organic compounds
Pyridin-4-ylmethanaminium perchlorate monohydrate
aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
Pyridin-4-ylmethanaminium perchlorate monohydrate (synonym: 4-picolylammonium perchlorate monohydrate), C6H9N2+·ClO4−·H2O, crystallizes in the monoclinic system (space group P21/n) with the comprising two formula units (Z′ = 2). All molecular entities are located on general positions. The two crystallographically distinct 4-picolylammonium cations exhibit different conformations. The two unique perchlorate anions are non-disordered, showing an r.m.s. deviation of 0.011 Å from molecular Td symmetry. The supramolecular structure in the solid state features an intricate tri-periodic network of N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.
Keywords: crystal structure; 4-picolylamine; perchlorate; conformation; heterocycle; hydrogen bonding.
CCDC reference: 2265167
Structure description
The number of structurally characterized 1:1 salts of the feedstock chemical 4-picolylamine is limited. A search of the Cambridge Structural Database (CSD, version 5.43 with November 2022 updates; Groom et al., 2016) revealed nine crystal structures: the hydrogen chloride (CSD refcode: QANWOS; de Vries et al., 2005) and hydrogen bromide (TENDUP; Zuffa et al., 2023), substituted benzoic acid salts (TOHYEV, TOHYIZ; Lemmerer et al., 2008 and WEBXAE; Ding et al., 2012), group 10 tetracyanidometallates (OFEWUT, OFEXII and OFEXUU; Karaağaç et al., 2013) and a decavanadate (HEBJOR; Msaadi et al., 2022). We herein report the of the monohydrate of the perchlorate salt of 4-picolylamine, (1).
As shown in Fig. 1, the of (1) comprises two formula units C6H9N2+ClO4−·H2O (Z′ = 2). The amino group of 4-picolylamine, which is the more basic site (pKa = 8.30; Milletti et al., 2010) compared to the pyridine nitrogen atom, is in a protonated state. The two crystallographically distinct 4-picolylammonium cations differ in their conformations. The C3—C4—C7—N2 torsion angle is 67.4 (3)° in molecule 1 and 13.2 (3)° in molecule 2. The difference is ascribable to intermolecular interactions and packing effects in the solid state. In the nine crystal structures containing 4-picolylammonium ions deposited with the CSD, the torsion angles range from 6.4° in HEBJOR to 88.5° in WEBXAE, indicating great conformational flexibility. The molecular structure of cation 2 in (1) exhibits an r.m.s. deviation from CS symmetry of 0.082 Å, as calculated with MOLSYM in PLATON (Spek, 2020). The two crystallographically distinct perchlorate anions are non-disordered, both showing an r.m.s. deviation of 0.011 Å from molecular Td symmetry.
Apart from Coulombic interactions, the supramolecular structure in (1) is dominated by classical N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. Fig. 2 depicts a part of the illustrating the crystallographically unique hydrogen bonds. As hydrogen-bond donors, the water molecules join the 4-picolylammonium and perchlorate ions through O—H⋯Npyridine and O—H⋯O hydrogen bonds, respectively. Towards the protonated amino groups, the water molecules act as hydrogen-bond acceptors for N—H⋯O hydrogen bonds, resulting in hydrogen-bonded chains propagating parallel to the c-axis direction. The remaining hydrogen-bond donor sites of the 4-picolylammonium ions form donating bifurcated N—H⋯O hydrogen bonds to perchlorate oxygen atoms, resulting in an intricate tri-periodic network. Table 1 lists numerical details of the relevant hydrogen bonds in (1), which are characteristic of strong hydrogen bonds (Thakuria et al., 2017).
Synthesis and crystallization
Compound (1) was synthesized by adding a solution of 4-picolylamine (216 mg, 2 mmol) in 40 ml of ethanol to 40 ml of 0.1 M perchloric acid. The reaction mixture was stirred for 4 h at room temperature and then left at ambient conditions. After one week, the precipitate was collected by filtration and air-dried. Colourless crystals of (1) suitable for X-ray diffraction were grown from a methanol/water solution at room temperature over a period of three weeks, while the solvents were allowed to evaporate slowly. Caution: organic perchlorate salts are potentially explosive and should be handled with care!
