organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[(4-Methyl­phen­yl)sulfon­yl]-1-phenyl­thio­pyrano[4,3-b]indole-3(5H)-thione di­chloro­methane monosolvate

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 April 2023; accepted 18 April 2023; online 12 May 2023)

Rhodium-catalyzed [2+2+2] cyclo­addition of carbon di­sulfide to o,N-dialkynyl­tosyl­anilines gives two isomeric indolo­thio­pyran­thio­nes, a violet and a red isomer. This is the first crystal structure of a red isomer, which crystallizes with one solvent mol­ecule of di­chloro­methane in the asymmetric unit, C24H17NO2S3·CH2Cl2. In the extended structure, centrosymmetric pairs of the planar annulated system are arranged in strands and solvent mol­ecules fill the space between the strands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal-catalyzed [2+2+2] cyclo­additions are an atom-economic route to aromatic rings (Reppe et al., 1948[Reppe, W., Schlichting, O., Klager, K. & Toepel, T. (1948). Justus Liebigs Ann. Chem. 560, 1-92.]; Bönnemann, 1978[Bönnemann, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 505-515.]; Vollhardt, 1984[Vollhardt, K. P. C. (1984). Angew. Chem. 96, 525-541.]). With tethered diynes, annulated systems are accessible, e.g. carbazoles and carbolines (Heller & Hapke; 2007[Heller, B. & Hapke, M. (2007). Chem. Soc. Rev. 36, 1085-1094.]; Dassonneville et al., 2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. 2011, 2836-2844.]). The first thio­pyran­thione was reported in 1973 (Wakatsuki & Yamazaki, 1973[Wakatsuki, Y. & Yamazaki, H. (1973). J. Chem. Soc. Chem. Commun. p. 280a.]), followed by rare examples of this heterocycle. The [RhCl(C8H14)2]2–BINAP [BINAP is 2,2′-bis­(di­phenyl­phosphan­yl)-1,1′-binaphth­yl] (Tanaka et al., 2006[Tanaka, K., Wada, A. & Noguchi, K. (2006). Org. Lett. 8, 907-909.]) catalyzed [2+2+2] cyclo­addition of carbon di­sulfide to o,N-di­alkynyl­tosyl­amides gives mainly the violet indolo­thio­pyran­thio­nes with a [3,4-b] annulation, in some cases accompanied by their red isomers differing in the annulation pattern (Dassonneville et al., 2023[Dassonneville, B., Hinkel, F. & Detert, H. (2023). Int. J. Org. Chem. 13, 16-39.]). While the structure of the violet indolo­thio­pyran­thio­nes has been proven exemplarily in a single-crystal XRD study (Dassonneville et al., 2010[Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.]), the structures of the red isomers were hitherto only based on spectroscopic data. This report gives the first crystal structure of a red isomer. The moderate stability of the red thio­pyran­thione allowed crystals to be grown by slow evaporation of a solution in di­chloro­methane/petroleum ether. The title compound (Fig. 1[link]) crystallizes with one mol­ecule of the solvent. Centrosymmetric pairs with a distance of 3.5556 (13) Å between the centroids of the N1/C2/C7/C8/C13 and C8–C13 π-systems are arranged in strands along the a axis (Fig. 2[link]). The solvent mol­ecules fill the volume between the strands. The heterocyclic framework is essentially planar, the maximum deviation from the mean plane of the π-system is 0.043 (2) Å at the thio­carbonyl C4 atom. With a dihedral angle of 82.44 (8)°, the phenyl ring is close to being orthogonal to the fused-ring system. The tolyl ring is also almost perpendicular [dihedral angle = 83.08 (8)°] to the plane of the three-membered ring system. The N—S—C angle of the sulfonyl group is 103.79 (9)°. The C—N bonds in the pyrrole ring are significantly different, with the N–phenyl bond [1.436 (3) Å] significantly longer than the N–thio­pyrane bond [1.405 (3) Å]. This and alternating bond lengths between the indole-N atom and the thio­carbonyl are an indication of an electronic coupling between the nitro­gen thio­carbonyl group. Other structural features of the tricyclic core are similar to those of the isomeric system with a methyl instead of phenyl substitutuent. The two isomers differ in color and in the relative position of the indole-N atom to the thiocarbonyl group. In the violet isomer, these units are in perfect conjugation whereas the meta-conjunction in the red isomer restricts electronic interaction, thus shifting the absorption maximum about 60 nm to higher energies.

