organic compounds
N-Methylserotonin hydrogen oxalate
aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu
The solid-state structure of N-methylserotonin {systematic name: [2-(5-hydroxy-1H-indol-3-yl)ethyl](methyl)azanium hydrogen oxalate}, C11H15N2O+·C2HO4−, is reported. The structure possesses a singly protonated N-methylserotonin cation and one hydrogen oxalate anion in the In the crystal, the molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.
Keywords: crystal structure; tryptamines; indoles; hydrogen bonding.
CCDC reference: 2259219
Structure description
Serotonin (5-hydroxytryptamine) is a ubiquitous neurotransmitter that is integral in regulating mood, anxiety and happiness in humans (Young & Leyton, 2002). Methylating the ethylamine nitrogen atom of serotonin provides three serotonin analogues: (i) N-methylserotonin, (ii) 5-hydroxy-N,N-dimethyltryptamine (bufotenine) and (iii) 5-hydroxy-N,N,N-trimethyltryptammonium (bufotenidine). Of these, bufotenine is probably most widely known as a natural product found in the secretions of Bufo alvarius toads. Bufotenine is a potent agonist of serotonin receptors and is one of several compounds to which the psychedelic effects of toad secretions are attributed (Egan et al., 2000).
Replacing three hydrogen atoms with methyl groups in the ethylamine group of serotonin provides 5-hydroxy-N,N,N-trimethyltryptammonium, or bufotenidine, which is also a natural product found in toad secretions. Bufotenidine differs from the other analogues by virtue of its quaternary ammonium cation and selective affinity for the serotonin 3 receptor. Due to its charge, bufotenidine is unable to cross the blood–brain barrier, restricting its activity to the periphery, where it has been shown to have paralytic properties (Bhattacharya & Sanyal, 1972).
The title compound is the mono-methylated variant 5-hydroxy-N-methyltryptamine, which is a naturally occurring derivative of serotonin that has garnered attention due to its potential applications in biological and medical contexts. Endogenous N-methylserotonin has been observed both in plants and mammals, including in rodents colonized with human gut bacterial strains (Han et al., 2022). The biosynthesis of N-methylserotonin most likely occurs via N-methylation of serotonin by the enzyme indolethylamine-N-methyltransferase (Thompson et al., 2001). This enzyme, originally discovered as the enzyme responsible for the synthesis of the endogenous hallucinogen dimethyltryptamine (Barker et al., 2012), has recently been shown to have a broader substrate scope, including serotonin, which likely leads to the formation of N-methylserotonin (Chu et al., 2014).
The pharmacological properties of N-methylserotonin have been a subject of increasing interest. It is reported to have significant binding affinity for the serotonin 1 A and 7 receptors, in addition to being a potent serotonin reuptake inhibitor (Powell et al., 2008). These activities suggest that N-methylserotonin may have a unique pharmacological profile different from parent serotonin and may provide novel therapeutic opportunities for various psychiatric and neurological disorders. The title compound was first synthesized by Hofmann in 1955 and characterized by IR and elemental analysis (Stoll et al., 1955). Herein, the of 5-hydroxy-N-methyltryptamine is presented as its hydrogen oxalate salt.
The N-methyltryptammonium hydrogen oxalate contains one tryptammonium cation and one hydrogen oxalate anion (Fig. 1). The tryptammonium cation has a near planar indole unit with an r.m.s. deviation from planarity of 0.014 Å. The ethylamino arm is turned away from the indole plane with a C7—C8—C9—C10 torsion angle of −83.1 (3)°. The N-methyl group of this arm possesses a gauche configuration , with a C9—C10—N2—C11 torsion angle of 57.2 (3)°. The hydrogen oxalate anion varies significantly from planarity, with a CO2-to-CO2 plane-to-plane twist angle of 24.2 (1)°. The ions are linked together through a series of N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional framework (Fig. 2, Table 1). The hydrogen oxalate ions are linked together through O—H⋯O hydrogen bonds into chains along (100).
of 5-hydroxy-The most closely related monoalkyltryptamine structure to the title compound is 5-methoxy-N-methyltryptamine [Cambridge Structural Database (Groom et al., 2016) refcode QQQAHA; Bergin et al., 1968]. There are six other monoalkyltryptamine structures reported in the literature. These are the natural product norpsilocin, 4-hydroxy-N-methyltryptamine, which has been reported as its free base and its fumarate salt (MULXAV and MULXEZ; Chadeayne et al., 2020), the natural product baeocystin (FEJBAB; Naeem et al., 2022b), 4-acetoxy-N-methyltryptamine (Glatfelter et al., 2022), 4-benzyloxy-N-isopropyltryptammonium chloride and 4-hydroxy-N-isopropyltryptamine (CCDC 2246619 and 2246620; Laban et al., 2023). The 5-hydroxytryptamine structures that are known include the natural products serotonin (JECDII; Naeem et al., 2022a), bufotenine (BUFTEN; Falkenberg, 1972) and bufotenidine (ILUVET; Pham et al., 2021). The structure of serotonin has also been determined as its hydrogen oxalate salt (SERHOX: Amit et al., 1978).