Refinement
Crystal data, data collection and structure .
details are listed in Table 2
|
Structural data
CCDC reference: 2265167
https://doi.org/10.1107/S2414314623004595/wm4189sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623004595/wm4189Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623004595/wm4189Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314623004595/wm4189Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).C6H9N2+·ClO4−·H2O | F(000) = 944 |
Mr = 226.62 | Dx = 1.595 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1239 (2) Å | Cell parameters from 4316 reflections |
b = 22.1397 (6) Å | θ = 3.6–28.4° |
c = 9.5463 (3) Å | µ = 0.41 mm−1 |
β = 101.799 (3)° | T = 110 K |
V = 1887.62 (9) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.20 × 0.10 mm |
Xcalibur2, Oxford Diffraction diffractometer | 4422 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3163 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 8.4171 pixels mm-1 | θmax = 28.9°, θmin = 2.8° |
ω scans | h = −12→11 |
Absorption correction: multi-scan (ABSPACK in CrysAlisPro; Rigaku OD, 2022) | k = −29→27 |
Tmin = 0.894, Tmax = 1.000 | l = −11→12 |
16791 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: mixed |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0371P)2 + 1.2652P] where P = (Fo2 + 2Fc2)/3 |
4422 reflections | (Δ/σ)max < 0.001 |
299 parameters | Δρmax = 0.44 e Å−3 |
10 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Nitrogen-bound and water hydrogen atoms were located from difference-Fourier maps and were refined with N—H and O—H distances restrained to target values of 0.91 (2) and 0.84 (2) Å, respectively. The respective Uiso(H) values were refined freely. |
x | y | z | Uiso*/Ueq | ||
C2_1 | 0.5915 (3) | 0.25285 (10) | 0.3275 (3) | 0.0236 (5) | |
H2_1 | 0.613952 | 0.219921 | 0.392116 | 0.028* | |
C3_1 | 0.6384 (3) | 0.30978 (10) | 0.3757 (3) | 0.0211 (5) | |
H3_1 | 0.691704 | 0.315629 | 0.471201 | 0.025* | |
C4_1 | 0.6065 (2) | 0.35838 (9) | 0.2826 (2) | 0.0173 (5) | |
C5_1 | 0.5272 (3) | 0.34736 (10) | 0.1463 (3) | 0.0235 (5) | |
H5_1 | 0.501877 | 0.379550 | 0.080013 | 0.028* | |
C6_1 | 0.4846 (3) | 0.28865 (11) | 0.1070 (3) | 0.0260 (6) | |
H6_1 | 0.429816 | 0.281688 | 0.012509 | 0.031* | |
C7_1 | 0.6564 (3) | 0.42157 (10) | 0.3275 (3) | 0.0206 (5) | |
H7A_1 | 0.610755 | 0.450463 | 0.251989 | 0.025* | |
H7B_1 | 0.622219 | 0.432207 | 0.416360 | 0.025* | |
N1_1 | 0.5162 (2) | 0.24152 (8) | 0.1945 (2) | 0.0214 (4) | |