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram, viewed along the a axis.

Synthesis and crystallization

The synthetic and spectroscopic details for the title compound have been reported previously (Dassonneville et al., 2023[Dassonneville, B., Hinkel, F. & Detert, H. (2023). Int. J. Org. Chem. 13, 16-39.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed at calculated positions and refined in the riding-model approximation, with aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 1
Experimental details

Crystal data
Chemical formula C24H17NO2S3·CH2Cl2
Mr 532.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 9.8368 (14), 10.2783 (15), 13.2857 (18)
α, β, γ (°) 97.689 (9), 108.305 (8), 108.103 (8)
V3) 1171.6 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.20
Crystal size (mm) 0.40 × 0.20 × 0.08
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction Numerical (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.])
Tmin, Tmax 0.24, 0.68
No. of measured, independent and observed [I > 2σ(I)] reflections 4706, 4431, 4039
Rint 0.029
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.02
No. of reflections 4431
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.42
Computer programs: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]), CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).

(I) top
Crystal data top
C24H17NO2S3·CH2Cl2Z = 2
Mr = 532.49F(000) = 548
Triclinic, P1Dx = 1.509 Mg m3
a = 9.8368 (14) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.2783 (15) ÅCell parameters from 25 reflections
c = 13.2857 (18) Åθ = 65–70°
α = 97.689 (9)°µ = 5.20 mm1
β = 108.305 (8)°T = 193 K
γ = 108.103 (8)°Plate, red
V = 1171.6 (3) Å30.40 × 0.20 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
4039 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.029
Graphite monochromatorθmax = 70.0°, θmin = 3.6°
ω/2θ scansh = 110
Absorption correction: numerical
(CORINC; Dräger & Gattow, 1971)
k = 1112
Tmin = 0.24, Tmax = 0.68l = 1516
4706 measured reflections3 standard reflections every 60 min
4431 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.8284P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4431 reflectionsΔρmax = 0.49 e Å3
299 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30399 (19)0.17913 (18)0.10488 (13)0.0247 (4)
C20.3290 (2)0.2383 (2)0.01978 (15)0.0225 (4)