Synthesis and crystallization
Single crystals suitable for X-ray diffraction studies were grown from an aqueous solution of a commercial sample (Sigma-Aldrich).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2259219
https://doi.org/10.1107/S2414314623003784/bx4024sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623003784/bx4024Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623003784/bx4024Isup3.cml
Data collection: APEX4 (Bruker, 2021); cell
SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C11H15N2O+·C2HO4− | F(000) = 296 |
Mr = 280.28 | Dx = 1.394 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7044 (4) Å | Cell parameters from 9870 reflections |
b = 9.9485 (7) Å | θ = 2.7–26.4° |
c = 11.7687 (7) Å | µ = 0.11 mm−1 |
β = 90.321 (2)° | T = 300 K |
V = 667.87 (8) Å3 | Block, brown |
Z = 2 | 0.30 × 0.22 × 0.06 mm |
Bruker D8 Venture CMOS diffractometer | 2670 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 3.5° |
Tmin = 0.715, Tmax = 0.745 | h = −7→7 |
29160 measured reflections | k = −12→12 |
2730 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.0849P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.12 e Å−3 |
2730 reflections | Δρmin = −0.21 e Å−3 |
202 parameters | Absolute structure: Flack x determined using 1280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
5 restraints | Absolute structure parameter: −0.2 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms H1, H1A, H2A, H2B and H5 were found in a difference-Fourier map. These H atoms were refined isotropically, using DFIX restraints with N–H(indole) distances of 0.87 (1) Å and N–H(ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitrogen atoms and 1.5Ueq of the parent oxygen atoms. All other H atoms were placed in calculated positions [C—H = 0.93 Å (sp2), 0.97 Å (CH2), 0.96 Å (CH3)]. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6078 (3) | 0.04614 (17) | 0.56240 (16) | 0.0420 (4) | |
N1 | 0.4085 (4) | 0.5480 (2) | 0.39536 (18) | 0.0393 (5) | |
N2 | −0.1882 (3) | 0.1720 (2) | 0.12931 (17) | 0.0349 (4) | |
C1 | 0.2113 (5) | 0.5182 (2) | 0.3334 (2) | 0.0380 (5) | |
H1B | 0.127417 | 0.579809 | 0.289859 | 0.046* | |
C2 | 0.4845 (4) | 0.4328 (2) | 0.44898 (18) | 0.0300 (4) | |
C3 | 0.6748 (4) | 0.4108 (2) | 0.5213 (2) | 0.0354 (5) | |
H3 | 0.772969 | 0.480992 | 0.543043 | 0.043* | |
C4 | 0.7131 (4) | 0.2820 (2) | 0.55953 (19) | 0.0349 (5) | |
H4 | 0.840919 | 0.264578 | 0.606681 | 0.042* | |
C5 | 0.5629 (4) | 0.1764 (2) | 0.52871 (19) | 0.0324 (5) | |
C6 | 0.3690 (4) | 0.1982 (2) | 0.46036 (19) | 0.0312 (4) | |
H6 | 0.267239 | 0.128191 | 0.442551 | 0.037* | |
C7 | 0.3287 (4) | 0.3280 (2) | 0.41840 (18) | 0.0286 (4) | |
C8 | 0.1551 (4) | 0.3856 (2) | 0.34432 (18) | 0.0322 (5) | |
C9 | −0.0508 (4) | 0.3163 (3) | 0.29002 (19) | 0.0357 (5) | |
H9A | −0.170818 | 0.382400 | 0.272639 | 0.043* | |
