organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6,7,8-Tetra­hydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one

crossmark logo

aLaboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco, bLaboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, and fMohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 3 May 2023; accepted 9 May 2023; online 12 May 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The triazole ring in the title mol­ecule, C9H10N4O, is not quite coplanar with the six-membered ring to which it is fused, the dihedral angle between the two least-squares planes being 2.52 (6)°. In the crystal, a layered structure is formed by N—H⋯N and C—H⋯O hydrogen bonds plus slipped π-stacking inter­actions, with the fused cyclo­hexene rings projecting to either side.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing nitro­gen heterocycles make up a significant portion (approximately 60%) of small drug mol­ecules that have been approved by the FDA (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109-160.]; Martins et al., 2015[Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. & Fernandes, A. R. (2015). Molecules, 20, 16852-16891.]). Quinazoline is a frequently occurring structural feature in natural products and pharmaceutically active mol­ecules., which possess a range of useful biological properties, including anti-SARS-CoV-2 (e.g. Karan et al., 2021[Karan, R., Agarwal, P., Sinha, M. & Mahato, N. (2021). ChemEngineering 5, 73.]), anti­cancer (e.g. Zhao et al., 2021[Zhao, J., Zhang, Y., Wang, M., Liu, Q., Lei, X., Wu, M. & Cen, S. (2021). Infect. Dis. 7, 1535-1544.]), anti­viral (e.g. El-Shershaby et al., 2021[El-Shershaby, M. H., Ghiaty, A., Bayoumi, A. H., Ahmed, H. E., El-Zoghbi, M. S., El-Adl, K. & Abulkhair, H. S. (2021). New J. Chem. 45, 11136-11152.]), anti­microbial, anti-inflammatory (e.g. Zhang et al., 2020[Zhang, G., Wang, M., Zhao, J., Wang, Y., Zhu, M., Wang, J., Cen, S. & Wang, Y. (2020). Eur. J. Med. Chem. 206, 112706.]), and anti­fungal activities (e.g. Ibrahim et al., 2021[Ibrahim, O. F., Bakhite, E. A., Metwally, S. A. M., El-Ossaily, Y. A., Abdu-Allah, H. H. M., Al-Taifi, E. A. & Kandel, M. (2021). Russ. J. Bioorg. Chem. 47, 918-928.]).

A puckering analysis of the C2–C7 ring of the title compound (Fig. 1[link]) gave the parameters Q = 0.4922 (12) Å, θ = 129.71 (14)° and φ = 326.36 (18)°. This conformation is quite similar to a half-chair form. The C8/N2/C9/N3/N4 ring is closer to planarity than is the C1/C2/C7/N1/C8/N4 ring (r.m.s. deviations of the fitted atoms are 0.0128 and 0.0042 Å, respectively) and the dihedral angle between their mean planes is 2.52 (6)°. In the crystal, N1—H1⋯N3 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the c-axis direction, which are linked into layers parallel to the bc plane by weak C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). The layer formation is assisted by slipped π-stacking inter­actions between inversion-related C1/C2/C7/N1/C8/N4 rings [centroid–centroid distance = 3.4033 (6) Å, slippage = 0.96 Å]. The layers pack along the a-axis direction with van der Waals contacts between them (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.919 (15) 1.907 (15) 2.8208 (12) 173.1 (13)
C9—H9⋯O1ii 0.95 2.57 3.3282 (12) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
A portion of one layer viewed along the a-axis direction with N—H⋯N and C—H⋯O hydrogen bonds depicted by blue and black dashed lines, respectively. The slipped π-stacking inter­actions are depicted by orange dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction giving edge views of portions of three layers. Inter­molecular inter­actions are depicted as in Fig. 2[link] and non-inter­acting hydrogen atoms are omitted for clarity.