C30.4616 (2)0.2740 (2)0.00101 (16)0.0257 (4)
H30.5463460.2565420.0448450.031*
C40.4787 (2)0.3357 (2)0.08731 (16)0.0260 (4)
S50.32556 (6)0.36665 (6)0.17392 (4)0.02863 (14)
C60.1753 (2)0.3113 (2)0.12982 (16)0.0233 (4)
C70.1890 (2)0.2571 (2)0.04071 (15)0.0217 (4)
C80.0808 (2)0.2101 (2)0.01257 (16)0.0232 (4)
C90.0709 (2)0.2027 (2)0.01054 (17)0.0274 (4)
H90.1217360.2324270.0712610.033*
C100.1450 (3)0.1512 (2)0.05678 (19)0.0325 (5)
H100.2482580.1445800.0416280.039*
C110.0704 (3)0.1089 (2)0.1464 (2)0.0343 (5)
H110.1233370.0754060.1921830.041*
C120.0799 (3)0.1145 (2)0.17078 (18)0.0306 (5)
H120.1303860.0852820.2319820.037*
C130.1528 (2)0.1643 (2)0.10218 (16)0.0242 (4)
S140.43707 (6)0.13882 (5)0.19537 (4)0.02610 (14)
O150.51358 (18)0.08036 (17)0.13778 (13)0.0340 (4)
O160.35700 (18)0.05745 (16)0.25269 (13)0.0348 (4)
C170.5680 (2)0.3040 (2)0.28468 (16)0.0255 (4)
C180.7232 (2)0.3448 (2)0.30206 (17)0.0292 (4)
H180.7583420.2868010.2629360.035*
C190.8268 (2)0.4717 (2)0.37757 (18)0.0300 (5)
H190.9335510.5003610.3899980.036*
C200.7767 (2)0.5579 (2)0.43548 (17)0.0283 (4)
C210.6195 (3)0.5153 (2)0.41441 (17)0.0296 (4)
H210.5835150.5742400.4518150.036*
C220.5146 (2)0.3889 (2)0.34013 (17)0.0293 (4)
H220.4077320.3604080.3271320.035*
C230.8899 (3)0.6957 (3)0.5167 (2)0.0407 (6)
H23A0.8642250.7741950.4928120.061*
H23B0.9946180.7078370.5211060.061*
H23C0.8845070.6947280.5890170.061*
S240.63754 (6)0.38421 (7)0.11578 (5)0.03617 (16)
C250.0371 (2)0.3359 (2)0.19783 (16)0.0241 (4)
C260.0170 (2)0.4602 (2)0.16453 (17)0.0296 (4)
H260.0869690.5259490.0966140.035*
C270.1056 (3)0.4880 (2)0.23081 (19)0.0314 (5)
H270.1196030.5729880.2082730.038*
C280.2076 (2)0.3919 (2)0.32976 (18)0.0314 (5)
H280.2918120.4108540.3748910.038*
C290.1870 (3)0.2687 (2)0.36283 (19)0.0347 (5)
H290.2571270.2030080.4307640.042*
C300.0641 (2)0.2401 (2)0.29718 (18)0.0307 (5)
H300.0497040.1555420.3202980.037*
C1L0.4146 (3)0.1202 (3)0.6269 (2)0.0428 (6)
H1L10.4976530.0856550.6593620.051*
H1L20.4447660.2176000.6708150.051*
Cl10.39459 (7)0.12334 (6)0.49086 (4)0.03707 (15)
Cl20.24155 (10)0.01018 (8)0.63246 (7)0.0643 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0217 (8)0.0301 (9)0.0224 (8)0.0102 (7)0.0071 (7)0.0091 (7)
C20.0227 (9)0.0237 (9)0.0193 (9)0.0093 (8)0.0057 (7)0.0043 (7)
C30.0196 (9)0.0334 (11)0.0231 (10)0.0117 (8)0.0053 (8)0.0071 (8)
C40.0223 (10)0.0309 (10)0.0223 (9)0.0099 (8)0.0068 (8)0.0031 (8)