H9B | −0.116215 | 0.252428 | 0.343399 | 0.043* | |
C10 | 0.0157 (4) | 0.2435 (2) | 0.18230 (19) | 0.0307 (4) | |
H10A | 0.078092 | 0.307744 | 0.128362 | 0.037* | |
H10B | 0.138068 | 0.178790 | 0.199422 | 0.037* | |
C11 | −0.3888 (4) | 0.2595 (3) | 0.1022 (2) | 0.0506 (7) | |
H11A | −0.495409 | 0.212713 | 0.052715 | 0.076* | |
H11B | −0.333959 | 0.339444 | 0.065125 | 0.076* | |
H11C | −0.468021 | 0.283580 | 0.171023 | 0.076* | |
C12 | 0.4759 (3) | 0.9157 (2) | 0.30591 (18) | 0.0279 (4) | |
C13 | 0.7233 (4) | 0.8699 (2) | 0.34523 (19) | 0.0291 (4) | |
O2 | 0.3103 (3) | 0.86964 (18) | 0.36400 (16) | 0.0392 (4) | |
O3 | 0.4636 (3) | 0.98887 (17) | 0.22060 (15) | 0.0390 (4) | |
O4 | 0.7505 (3) | 0.76747 (19) | 0.39757 (19) | 0.0493 (5) | |
O5 | 0.8902 (3) | 0.95034 (18) | 0.31279 (16) | 0.0389 (4) | |
H1A | 0.487 (5) | 0.623 (2) | 0.399 (3) | 0.054 (9)* | |
H2A | −0.142 (5) | 0.135 (3) | 0.0625 (17) | 0.046 (8)* | |
H2B | −0.234 (6) | 0.107 (2) | 0.177 (2) | 0.048 (8)* | |
H1 | 0.715 (7) | 0.040 (3) | 0.602 (3) | 0.054 (10)* | |
H5 | 1.024 (7) | 0.922 (4) | 0.330 (3) | 0.067 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0454 (10) | 0.0325 (9) | 0.0478 (10) | −0.0060 (8) | −0.0167 (8) | 0.0050 (7) |
N1 | 0.0501 (12) | 0.0251 (9) | 0.0427 (11) | −0.0081 (9) | 0.0002 (9) | −0.0014 (8) |
N2 | 0.0249 (9) | 0.0442 (11) | 0.0355 (10) | −0.0037 (8) | 0.0011 (7) | −0.0082 (9) |
C1 | 0.0485 (13) | 0.0315 (11) | 0.0341 (11) | 0.0033 (10) | −0.0005 (9) | 0.0013 (9) |
C2 | 0.0357 (11) | 0.0251 (9) | 0.0292 (10) | −0.0062 (9) | 0.0059 (8) | −0.0047 (8) |
C3 | 0.0379 (12) | 0.0342 (11) | 0.0342 (11) | −0.0142 (9) | 0.0012 (9) | −0.0113 (9) |
C4 | 0.0338 (11) | 0.0405 (12) | 0.0304 (10) | −0.0041 (9) | −0.0042 (8) | −0.0043 (9) |
C5 | 0.0354 (11) | 0.0303 (11) | 0.0314 (10) | −0.0034 (9) | −0.0001 (8) | −0.0009 (8) |
C6 | 0.0325 (11) | 0.0268 (10) | 0.0344 (11) | −0.0084 (9) | −0.0008 (8) | −0.0027 (8) |
C7 | 0.0298 (10) | 0.0276 (10) | 0.0282 (9) | −0.0035 (8) | 0.0028 (8) | −0.0054 (8) |
C8 | 0.0347 (11) | 0.0329 (11) | 0.0292 (10) | 0.0007 (9) | 0.0010 (8) | −0.0043 (9) |
C9 | 0.0301 (11) | 0.0427 (12) | 0.0344 (11) | −0.0006 (9) | 0.0001 (9) | −0.0059 (9) |
C10 | 0.0223 (9) | 0.0335 (10) | 0.0364 (11) | −0.0011 (8) | 0.0000 (8) | −0.0040 (8) |
C11 | 0.0285 (12) | 0.074 (2) | 0.0487 (15) | 0.0014 (12) | −0.0078 (10) | 0.0122 (13) |
C12 | 0.0192 (9) | 0.0255 (9) | 0.0389 (11) | −0.0006 (7) | −0.0053 (8) | −0.0010 (9) |
C13 | 0.0215 (9) | 0.0296 (10) | 0.0361 (10) | −0.0024 (8) | −0.0052 (7) | 0.0010 (9) |
O2 | 0.0187 (7) | 0.0423 (9) | 0.0567 (10) | −0.0034 (6) | −0.0011 (7) | 0.0103 (8) |
O3 | 0.0264 (7) | 0.0443 (9) | 0.0463 (9) | −0.0007 (7) | −0.0098 (6) | 0.0118 (8) |
O4 | 0.0290 (8) | 0.0397 (10) | 0.0790 (13) | −0.0060 (7) | −0.0172 (8) | 0.0244 (9) |
