organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Benzyl-3-[(4-meth­­oxy­phen­yl)imino]­indolin-2-one

crossmark logo

aIndustrial Chemistry, Bowen University, Iwo, Osun State, Nigeria, bDepartment of Chemistry, Federal College of Education (Special), Oyo, Oyo State, Nigeria, and cDepartment of Chemistry, Texas A & M University, College Station, Texas, USA
*Correspondence e-mail: adebomi.ikotun@bowen.edu.ng

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 13 April 2023; accepted 13 May 2023; online 19 May 2023)

The title compound, C22H18N2O2, is a Schiff base obtained by condensing p-arnisidine (4-meth­oxy­aniline) with N-benzyl­isatin (1-benzyl-1H-indole-2,3-dione), which crystallizes in the triclinic P[\overline{1}] space group. The benzyl and phenyl rings subtend dihedral angles of 76.08 (7) and 60.70 (6)°, respectively, with the isatin group. The imino C=N double bond exists in an E conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin (1H, indole-2,3-dione), an indole, and its analogs are an important class of heterocyclic compounds due to the presence of the indole ring structure, which is common to many pharmaceutical agents (Visagaperumal et al., 2018[Visagaperumal, S., Ezekwem, J. E., Munji, H. & Chandy, V. (2018). Pharma Tutor. 6, 38-47.]). Isatin and its derivatives have served as starting materials for several organic, metal–organic and organometallic syntheses (Garima & Sumitra 2014[Garima, M. & Sumitra, N. (2014). Med. Chem. 4, 417-427.]; Ikotun et al., 2015[Ikotun, A. A., Coogan, M. P., Owoseni, A. A., Bhuvanesh, N. & Egharevba, G. O. (2015). Acta Cryst. E71, m106-m107.], 2019[Ikotun, A. A., Coogan, M. P., Owoseni, A. A. & Egharevba, G. O. (2019). J. Chem Soc. Nigeria, 44, 948-958.]). These compounds attract great inter­est because of their potent pharmacological and biological activities (Guo, 2019[Guo, H. (2019). Eur. J. Med. Chem. 164, 678-688.]; Czeleń et al., 2022[Czeleń, P., Skotnicka, A. & Szefler, B. (2022). Int. J. Mol. Sci. 23, 8046.]; Ikotun et al., 2022[Ikotun, A. A., Babajide, E. E., Omolekan, T. O. & Ajaelu, C. J. (2022). Trop. J. Nat. Prod. Res., 6, 1723-1726.]). N-Benzyl­isatin is a bio­logically potent derivative of isatin that has been used to prepare many new biologically potent Schiff bases and complexes suitable for medicinal purposes (Shakir & Al-Mudhafar, 2020[Shakir, T. H. & Al-Mudhafar, M. M. J. (2020). Sys. Rev. Pharm. 11, 1950-1955.]; Banerjee, 2021[Banerjee, S. (2021). Int. J. Biol. Macromol. 187, 341-349.]). The crystal structure of N-benzyl­isatin has been determined (Akkurt et al., 2006[Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575-o1577.]; Schutte et al., 2012[Schutte, M., Visser, H. G., Roodt, A. & Braband, H. (2012). Acta Cryst. E68, o777.]). We have previously reported the synthesis and crystal structure of the Schiff base prepared from N-benzyl­isatin and p-toluidine (Ikotun et al., 2012[Ikotun, A. A., Adelani, P. O. & Egharevba, G. O. (2012). Acta Cryst. E68, o2098.]). The crystal structure of 1-benzyl-3-[(4-meth­oxy­phen­yl)imino]­indolin-2-one (Fig. 1[link]) is hereby reported.

[Figure 1]
Figure 1
The mol­ecular structure of 1-benzyl-3-[(4-meth­oxy­phen­yl)imino]­indolin-2-one showing the atomic labelling; displacement ellipsoids are drawn at the 50% probability level.