Synthesis and crystallization

1H-1,2,4-Triazol-5-amine (0.5 g, 5.95 mmol) and ethyl 2-oxo-cyclo­hexa­necarboxyl­ate (0.951 ml, 5.95 mmol) were combined and heated under reflux in 10 ml of acetic acid for 1 h. The solid product obtained was recrystallized from ethanol solution to afford colorless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H10N4O
Mr 190.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.7925 (3), 7.9648 (3), 11.8039 (4)
β (°) 113.553 (1)
V3) 843.95 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.36 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.91
No. of measured, independent and observed [I > 2σ(I)] reflections 18079, 1657, 1626
Rint 0.021
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.07
No. of reflections 1657
No. of parameters 131
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5,6,7,8-Tetrahydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one top
Crystal data top
C9H10N4OF(000) = 400
Mr = 190.21Dx = 1.497 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.7925 (3) ÅCell parameters from 9958 reflections
b = 7.9648 (3) Åθ = 4.1–72.3°
c = 11.8039 (4) ŵ = 0.86 mm1
β = 113.553 (1)°T = 150 K
V = 843.95 (5) Å3Column, colourless
Z = 40.36 × 0.15 × 0.12 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
1657 independent reflections
Radiation source: INCOATEC IµS micro—-focus source1626 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 7.3910 pixels mm-1θmax = 72.4°, θmin = 7.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.84, Tmax = 0.91l = 1414
18079 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2836P]
where P = (Fo2 + 2Fc2)/3
1657 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 18 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 4 to 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and was refined independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26314 (8)0.43095 (10)0.61185 (6)0.0244 (2)
N10.41264 (9)0.32811 (10)0.34454 (7)0.0175 (2)
H10.4489 (16)0.3032 (18)0.2857 (14)0.034 (4)*
N20.59918 (9)0.16425 (10)0.50516 (7)0.0183 (2)
N30.51360 (9)0.22338 (11)0.65438 (7)0.0189 (2)
N40.42719 (9)0.30291 (10)0.54577 (7)0.0168 (2)
C10.30105 (11)0.40365 (12)0.52669 (9)0.0180 (2)
C20.22902 (11)0.46080 (12)0.40036 (9)0.0180 (2)
C30.08681 (11)0.55964 (13)0.36710 (10)0.0227 (2)
H3A0.1113930.6755960.3989740.027*
H3B0.0258430.5078980.4074330.027*
C40.00393 (12)0.56563 (14)0.22750 (10)0.0245 (3)
H4A0.0505920.4547820.1985730.029*
H4B0.0844330.6498340.2084250.029*
C50.09473 (12)0.61123 (13)0.15965 (9)0.0236 (2)
H5A0.1421820.7215760.1890770.028*
H5B0.0329410.6203580.0699730.028*
C60.21483 (11)0.47830 (13)0.18183 (9)0.0215 (2)
H6A0.1699750.3792390.1295060.026*
H6B0.2924590.5237860.1565020.026*
C70.28651 (11)0.42377 (12)0.31498 (9)0.0172 (2)
C80.48158 (10)0.26443 (12)0.45921 (8)0.0160 (2)
C90.61124 (11)0.14311 (12)0.62317 (9)0.0185 (2)
H90.6863090.0739340.6802930.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (4)0.0296 (4)0.0208 (4)0.0032 (3)0.0161 (3)0.0006 (3)
N10.0201 (4)0.0205 (4)0.0139 (4)0.0001 (3)0.0089 (3)0.0007 (3)
N20.0187 (4)0.0190 (4)0.0178 (4)0.0010 (3)0.0079 (3)0.0009 (3)
N30.0206 (4)0.0212 (4)0.0143 (4)0.0004 (3)0.0063 (3)0.0019 (3)
N40.0188 (4)0.0193 (4)0.0133 (4)0.0007 (3)0.0076 (3)0.0002 (3)
C10.0195 (5)0.0171 (5)0.0196 (5)0.0020 (4)0.0102 (4)0.0016 (4)
C20.0190 (5)0.0170 (5)0.0186 (5)0.0019 (4)0.0083 (4)0.0008 (4)
C30.0218 (5)0.0230 (5)0.0254 (5)0.0030 (4)0.0115 (4)0.0009 (4)
C40.0194 (5)0.0222 (5)0.0283 (6)0.0025 (4)0.0057 (4)0.0001 (4)
C50.0258 (5)0.0211 (5)0.0189 (5)0.0010 (4)0.0037 (4)0.0013 (4)