O5 | 0.0170 (7) | 0.0445 (10) | 0.0554 (10) | −0.0019 (6) | −0.0011 (7) | 0.0172 (8) |
O1—C5 | 1.378 (3) | C6—H6 | 0.9300 |
O1—H1 | 0.77 (4) | C6—C7 | 1.401 (3) |
N1—C1 | 1.370 (3) | C7—C8 | 1.435 (3) |
N1—C2 | 1.377 (3) | C8—C9 | 1.501 (3) |
N1—H1A | 0.873 (14) | C9—H9A | 0.9700 |
N2—C10 | 1.496 (3) | C9—H9B | 0.9700 |
N2—C11 | 1.472 (3) | C9—C10 | 1.510 (3) |
N2—H2A | 0.910 (14) | C10—H10A | 0.9700 |
N2—H2B | 0.898 (14) | C10—H10B | 0.9700 |
C1—H1B | 0.9300 | C11—H11A | 0.9600 |
C1—C8 | 1.363 (3) | C11—H11B | 0.9600 |
C2—C3 | 1.393 (3) | C11—H11C | 0.9600 |
C2—C7 | 1.415 (3) | C12—C13 | 1.551 (3) |
C3—H3 | 0.9300 | C12—O2 | 1.256 (3) |
C3—C4 | 1.375 (4) | C12—O3 | 1.242 (3) |
C4—H4 | 0.9300 | C13—O4 | 1.200 (3) |
C4—C5 | 1.402 (3) | C13—O5 | 1.303 (3) |
C5—C6 | 1.381 (3) | O5—H5 | 0.84 (4) |
C5—O1—H1 | 113 (3) | C6—C7—C8 | 133.9 (2) |
C1—N1—C2 | 108.64 (19) | C1—C8—C7 | 106.3 (2) |
C1—N1—H1A | 129 (2) | C1—C8—C9 | 126.0 (2) |
C2—N1—H1A | 122 (2) | C7—C8—C9 | 127.6 (2) |
C10—N2—H2A | 109 (2) | C8—C9—H9A | 109.2 |
C10—N2—H2B | 108 (2) | C8—C9—H9B | 109.2 |
C11—N2—C10 | 114.2 (2) | C8—C9—C10 | 112.22 (18) |
C11—N2—H2A | 106.4 (19) | H9A—C9—H9B | 107.9 |
C11—N2—H2B | 109 (2) | C10—C9—H9A | 109.2 |
H2A—N2—H2B | 110 (3) | C10—C9—H9B | 109.2 |
N1—C1—H1B | 124.7 | N2—C10—C9 | 112.32 (17) |
C8—C1—N1 | 110.6 (2) | N2—C10—H10A | 109.1 |
C8—C1—H1B | 124.7 | N2—C10—H10B | 109.1 |
N1—C2—C3 | 130.8 (2) | C9—C10—H10A | 109.1 |
N1—C2—C7 | 107.5 (2) | C9—C10—H10B | 109.1 |
C3—C2—C7 | 121.7 (2) | H10A—C10—H10B | 107.9 |
C2—C3—H3 | 121.0 | N2—C11—H11A | 109.5 |
C4—C3—C2 | 117.9 (2) | N2—C11—H11B | 109.5 |
C4—C3—H3 | 121.0 | N2—C11—H11C | 109.5 |
C3—C4—H4 | 119.4 | H11A—C11—H11B | 109.5 |
C3—C4—C5 | 121.2 (2) | H11A—C11—H11C | 109.5 |
C5—C4—H4 | 119.4 | H11B—C11—H11C | 109.5 |
O1—C5—C4 | 121.2 (2) | O2—C12—C13 | 114.59 (18) |
O1—C5—C6 | 117.5 (2) | O3—C12—C13 | 117.46 (18) |
C6—C5—C4 | 121.3 (2) | O3—C12—O2 | 127.91 (19) |
C5—C6—H6 | 120.7 | O4—C13—C12 | 121.18 (19) |
C5—C6—C7 | 118.7 (2) | O4—C13—O5 | 125.39 (19) |
C7—C6—H6 | 120.7 | O5—C13—C12 | 113.40 (18) |
C2—C7—C8 | 106.89 (19) | C13—O5—H5 | 113 (3) |
C6—C7—C2 | 119.2 (2) | ||
O1—C5—C6—C7 | −175.6 (2) | C3—C4—C5—O1 | 176.8 (2) |
N1—C1—C8—C7 | 0.1 (3) | C3—C4—C5—C6 | −1.1 (3) |
N1—C1—C8—C9 | 179.3 (2) | C4—C5—C6—C7 | 2.3 (3) |
N1—C2—C3—C4 | −177.7 (2) | C5—C6—C7—C2 | −1.2 (3) |
N1—C2—C7—C6 | 178.9 (2) | C5—C6—C7—C8 | 177.6 (2) |
N1—C2—C7—C8 | −0.2 (2) | C6—C7—C8—C1 | −178.9 (3) |
C1—N1—C2—C3 | −179.7 (2) | C6—C7—C8—C9 | 1.9 (4) |
C1—N1—C2—C7 | 0.3 (3) | C7—C2—C3—C4 | 2.3 (3) |
C1—C8—C9—C10 | 97.9 (3) | C7—C8—C9—C10 | −83.1 (3) |
C2—N1—C1—C8 | −0.2 (3) | C8—C9—C10—N2 | 178.81 (19) |
C2—C3—C4—C5 | −1.3 (3) | C11—N2—C10—C9 | 57.2 (3) |
C2—C7—C8—C1 | 0.1 (2) | O2—C12—C13—O4 | 24.3 (3) |
C2—C7—C8—C9 | −179.1 (2) | O2—C12—C13—O5 | −157.6 (2) |
C3—C2—C7—C6 | −1.1 (3) | O3—C12—C13—O4 | −153.7 (2) |