N2_1 | 0.8230 (2) | 0.42629 (9) | 0.3526 (2) | 0.0171 (4) | |
H2A_1 | 0.854 (3) | 0.4114 (11) | 0.276 (2) | 0.027 (7)* | |
H2B_1 | 0.853 (3) | 0.4645 (8) | 0.371 (3) | 0.020 (6)* | |
H2C_1 | 0.861 (3) | 0.4058 (11) | 0.434 (2) | 0.034 (8)* | |
Cl1_1 | 0.71953 (6) | 0.05644 (2) | 0.38455 (5) | 0.01373 (13) | |
O1_1 | 0.70326 (17) | 0.05322 (6) | 0.23033 (16) | 0.0180 (3) | |
O2_1 | 0.7178 (2) | 0.11825 (7) | 0.42615 (17) | 0.0287 (4) | |
O3_1 | 0.85768 (17) | 0.02837 (7) | 0.45115 (18) | 0.0251 (4) | |
O4_1 | 0.59712 (18) | 0.02479 (8) | 0.42438 (18) | 0.0268 (4) | |
O5_1 | 0.43372 (18) | 0.11734 (7) | 0.61174 (17) | 0.0181 (3) | |
H5A_1 | 0.453 (3) | 0.1534 (9) | 0.638 (3) | 0.041 (9)* | |
H5B_1 | 0.513 (2) | 0.0983 (12) | 0.620 (3) | 0.042 (9)* | |
C2_2 | 0.6473 (3) | 0.24806 (10) | 0.7655 (3) | 0.0221 (5) | |
H2_2 | 0.716822 | 0.216114 | 0.792595 | 0.027 (7)* | |
C3_2 | 0.6939 (3) | 0.30644 (10) | 0.8024 (2) | 0.0195 (5) | |
H3_2 | 0.792866 | 0.313941 | 0.853765 | 0.026 (7)* | |
C4_2 | 0.5946 (2) | 0.35391 (9) | 0.7636 (2) | 0.0160 (5) | |
C5_2 | 0.4506 (3) | 0.33949 (10) | 0.6910 (2) | 0.0202 (5) | |
H5_2 | 0.378075 | 0.370385 | 0.663996 | 0.020 (6)* | |
C6_2 | 0.4143 (3) | 0.28017 (10) | 0.6587 (2) | 0.0218 (5) | |
H6_2 | 0.315601 | 0.271289 | 0.608434 | 0.025 (7)* | |
C7_2 | 0.6330 (2) | 0.41931 (10) | 0.7943 (3) | 0.0193 (5) | |
H7A_2 | 0.594521 | 0.443333 | 0.707070 | 0.018 (6)* | |
H7B_2 | 0.581862 | 0.433608 | 0.870188 | 0.022 (6)* | |
N1_2 | 0.5099 (2) | 0.23416 (8) | 0.6940 (2) | 0.0218 (4) | |
N2_2 | 0.7960 (2) | 0.43016 (9) | 0.8405 (2) | 0.0175 (4) | |
H2A_2 | 0.833 (3) | 0.4138 (10) | 0.9295 (19) | 0.022 (6)* | |
H2B_2 | 0.818 (3) | 0.4699 (8) | 0.854 (3) | 0.028 (7)* | |
H2C_2 | 0.841 (3) | 0.4149 (11) | 0.773 (2) | 0.033 (8)* | |
Cl1_2 | 0.72640 (6) | 0.05939 (2) | 0.88521 (5) | 0.01431 (13) | |
O1_2 | 0.72928 (19) | 0.06090 (7) | 0.73443 (17) | 0.0231 (4) | |
O2_2 | 0.67297 (19) | 0.11607 (7) | 0.92682 (17) | 0.0224 (4) | |
O3_2 | 0.87356 (17) | 0.04688 (7) | 0.96603 (18) | 0.0249 (4) | |
O4_2 | 0.62605 (18) | 0.01185 (7) | 0.90900 (17) | 0.0234 (4) | |
O5_2 | 0.43738 (18) | 0.12300 (7) | 0.12765 (17) | 0.0181 (3) | |
H5A_2 | 0.458 (3) | 0.1593 (8) | 0.142 (3) | 0.044 (9)* | |
H5B_2 | 0.518 (2) | 0.1049 (12) | 0.137 (3) | 0.049 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2_1 | 0.0233 (12) | 0.0177 (11) | 0.0287 (14) | 0.0016 (10) | 0.0028 (10) | 0.0043 (10) |
C3_1 | 0.0231 (13) | 0.0192 (11) | 0.0199 (12) | 0.0000 (10) | 0.0016 (10) | 0.0005 (9) |