In the title compound, the asymmetric unit of compound contains one independent mol­ecule crystallizing in the triclinic space group P[\overline{1}]. The crystal disintegrated at 300 K and the X-ray structure was acquired at room temperature. The benzyl and phenyl rings subtend dihedral angles of 76.08 (7) and 60.70 (6)°, respectively, with the isatin group.

Synthesis and crystallization

N-benzyl­isatin was prepared according to a literature method (Ikotun et al., 2012[Ikotun, A. A., Adelani, P. O. & Egharevba, G. O. (2012). Acta Cryst. E68, o2098.]). N-Benzyl­isatin (1.000 g, 4.2194 mmol) was dissolved in 20 ml of methanol. 4-Meth­oxy­laniline (0.5196 g, 4.2194 mmol) was also dissolved in 10 ml of methanol. The two solutions were mixed together while stirring at room temperature with the addition of 6 drops of glacial acetic acid for 8 h. The precipitate was filtered under vacuum, dried and the weight was determined to be 1.0566 g (73%). X-ray-suitable crystals were obtained by recrystallization from di­methyl­formamide solution after about two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C22H18N2O2
Mr 342.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 300
a, b, c (Å) 8.8872 (19), 8.8922 (19), 11.772 (3)
α, β, γ (°) 94.374 (6), 110.139 (6), 93.747 (6)
V3) 866.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.55 × 0.53 × 0.44
 
Data collection
Diffractometer Bruker APEXII DUO (PHOTON 100)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.358, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 24116, 4003, 3219
Rint 0.049
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 1.03
No. of reflections 4003
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and PLATON (Spek, 2020)..