C60.0239 (5)0.0240 (5)0.0157 (5)0.0000 (4)0.0069 (4)0.0004 (4)
C70.0178 (5)0.0161 (5)0.0175 (5)0.0030 (3)0.0067 (4)0.0011 (4)
C80.0182 (4)0.0164 (5)0.0152 (4)0.0036 (3)0.0087 (4)0.0025 (3)
C90.0182 (5)0.0188 (5)0.0176 (5)0.0015 (4)0.0063 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1—C11.2222 (12)C3—C41.5287 (14)
N1—C81.3471 (12)C3—H3A0.9900
N1—C71.3724 (13)C3—H3B0.9900
N1—H10.919 (15)C4—C51.5247 (15)
N2—C81.3258 (13)C4—H4A0.9900
N2—C91.3605 (12)C4—H4B0.9900
N3—C91.3192 (13)C5—C61.5253 (14)
N3—N41.3762 (11)C5—H5A0.9900
N4—C81.3625 (12)C5—H5B0.9900
N4—C11.4135 (13)C6—C71.5066 (13)
C1—C21.4449 (14)C6—H6A0.9900
C2—C71.3687 (14)C6—H6B0.9900
C2—C31.5087 (13)C9—H90.9500
C8—N1—C7120.21 (8)C3—C4—H4B109.5
C8—N1—H1119.2 (9)H4A—C4—H4B108.1
C7—N1—H1120.5 (9)C4—C5—C6110.58 (8)
C8—N2—C9101.49 (8)C4—C5—H5A109.5
C9—N3—N4101.96 (7)C6—C5—H5A109.5
C8—N4—N3108.42 (8)C4—C5—H5B109.5
C8—N4—C1125.93 (8)C6—C5—H5B109.5
N3—N4—C1125.63 (8)H5A—C5—H5B108.1
O1—C1—N4120.21 (9)C7—C6—C5112.64 (8)
O1—C1—C2127.54 (9)C7—C6—H6A109.1
N4—C1—C2112.23 (8)C5—C6—H6A109.1
C7—C2—C1121.15 (9)C7—C6—H6B109.1
C7—C2—C3121.96 (9)C5—C6—H6B109.1
C1—C2—C3116.88 (9)H6A—C6—H6B107.8
C2—C3—C4112.04 (8)C2—C7—N1121.71 (9)
C2—C3—H3A109.2C2—C7—C6123.29 (9)
C4—C3—H3A109.2N1—C7—C6114.96 (8)
C2—C3—H3B109.2N2—C8—N1129.96 (9)
C4—C3—H3B109.2N2—C8—N4111.37 (8)
H3A—C3—H3B107.9N1—C8—N4118.66 (9)
C5—C4—C3110.87 (8)N3—C9—N2116.74 (9)
C5—C4—H4A109.5N3—C9—H9121.6
C3—C4—H4A109.5N2—C9—H9121.6
C5—C4—H4B109.5
C9—N3—N4—C80.54 (10)C1—C2—C7—C6179.19 (9)
C9—N3—N4—C1177.90 (9)C3—C2—C7—C60.39 (15)
C8—N4—C1—O1179.38 (9)C8—N1—C7—C21.57 (14)
N3—N4—C1—O12.46 (15)C8—N1—C7—C6176.34 (8)
C8—N4—C1—C21.78 (14)C5—C6—C7—C213.45 (14)
N3—N4—C1—C2176.39 (8)C5—C6—C7—N1168.67 (8)
O1—C1—C2—C7178.33 (10)C9—N2—C8—N1178.78 (10)
N4—C1—C2—C72.93 (13)C9—N2—C8—N40.72 (10)
O1—C1—C2—C32.81 (15)C7—N1—C8—N2176.72 (9)
N4—C1—C2—C3175.93 (8)C7—N1—C8—N42.74 (14)
C7—C2—C3—C416.83 (14)N3—N4—C8—N20.13 (11)
C1—C2—C3—C4162.02 (9)C1—N4—C8—N2178.56 (8)
C2—C3—C4—C547.48 (12)N3—N4—C8—N1179.43 (8)
C3—C4—C5—C662.20 (11)C1—N4—C8—N11.00 (14)
C4—C5—C6—C743.86 (11)N4—N3—C9—N21.08 (11)
C1—C2—C7—N11.46 (15)C8—N2—C9—N31.16 (11)
C3—C2—C7—N1177.34 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.919 (15)1.907 (15)2.8208 (12)173.1 (13)
C9—H9···O1ii0.952.573.3282 (12)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. Author contributions are as follows. Conceptualization, MT and AB; methodology, WE and AB; investigation, WE, AD; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR and MT; crystal-structure determination and validation, JTM.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationEl-Shershaby, M. H., Ghiaty, A., Bayoumi, A. H., Ahmed, H. E., El-Zoghbi, M. S., El-Adl, K. & Abulkhair, H. S. (2021). New J. Chem. 45, 11136–11152.  CAS Google Scholar
First citationIbrahim, O. F., Bakhite, E. A., Metwally, S. A. M., El-Ossaily, Y. A., Abdu-Allah, H. H. M., Al-Taifi, E. A. & Kandel, M. (2021). Russ. J. Bioorg. Chem. 47, 918–928.  Web of Science CrossRef CAS Google Scholar
First citationKaran, R., Agarwal, P., Sinha, M. & Mahato, N. (2021). ChemEngineering 5, 73.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. & Fernandes, A. R. (2015). Molecules, 20, 16852–16891.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, G., Wang, M., Zhao, J., Wang, Y., Zhu, M., Wang, J., Cen, S. & Wang, Y. (2020). Eur. J. Med. Chem. 206, 112706.  Web of Science CrossRef PubMed Google Scholar
First citationZhao, J., Zhang, Y., Wang, M., Liu, Q., Lei, X., Wu, M. & Cen, S. (2021). Infect. Dis. 7, 1535–1544.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146