C4_1 | 0.0121 (10) | 0.0149 (11) | 0.0257 (13) | 0.0010 (9) | 0.0056 (9) | 0.0017 (9) |
C5_1 | 0.0205 (12) | 0.0223 (12) | 0.0253 (13) | −0.0012 (10) | −0.0009 (10) | 0.0089 (10) |
C6_1 | 0.0226 (13) | 0.0297 (13) | 0.0227 (13) | −0.0063 (11) | −0.0024 (10) | 0.0006 (10) |
C7_1 | 0.0164 (11) | 0.0143 (11) | 0.0321 (14) | 0.0005 (9) | 0.0070 (10) | −0.0004 (9) |
N1_1 | 0.0172 (10) | 0.0190 (10) | 0.0279 (12) | −0.0034 (8) | 0.0042 (9) | −0.0031 (8) |
N2_1 | 0.0198 (10) | 0.0133 (10) | 0.0180 (11) | −0.0027 (8) | 0.0036 (8) | −0.0018 (8) |
Cl1_1 | 0.0121 (2) | 0.0130 (2) | 0.0158 (3) | 0.0005 (2) | 0.00203 (19) | 0.0011 (2) |
O1_1 | 0.0223 (8) | 0.0173 (8) | 0.0146 (8) | 0.0006 (7) | 0.0041 (7) | 0.0003 (6) |
O2_1 | 0.0453 (11) | 0.0146 (8) | 0.0230 (9) | 0.0030 (8) | −0.0003 (8) | −0.0031 (7) |
O3_1 | 0.0149 (8) | 0.0331 (10) | 0.0259 (9) | 0.0092 (7) | 0.0004 (7) | 0.0041 (7) |
O4_1 | 0.0186 (9) | 0.0366 (10) | 0.0254 (10) | −0.0081 (8) | 0.0048 (7) | 0.0079 (8) |
O5_1 | 0.0170 (8) | 0.0149 (8) | 0.0217 (9) | 0.0018 (7) | 0.0021 (7) | −0.0022 (7) |
C2_2 | 0.0209 (12) | 0.0160 (11) | 0.0289 (14) | 0.0022 (10) | 0.0042 (10) | 0.0025 (10) |
C3_2 | 0.0158 (11) | 0.0180 (11) | 0.0238 (13) | 0.0006 (9) | 0.0017 (10) | 0.0022 (9) |
C4_2 | 0.0185 (11) | 0.0142 (10) | 0.0163 (11) | 0.0000 (9) | 0.0058 (9) | 0.0001 (8) |
C5_2 | 0.0169 (11) | 0.0227 (12) | 0.0202 (12) | 0.0060 (10) | 0.0017 (9) | 0.0001 (9) |
C6_2 | 0.0164 (12) | 0.0274 (12) | 0.0207 (13) | −0.0020 (10) | 0.0018 (10) | −0.0019 (10) |
C7_2 | 0.0161 (11) | 0.0153 (11) | 0.0262 (13) | 0.0016 (9) | 0.0041 (10) | 0.0000 (9) |
N1_2 | 0.0210 (10) | 0.0193 (10) | 0.0255 (11) | −0.0026 (8) | 0.0054 (9) | −0.0006 (8) |
N2_2 | 0.0223 (11) | 0.0145 (10) | 0.0157 (10) | −0.0026 (8) | 0.0038 (8) | 0.0000 (8) |
Cl1_2 | 0.0141 (3) | 0.0136 (2) | 0.0150 (3) | 0.0009 (2) | 0.00248 (19) | 0.0008 (2) |
O1_2 | 0.0318 (10) | 0.0214 (8) | 0.0173 (9) | 0.0018 (7) | 0.0078 (7) | 0.0028 (7) |
O2_2 | 0.0278 (9) | 0.0155 (8) | 0.0231 (9) | 0.0072 (7) | 0.0034 (7) | −0.0020 (7) |
O3_2 | 0.0139 (8) | 0.0318 (9) | 0.0269 (9) | 0.0061 (7) | −0.0010 (7) | 0.0015 (7) |
O4_2 | 0.0250 (9) | 0.0202 (8) | 0.0245 (9) | −0.0084 (7) | 0.0040 (7) | 0.0029 (7) |
O5_2 | 0.0176 (9) | 0.0147 (8) | 0.0214 (9) | 0.0007 (7) | 0.0022 (7) | −0.0013 (7) |
C2_1—N1_1 | 1.338 (3) | C2_2—N1_2 | 1.335 (3) |
C2_1—C3_1 | 1.380 (3) | C2_2—C3_2 | 1.384 (3) |
C2_1—H2_1 | 0.9500 | C2_2—H2_2 | 0.9500 |
C3_1—C4_1 | 1.388 (3) | C3_2—C4_2 | 1.387 (3) |
C3_1—H3_1 | 0.9500 | C3_2—H3_2 | 0.9500 |