S50.0234 (3)0.0407 (3)0.0251 (3)0.0134 (2)0.0100 (2)0.0135 (2)
C60.0208 (9)0.0260 (9)0.0217 (9)0.0094 (8)0.0066 (8)0.0039 (7)
C70.0186 (9)0.0221 (9)0.0214 (9)0.0068 (7)0.0061 (7)0.0025 (7)
C80.0215 (9)0.0231 (9)0.0227 (9)0.0069 (8)0.0083 (8)0.0025 (7)
C90.0235 (10)0.0272 (10)0.0293 (10)0.0101 (8)0.0087 (8)0.0016 (8)
C100.0233 (10)0.0323 (11)0.0392 (12)0.0074 (9)0.0148 (9)0.0009 (9)
C110.0353 (12)0.0315 (11)0.0389 (12)0.0082 (9)0.0228 (10)0.0065 (9)
C120.0332 (11)0.0310 (11)0.0290 (10)0.0106 (9)0.0146 (9)0.0088 (8)
C130.0230 (10)0.0222 (9)0.0251 (9)0.0070 (7)0.0088 (8)0.0026 (7)
S140.0270 (3)0.0274 (3)0.0231 (2)0.0119 (2)0.0059 (2)0.00851 (19)
O150.0368 (9)0.0359 (8)0.0311 (8)0.0212 (7)0.0083 (7)0.0065 (6)
O160.0364 (9)0.0340 (8)0.0311 (8)0.0104 (7)0.0087 (7)0.0158 (6)
C170.0249 (10)0.0295 (10)0.0205 (9)0.0101 (8)0.0059 (8)0.0086 (8)
C180.0282 (11)0.0358 (11)0.0283 (10)0.0171 (9)0.0108 (9)0.0105 (9)
C190.0209 (10)0.0388 (12)0.0316 (11)0.0132 (9)0.0079 (8)0.0131 (9)
C200.0268 (10)0.0320 (11)0.0246 (10)0.0107 (9)0.0063 (8)0.0114 (8)
C210.0299 (11)0.0347 (11)0.0272 (10)0.0136 (9)0.0130 (9)0.0080 (9)
C220.0228 (10)0.0359 (11)0.0294 (11)0.0109 (9)0.0107 (8)0.0074 (9)
C230.0306 (12)0.0359 (12)0.0424 (13)0.0075 (10)0.0049 (10)0.0022 (10)
S240.0232 (3)0.0523 (3)0.0324 (3)0.0119 (2)0.0123 (2)0.0099 (2)
C250.0207 (9)0.0302 (10)0.0236 (9)0.0107 (8)0.0085 (8)0.0105 (8)
C260.0259 (10)0.0337 (11)0.0267 (10)0.0128 (9)0.0067 (8)0.0040 (8)
C270.0295 (11)0.0330 (11)0.0360 (12)0.0171 (9)0.0121 (9)0.0101 (9)
C280.0203 (10)0.0405 (12)0.0357 (11)0.0133 (9)0.0093 (9)0.0157 (9)
C290.0235 (10)0.0380 (12)0.0294 (11)0.0072 (9)0.0000 (9)0.0023 (9)
C300.0262 (11)0.0293 (10)0.0321 (11)0.0108 (9)0.0059 (9)0.0051 (9)
C1L0.0435 (14)0.0464 (14)0.0294 (12)0.0120 (11)0.0072 (10)0.0091 (10)
Cl10.0385 (3)0.0410 (3)0.0320 (3)0.0176 (2)0.0107 (2)0.0099 (2)
Cl20.0688 (5)0.0593 (4)0.0611 (5)0.0072 (4)0.0338 (4)0.0209 (4)
Geometric parameters (Å, º) top
N1—C21.405 (3)C18—C191.389 (3)
N1—C131.436 (3)C18—H180.9500
N1—S141.6771 (17)C19—C201.395 (3)
C2—C31.367 (3)C19—H190.9500
C2—C71.446 (3)C20—C211.391 (3)
C3—C41.412 (3)C20—C231.506 (3)
C3—H30.9500C21—C221.382 (3)
C4—S241.665 (2)C21—H210.9500
C4—S51.732 (2)C22—H220.9500
S5—C61.721 (2)C23—H23A0.9800
C6—C71.361 (3)C23—H23B0.9800
C6—C251.494 (3)C23—H23C0.9800
C7—C81.453 (3)C25—C301.386 (3)
C8—C91.401 (3)C25—C261.388 (3)
