. L. & Lloyd, G. O. (2005). Acta Cryst. E61, o1577–o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuffa, C., Cappuccino, C., Marchini, M., Contini, L., Farinella, F. & Maini, L. (2023). Faraday Discuss. 241, 448–465.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146