1-Benzyl-3-[(4-methoxyphenyl)imino]indolin-2-one top
Crystal data top
C22H18N2O2Z = 2
Mr = 342.38F(000) = 360
Triclinic, P1Dx = 1.312 Mg m3
a = 8.8872 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8922 (19) ÅCell parameters from 9907 reflections
c = 11.772 (3) Åθ = 2.5–27.5°
α = 94.374 (6)°µ = 0.09 mm1
β = 110.139 (6)°T = 300 K
γ = 93.747 (6)°Block, orange
V = 866.7 (3) Å30.55 × 0.53 × 0.44 mm
Data collection top
Bruker APEXII DUO (PHOTON 100)
diffractometer
3219 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 1.9°
Tmin = 0.358, Tmax = 0.431h = 1111
24116 measured reflectionsk = 1111
4003 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2626P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.28 e Å3
4003 reflectionsΔρmin = 0.18 e Å3
237 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.184 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Systematic reflection conditions and statistical tests of the data suggested the space group P-1. A solution was obtained readily using XT/XS in APEX2. Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. Absence of additional symmetry and voids were confirmed using PLATON. The structure was refined (weighted least squares refinement on F2) to convergence (Sheldrick, 2008, 2015; Dolomanov, et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32465 (13)0.09548 (11)0.17890 (9)0.0467 (3)
O20.15900 (14)0.09727 (14)0.84290 (10)0.0546 (3)
N10.33951 (14)0.35590 (13)0.20515 (10)0.0367 (3)
N20.28029 (13)0.11348 (12)0.40997 (10)0.0340 (3)
C10.32025 (15)0.21291 (15)0.23706 (12)0.0336 (3)
C20.28984 (14)0.23196 (14)0.35726 (11)0.0290 (3)
C30.29136 (14)0.39654 (14)0.38541 (11)0.0295 (3)
C40.32480 (15)0.46621 (15)0.29236 (12)0.0324 (3)
C50.34166 (17)0.62236 (16)0.29431 (14)0.0429 (3)
H50.3631990.6677680.2322340.051*
C60.32539 (17)0.70910 (16)0.39198 (15)0.0455 (4)
H60.3353110.8141880.3945950.055*
C70.29483 (17)0.64298 (16)0.48527 (14)0.0429 (3)
H70.2860150.7036640.5501770.051*
C80.27719 (16)0.48616 (15)0.48251 (12)0.0355 (3)
H80.2560980.4415930.5450950.043*
C90.37347 (17)0.38347 (18)0.09473 (13)0.0426 (3)
H9A0.3526460.4863520.0767060.051*
H9B0.3008100.3152340.0270330.051*
C100.54526 (17)0.36126 (16)0.10615 (12)0.0364 (3)
C110.5760 (2)0.24368 (17)0.03577 (14)0.0458 (4)
H110.4905570.1788630.0179360.055*
C120.7322 (2)0.2210 (2)0.04411 (17)0.0576 (4)
H120.7513280.1422650.0042340.069*
C130.8587 (2)0.3160 (2)0.12445 (18)0.0634 (5)
H130.9637850.3010250.1308760.076*
C140.8301 (2)0.4332 (2)0.19530 (17)0.0612 (5)
H140.9160460.4963490.2501380.073*
C150.67396 (19)0.45734 (19)0.18531 (14)0.0484 (4)
H150.6552760.5383420.2318650.058*
C160.24553 (15)0.11827 (14)0.51921 (11)0.0311 (3)
C170.10870 (16)0.17623 (15)0.52979 (12)0.0360 (3)
H170.0393920.2200290.4650810.043*
C180.07458 (16)0.16936 (16)0.63595 (13)0.0372 (3)
H180.0176700.2075420.6419440.045*