C4_1—C5_1 | 1.375 (3) | C4_2—C5_2 | 1.391 (3) |
C4_1—C7_1 | 1.506 (3) | C4_2—C7_2 | 1.504 (3) |
C5_1—C6_1 | 1.386 (3) | C5_2—C6_2 | 1.374 (3) |
C5_1—H5_1 | 0.9500 | C5_2—H5_2 | 0.9500 |
C6_1—N1_1 | 1.331 (3) | C6_2—N1_2 | 1.339 (3) |
C6_1—H6_1 | 0.9500 | C6_2—H6_2 | 0.9500 |
C7_1—N2_1 | 1.493 (3) | C7_2—N2_2 | 1.482 (3) |
C7_1—H7A_1 | 0.9900 | C7_2—H7A_2 | 0.9900 |
C7_1—H7B_1 | 0.9900 | C7_2—H7B_2 | 0.9900 |
N2_1—H2A_1 | 0.900 (16) | N2_2—H2A_2 | 0.921 (16) |
N2_1—H2B_1 | 0.895 (16) | N2_2—H2B_2 | 0.907 (16) |
N2_1—H2C_1 | 0.903 (17) | N2_2—H2C_2 | 0.897 (17) |
Cl1_1—O2_1 | 1.4260 (16) | Cl1_2—O2_2 | 1.4316 (15) |
Cl1_1—O3_1 | 1.4323 (16) | Cl1_2—O3_2 | 1.4322 (16) |
Cl1_1—O4_1 | 1.4341 (16) | Cl1_2—O4_2 | 1.4431 (16) |
Cl1_1—O1_1 | 1.4508 (15) | Cl1_2—O1_2 | 1.4454 (16) |
O5_1—H5A_1 | 0.843 (17) | O5_2—H5A_2 | 0.831 (17) |
O5_1—H5B_1 | 0.827 (17) | O5_2—H5B_2 | 0.825 (17) |
N1_1—C2_1—C3_1 | 123.5 (2) | N1_2—C2_2—C3_2 | 123.6 (2) |
N1_1—C2_1—H2_1 | 118.2 | N1_2—C2_2—H2_2 | 118.2 |
C3_1—C2_1—H2_1 | 118.2 | C3_2—C2_2—H2_2 | 118.2 |
C2_1—C3_1—C4_1 | 119.0 (2) | C2_2—C3_2—C4_2 | 119.3 (2) |
C2_1—C3_1—H3_1 | 120.5 | C2_2—C3_2—H3_2 | 120.3 |
C4_1—C3_1—H3_1 | 120.5 | C4_2—C3_2—H3_2 | 120.3 |
C5_1—C4_1—C3_1 | 118.0 (2) | C3_2—C4_2—C5_2 | 117.2 (2) |
C5_1—C4_1—C7_1 | 120.3 (2) | C3_2—C4_2—C7_2 | 124.3 (2) |
C3_1—C4_1—C7_1 | 121.7 (2) | C5_2—C4_2—C7_2 | 118.44 (19) |
C4_1—C5_1—C6_1 | 119.1 (2) | C6_2—C5_2—C4_2 | 119.4 (2) |
C4_1—C5_1—H5_1 | 120.4 | C6_2—C5_2—H5_2 | 120.3 |
C6_1—C5_1—H5_1 | 120.4 | C4_2—C5_2—H5_2 | 120.3 |
N1_1—C6_1—C5_1 | 123.5 (2) | N1_2—C6_2—C5_2 | 123.7 (2) |
N1_1—C6_1—H6_1 | 118.2 | N1_2—C6_2—H6_2 | 118.1 |
C5_1—C6_1—H6_1 | 118.2 | C5_2—C6_2—H6_2 | 118.1 |
N2_1—C7_1—C4_1 | 110.46 (18) | N2_2—C7_2—C4_2 | 113.15 (18) |
N2_1—C7_1—H7A_1 | 109.6 | N2_2—C7_2—H7A_2 | 108.9 |
C4_1—C7_1—H7A_1 | 109.6 | C4_2—C7_2—H7A_2 | 108.9 |
N2_1—C7_1—H7B_1 | 109.6 | N2_2—C7_2—H7B_2 | 108.9 |
C4_1—C7_1—H7B_1 | 109.6 | C4_2—C7_2—H7B_2 | 108.9 |
H7A_1—C7_1—H7B_1 | 108.1 | H7A_2—C7_2—H7B_2 | 107.8 |
C6_1—N1_1—C2_1 | 116.9 (2) | C2_2—N1_2—C6_2 | 116.7 (2) |
C7_1—N2_1—H2A_1 | 109.1 (17) | C7_2—N2_2—H2A_2 | 111.7 (16) |
C7_1—N2_1—H2B_1 | 111.0 (16) | C7_2—N2_2—H2B_2 | 112.4 (17) |
H2A_1—N2_1—H2B_1 | 112 (2) | H2A_2—N2_2—H2B_2 | 102 (2) |
C7_1—N2_1—H2C_1 | 107.8 (18) | C7_2—N2_2—H2C_2 | 108.0 (18) |
H2A_1—N2_1—H2C_1 | 112 (2) | H2A_2—N2_2—H2C_2 | 112 (2) |
H2B_1—N2_1—H2C_1 | 105 (2) | H2B_2—N2_2—H2C_2 | 110 (2) |
O2_1—Cl1_1—O3_1 | 110.58 (10) | O2_2—Cl1_2—O3_2 | 110.79 (10) |