C8—C131.402 (3)C26—C271.388 (3)
C9—C101.381 (3)C26—H260.9500
C9—H90.9500C27—C281.385 (3)
C10—C111.391 (3)C27—H270.9500
C10—H100.9500C28—C291.380 (3)
C11—C121.391 (3)C28—H280.9500
C11—H110.9500C29—C301.391 (3)
C12—C131.383 (3)C29—H290.9500
C12—H120.9500C30—H300.9500
S14—O151.4257 (16)C1L—Cl21.757 (3)
S14—O161.4274 (16)C1L—Cl11.761 (2)
S14—C171.758 (2)C1L—H1L10.9900
C17—C181.384 (3)C1L—H1L20.9900
C17—C221.391 (3)
C2—N1—C13109.41 (16)C17—C18—C19119.0 (2)
C2—N1—S14123.30 (14)C17—C18—H18120.5
C13—N1—S14127.27 (14)C19—C18—H18120.5
C3—C2—N1126.56 (18)C18—C19—C20121.1 (2)
C3—C2—C7126.24 (18)C18—C19—H19119.5
N1—C2—C7107.19 (17)C20—C19—H19119.5
C2—C3—C4123.21 (18)C21—C20—C19118.5 (2)
C2—C3—H3118.4C21—C20—C23120.8 (2)
C4—C3—H3118.4C19—C20—C23120.6 (2)
C3—C4—S24125.67 (16)C22—C21—C20121.3 (2)
C3—C4—S5119.70 (15)C22—C21—H21119.4
S24—C4—S5114.63 (12)C20—C21—H21119.4
C6—S5—C4107.18 (10)C21—C22—C17119.0 (2)
C7—C6—C25126.27 (18)C21—C22—H22120.5
C7—C6—S5121.92 (15)C17—C22—H22120.5
C25—C6—S5111.76 (14)C20—C23—H23A109.5
C6—C7—C2121.71 (18)C20—C23—H23B109.5
C6—C7—C8130.91 (18)H23A—C23—H23B109.5
C2—C7—C8107.38 (17)C20—C23—H23C109.5
C9—C8—C13119.53 (19)H23A—C23—H23C109.5
C9—C8—C7132.47 (19)H23B—C23—H23C109.5
C13—C8—C7108.00 (17)C30—C25—C26120.25 (19)
C10—C9—C8118.6 (2)C30—C25—C6120.14 (18)
C10—C9—H9120.7C26—C25—C6119.45 (18)
C8—C9—H9120.7C27—C26—C25119.8 (2)
C9—C10—C11120.9 (2)C27—C26—H26120.1
C9—C10—H10119.6C25—C26—H26120.1
C11—C10—H10119.6C28—C27—C26120.1 (2)
C10—C11—C12121.6 (2)C28—C27—H27120.0
C10—C11—H11119.2C26—C27—H27120.0
C12—C11—H11119.2C29—C28—C27120.0 (2)
C13—C12—C11117.3 (2)C29—C28—H28120.0
C13—C12—H12121.4C27—C28—H28120.0
C11—C12—H12121.4C28—C29—C30120.3 (2)
C12—C13—C8122.10 (19)C28—C29—H29119.8
C12—C13—N1129.92 (19)C30—C29—H29119.8
C8—C13—N1107.98 (17)C25—C30—C29119.5 (2)
O15—S14—O16120.02 (10)C25—C30—H30120.2
O15—S14—N1108.03 (9)C29—C30—H30120.2
O16—S14—N1105.28 (9)Cl2—C1L—Cl1111.26 (14)
O15—S14—C17109.01 (10)Cl2—C1L—H1L1109.4
O16—S14—C17109.45 (10)Cl1—C1L—H1L1109.4
N1—S14—C17103.79 (9)Cl2—C1L—H1L2109.4
C18—C17—C22121.13 (19)Cl1—C1L—H1L2109.4
C18—C17—S14119.48 (16)H1L1—C1L—H1L2108.0
C22—C17—S14119.34 (16)
C13—N1—C2—C3176.94 (19)C2—N1—C13—C82.0 (2)
S14—N1—C2—C31.4 (3)S14—N1—C13—C8179.75 (14)
C13—N1—C2—C72.0 (2)C2—N1—S14—O1539.63 (18)
S14—N1—C2—C7179.68 (13)C13—N1—S14—O15142.36 (17)
N1—C2—C3—C4178.83 (18)C2—N1—S14—O16169.00 (16)