C190.17839 (17)0.10545 (15)0.73296 (12)0.0370 (3)
C200.31359 (17)0.04389 (16)0.72204 (13)0.0403 (3)
H200.3826940.0000430.7867620.048*
C210.34513 (16)0.04796 (15)0.61558 (12)0.0360 (3)
H210.4334570.0035370.6078300.043*
C220.0133 (2)0.1394 (2)0.85474 (16)0.0595 (5)
H22A0.0764030.0804580.7935970.089*
H22B0.0052430.2450810.8447100.089*
H22C0.0126740.1212640.9339230.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0621 (7)0.0413 (6)0.0439 (6)0.0032 (5)0.0297 (5)0.0034 (5)
O20.0610 (7)0.0759 (8)0.0391 (6)0.0185 (6)0.0293 (5)0.0136 (5)
N10.0435 (6)0.0387 (6)0.0353 (6)0.0060 (5)0.0217 (5)0.0099 (5)
N20.0413 (6)0.0296 (6)0.0364 (6)0.0042 (5)0.0197 (5)0.0051 (4)
C10.0334 (7)0.0367 (7)0.0335 (7)0.0044 (5)0.0151 (5)0.0045 (5)
C20.0283 (6)0.0302 (6)0.0306 (6)0.0040 (5)0.0125 (5)0.0035 (5)
C30.0267 (6)0.0293 (6)0.0335 (6)0.0047 (5)0.0109 (5)0.0060 (5)
C40.0285 (6)0.0342 (7)0.0368 (7)0.0063 (5)0.0130 (5)0.0084 (5)
C50.0419 (8)0.0374 (8)0.0553 (9)0.0070 (6)0.0212 (7)0.0185 (7)
C60.0401 (8)0.0275 (7)0.0694 (10)0.0055 (6)0.0193 (7)0.0067 (7)
C70.0409 (8)0.0341 (7)0.0533 (9)0.0053 (6)0.0175 (7)0.0032 (6)
C80.0370 (7)0.0341 (7)0.0374 (7)0.0035 (5)0.0159 (6)0.0017 (5)
C90.0452 (8)0.0564 (9)0.0318 (7)0.0070 (7)0.0178 (6)0.0154 (6)
C100.0448 (7)0.0424 (8)0.0281 (6)0.0042 (6)0.0188 (6)0.0116 (5)
C110.0556 (9)0.0420 (8)0.0424 (8)0.0003 (7)0.0214 (7)0.0037 (6)
C120.0699 (11)0.0520 (10)0.0632 (11)0.0179 (8)0.0368 (9)0.0071 (8)
C130.0488 (9)0.0777 (13)0.0722 (12)0.0166 (9)0.0287 (9)0.0157 (10)
C140.0473 (9)0.0743 (12)0.0554 (10)0.0031 (8)0.0124 (8)0.0016 (9)
C150.0524 (9)0.0552 (9)0.0375 (8)0.0015 (7)0.0179 (7)0.0024 (7)
C160.0382 (7)0.0240 (6)0.0341 (6)0.0004 (5)0.0172 (5)0.0031 (5)
C170.0364 (7)0.0363 (7)0.0376 (7)0.0058 (5)0.0142 (6)0.0096 (6)
C180.0329 (7)0.0392 (7)0.0442 (8)0.0048 (5)0.0193 (6)0.0043 (6)
C190.0429 (7)0.0380 (7)0.0336 (7)0.0012 (6)0.0183 (6)0.0027 (5)
C200.0449 (8)0.0434 (8)0.0349 (7)0.0121 (6)0.0143 (6)0.0099 (6)
C210.0391 (7)0.0323 (7)0.0415 (7)0.0082 (5)0.0191 (6)0.0055 (6)
C220.0575 (10)0.0811 (13)0.0523 (10)0.0020 (9)0.0361 (8)0.0053 (9)
Geometric parameters (Å, º) top
O1—C11.2147 (16)C10—C151.387 (2)
O2—C191.3697 (16)C11—H110.9300
O2—C221.4197 (19)C11—C121.387 (2)
N1—C11.3695 (17)C12—H120.9300
N1—C41.4102 (17)C12—C131.376 (3)
N1—C91.4663 (17)C13—H130.9300
N2—C21.2753 (16)C13—C141.376 (3)
N2—C161.4205 (16)C14—H140.9300
C1—C21.5286 (17)C14—C151.384 (2)
C2—C31.4739 (17)C15—H150.9300
C3—C41.4056 (18)C16—C171.3915 (18)
C3—C81.3895 (18)C16—C211.3966 (19)
C4—C51.3843 (19)C17—H170.9300
C5—H50.9300C17—C181.3884 (19)
C5—C61.390 (2)C18—H180.9300
C6—H60.9300C18—C191.386 (2)
C6—C71.381 (2)C19—C201.3934 (19)
C7—H70.9300C20—H200.9300
C7—C81.3897 (19)C20—C211.3776 (19)
C8—H80.9300C21—H210.9300
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C9—C101.513 (2)C22—H22C0.9600
C10—C111.384 (2)
C19—O2—C22118.34 (12)C10—C11—C12121.00 (15)