O2_1—Cl1_1—O4_1 | 109.98 (11) | O2_2—Cl1_2—O4_2 | 109.43 (10) |
O3_1—Cl1_1—O4_1 | 109.43 (10) | O3_2—Cl1_2—O4_2 | 109.22 (10) |
O2_1—Cl1_1—O1_1 | 108.97 (9) | O2_2—Cl1_2—O1_2 | 109.43 (9) |
O3_1—Cl1_1—O1_1 | 109.10 (9) | O3_2—Cl1_2—O1_2 | 109.58 (10) |
O4_1—Cl1_1—O1_1 | 108.75 (10) | O4_2—Cl1_2—O1_2 | 108.36 (10) |
H5A_1—O5_1—H5B_1 | 109 (3) | H5A_2—O5_2—H5B_2 | 107 (3) |
C3_1—C4_1—C7_1—N2_1 | 67.4 (3) | C3_2—C4_2—C7_2—N2_2 | 13.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2_1—H2A_1···O5_1i | 0.90 (2) | 1.96 (2) | 2.862 (3) | 176 (2) |
N2_1—H2B_1···O1_1ii | 0.90 (2) | 2.20 (2) | 2.916 (2) | 136 (2) |
N2_1—H2B_1···O4_2iii | 0.90 (2) | 2.32 (2) | 2.924 (2) | 125 (2) |
N2_1—H2B_1···O4_2i | 0.90 (2) | 2.50 (2) | 3.034 (3) | 119 (2) |
N2_1—H2C_1···O5_2iv | 0.90 (2) | 1.95 (2) | 2.838 (3) | 168 (2) |
O5_1—H5A_1···N1_2 | 0.84 (2) | 1.91 (2) | 2.751 (2) | 176 (3) |
O5_1—H5B_1···O1_2 | 0.83 (2) | 2.21 (2) | 2.986 (2) | 156 (3) |
N2_2—H2A_2···O5_1iv | 0.92 (2) | 1.92 (2) | 2.839 (3) | 173 (2) |
N2_2—H2B_2···O4_1iii | 0.91 (2) | 2.42 (2) | 3.079 (3) | 130 (2) |
N2_2—H2B_2···O1_2iii | 0.91 (2) | 2.19 (2) | 2.979 (2) | 144 (2) |
N2_2—H2C_2···O5_2iv | 0.90 (2) | 1.98 (2) | 2.872 (3) | 177 (2) |
O5_2—H5A_2···N1_1 | 0.83 (2) | 1.93 (2) | 2.761 (2) | 175 (3) |
O5_2—H5B_2···O1_1 | 0.83 (2) | 2.09 (2) | 2.874 (2) | 160 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We are grateful to the late Professor William S. Sheldrick for his support of this research.
Funding information
Funding for this research was provided by: Open Access Publishing by the DFG .
References
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ding, X.-H., Cui, L.-F., Li, Y.-H., Wang, S. & Huang, W. (2012). New J. Chem. 36, 1884–1890. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80. Google Scholar
Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750–1757. Web of Science CSD CrossRef CAS Google Scholar
Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279. Web of Science CrossRef CAS PubMed Google Scholar
Msaadi, I., Rayes, A., Benito, M., Issaoui, N., Molins, E. & Ayed, B. (2022). J. Mol. Struct. 1262, 133085. CrossRef Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier. Google Scholar
Vries, E. J. C. de, Oliver, C. L. & Lloyd, G. O. (2005). Acta Cryst. E61, o1577–o1578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zuffa, C., Cappuccino, C., Marchini, M., Contini, L., Farinella, F. & Maini, L. (2023). Faraday Discuss. 241, 448–465. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.