C7—C2—C3—C40.1 (3)C13—N1—S14—O1612.99 (19)
C2—C3—C4—S24178.86 (16)C2—N1—S14—C1776.01 (17)
C2—C3—C4—S51.0 (3)C13—N1—S14—C17102.00 (18)
C3—C4—S5—C60.5 (2)O15—S14—C17—C1810.2 (2)
S24—C4—S5—C6179.37 (11)O16—S14—C17—C18122.83 (17)
C4—S5—C6—C71.1 (2)N1—S14—C17—C18125.19 (17)
C4—S5—C6—C25178.86 (14)O15—S14—C17—C22172.41 (16)
C25—C6—C7—C2179.66 (18)O16—S14—C17—C2254.52 (19)
S5—C6—C7—C22.2 (3)N1—S14—C17—C2257.47 (18)
C25—C6—C7—C80.2 (3)C22—C17—C18—C191.0 (3)
S5—C6—C7—C8177.20 (16)S14—C17—C18—C19176.29 (16)
C3—C2—C7—C61.9 (3)C17—C18—C19—C200.1 (3)
N1—C2—C7—C6179.21 (17)C18—C19—C20—C211.3 (3)
C3—C2—C7—C8177.69 (19)C18—C19—C20—C23179.6 (2)
N1—C2—C7—C81.2 (2)C19—C20—C21—C221.7 (3)
C6—C7—C8—C91.2 (4)C23—C20—C21—C22179.9 (2)
C2—C7—C8—C9179.3 (2)C20—C21—C22—C170.8 (3)
C6—C7—C8—C13179.5 (2)C18—C17—C22—C210.6 (3)
C2—C7—C8—C130.0 (2)S14—C17—C22—C21176.71 (16)
C13—C8—C9—C100.5 (3)C7—C6—C25—C30100.3 (3)
C7—C8—C9—C10179.7 (2)S5—C6—C25—C3082.0 (2)
C8—C9—C10—C110.7 (3)C7—C6—C25—C2684.2 (3)
C9—C10—C11—C121.1 (3)S5—C6—C25—C2693.4 (2)
C10—C11—C12—C130.2 (3)C30—C25—C26—C270.4 (3)
C11—C12—C13—C81.1 (3)C6—C25—C26—C27175.86 (19)
C11—C12—C13—N1178.4 (2)C25—C26—C27—C280.1 (3)
C9—C8—C13—C121.4 (3)C26—C27—C28—C290.3 (3)
C7—C8—C13—C12179.21 (18)C27—C28—C29—C300.0 (3)
C9—C8—C13—N1178.17 (17)C26—C25—C30—C290.7 (3)
C7—C8—C13—N11.2 (2)C6—C25—C30—C29176.1 (2)
C2—N1—C13—C12178.4 (2)C28—C29—C30—C250.4 (3)
S14—N1—C13—C120.2 (3)
 

References

First citationBönnemann, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 505–515.  Google Scholar
First citationDassonneville, B., Hinkel, F. & Detert, H. (2023). Int. J. Org. Chem. 13, 16–39.  CrossRef CAS Google Scholar
First citationDassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. 2011, 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHeller, B. & Hapke, M. (2007). Chem. Soc. Rev. 36, 1085–1094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReppe, W., Schlichting, O., Klager, K. & Toepel, T. (1948). Justus Liebigs Ann. Chem. 560, 1–92.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, K., Wada, A. & Noguchi, K. (2006). Org. Lett. 8, 907–909.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVollhardt, K. P. C. (1984). Angew. Chem. 96, 525–541.  CrossRef CAS Google Scholar
First citationWakatsuki, Y. & Yamazaki, H. (1973). J. Chem. Soc. Chem. Commun. p. 280a.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146