C3—C2—C7—C8 | 179.8 (2) | O3—C12—C13—O5 | 24.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.87 (1) | 2.08 (2) | 2.928 (3) | 164 (3) |
N2—H2A···O1i | 0.91 (1) | 2.30 (3) | 2.862 (3) | 120 (2) |
N2—H2A···O2ii | 0.91 (1) | 2.35 (2) | 3.150 (3) | 147 (3) |
N2—H2B···O3iii | 0.90 (1) | 2.15 (2) | 2.906 (3) | 141 (3) |
N2—H2B···O5iii | 0.90 (1) | 2.34 (2) | 3.117 (3) | 145 (3) |
O1—H1···O3iv | 0.77 (4) | 2.00 (4) | 2.768 (2) | 172 (4) |
O5—H5···O2v | 0.84 (4) | 1.76 (4) | 2.595 (2) | 177 (4) |
Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x−1/2, −y+1, z−1/2; (iii) x−1, y−1, z; (iv) x+1/2, −y+1, z+1/2; (v) x+1, y, z. |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).
References
Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270. CSD CrossRef Web of Science Google Scholar
Barker, S. A., McIlhenny, E. H. & Strassman, R. (2012). Drug Test. Anal. 4, 617–635. Web of Science CrossRef CAS PubMed Google Scholar
Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenshcaften, 59, 650-651. CrossRef CAS Web of Science Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514–517. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chu, U. B., Vorperian, S. K., Satyshur, K., Eickstaedt, K., Cozzi, N. V., Mavlyutov, T., Hajipour, A. R. & Ruoho, A. E. (2014). Biochemistry, 53, 2956–2965. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Egan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144–150. CrossRef PubMed CAS Google Scholar
Falkenberg, G. (1972). Acta Cryst. B28, 3219–3228. CSD CrossRef IUCr Journals Web of Science Google Scholar
Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022). ACS Pharmacol. Transl. Sci. 5, 1181–1196. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, N. D., Cheng, J., Delannoy-Bruno, O., Webber, D., Terrapon, N., Henrissat, B., Rodionov, D. A., Arzamasov, A. A., Osterman, A. L., Hayashi, D. K., Meynier, A., Vinoy, S., Desai, C., Marion, S., Barratt, M. J., Heath, A. C. & Gordon, J. I. (2022). Cell, 185, 2495–2509.e11. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022a). Acta Cryst. E78, 365–368. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022b). Acta Cryst. E78, 550–553. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). IUCrData, 6, x210123. Google Scholar
Powell, S. L., Gödecke, T., Nikolic, D., Chen, S.-N., Ahn, S., Dietz, B., Farnsworth, N. R., van Breemen, R. B., Lankin, D. C., Pauli, G. F. & Bolton, J. L. (2008). J. Agric. Food Chem. 56, 11718–11726. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoll, A., Troxler, F., Peyer, J. & Hofmann, A. (1955). Helv. Chim. Acta, 38, 1452–1472. CrossRef CAS Web of Science Google Scholar
Thompson, M. A., Weinshilboum, R. M., El Yazal, J., Wood, T. C. & Pang, Y.-P. (2001). J. Mol. Model. 7, 324–333. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.