C1—N1—C4110.94 (10)C12—C11—H11119.5
C1—N1—C9122.28 (12)C11—C12—H12120.2
C4—N1—C9126.77 (12)C13—C12—C11119.51 (16)
C2—N2—C16122.11 (11)C13—C12—H12120.2
O1—C1—N1125.81 (12)C12—C13—H13119.9
O1—C1—C2127.73 (12)C14—C13—C12120.16 (16)
N1—C1—C2106.44 (11)C14—C13—H13119.9
N2—C2—C1117.81 (11)C13—C14—H14119.9
N2—C2—C3136.54 (12)C13—C14—C15120.28 (16)
C3—C2—C1105.47 (10)C15—C14—H14119.9
C4—C3—C2106.74 (11)C10—C15—H15119.9
C8—C3—C2133.75 (12)C14—C15—C10120.27 (15)
C8—C3—C4119.38 (12)C14—C15—H15119.9
C3—C4—N1110.38 (11)C17—C16—N2122.85 (12)
C5—C4—N1128.15 (12)C17—C16—C21118.87 (12)
C5—C4—C3121.46 (12)C21—C16—N2117.96 (11)
C4—C5—H5121.1C16—C17—H17119.7
C4—C5—C6117.89 (13)C18—C17—C16120.69 (12)
C6—C5—H5121.1C18—C17—H17119.7
C5—C6—H6119.2C17—C18—H18120.1
C7—C6—C5121.59 (13)C19—C18—C17119.80 (12)
C7—C6—H6119.2C19—C18—H18120.1
C6—C7—H7119.9O2—C19—C18124.58 (12)
C6—C7—C8120.26 (13)O2—C19—C20115.57 (12)
C8—C7—H7119.9C18—C19—C20119.85 (12)
C3—C8—C7119.41 (13)C19—C20—H20119.9
C3—C8—H8120.3C21—C20—C19120.15 (13)
C7—C8—H8120.3C21—C20—H20119.9
N1—C9—H9A109.0C16—C21—H21119.7
N1—C9—H9B109.0C20—C21—C16120.53 (12)
N1—C9—C10112.92 (11)C20—C21—H21119.7
H9A—C9—H9B107.8O2—C22—H22A109.5
C10—C9—H9A109.0O2—C22—H22B109.5
C10—C9—H9B109.0O2—C22—H22C109.5
C11—C10—C9119.80 (13)H22A—C22—H22B109.5
C11—C10—C15118.76 (14)H22A—C22—H22C109.5
C15—C10—C9121.44 (13)H22B—C22—H22C109.5
C10—C11—H11119.5
O1—C1—C2—N26.2 (2)C5—C6—C7—C80.9 (2)
O1—C1—C2—C3177.95 (13)C6—C7—C8—C30.3 (2)
O2—C19—C20—C21179.24 (13)C8—C3—C4—N1178.07 (11)
N1—C1—C2—N2174.78 (11)C8—C3—C4—C50.95 (19)
N1—C1—C2—C31.07 (13)C9—N1—C1—O11.9 (2)
N1—C4—C5—C6178.48 (13)C9—N1—C1—C2179.07 (11)
N1—C9—C10—C11113.49 (15)C9—N1—C4—C3179.82 (12)
N1—C9—C10—C1567.07 (18)C9—N1—C4—C51.2 (2)
N2—C2—C3—C4172.91 (14)C9—C10—C11—C12179.78 (14)
N2—C2—C3—C82.5 (2)C9—C10—C15—C14179.05 (14)
N2—C16—C17—C18175.73 (12)C10—C11—C12—C130.6 (3)
N2—C16—C21—C20177.48 (12)C11—C10—C15—C141.5 (2)
C1—N1—C4—C31.19 (15)C11—C12—C13—C140.4 (3)
C1—N1—C4—C5177.75 (13)C12—C13—C14—C150.7 (3)
C1—N1—C9—C1074.72 (17)C13—C14—C15—C101.7 (3)
C1—C2—C3—C41.74 (13)C15—C10—C11—C120.3 (2)
C1—C2—C3—C8177.20 (13)C16—N2—C2—C1177.27 (11)
C2—N2—C16—C1756.00 (18)C16—N2—C2—C38.6 (2)
C2—N2—C16—C21130.53 (13)C16—C17—C18—C190.6 (2)
C2—C3—C4—N11.84 (14)C17—C16—C21—C203.7 (2)
C2—C3—C4—C5177.19 (12)C17—C18—C19—O2177.83 (13)
C2—C3—C8—C7175.61 (13)C17—C18—C19—C202.1 (2)
C3—C4—C5—C60.4 (2)C18—C19—C20—C210.7 (2)
C4—N1—C1—O1179.06 (13)C19—C20—C21—C162.3 (2)
C4—N1—C1—C20.02 (14)C21—C16—C17—C182.3 (2)
C4—N1—C9—C10104.17 (15)C22—O2—C19—C188.2 (2)
C4—C3—C8—C70.60 (19)C22—O2—C19—C20171.81 (14)
C4—C5—C6—C70.6 (2)
 

Acknowledgements

The US National Science Foundation (CHE-1900549) is thanked for supporting the X-ray analysis carried out at Texas A & M University, College Station, Texas, USA.

Funding information

The authors thank the Tertiary Education Trust Fund (TETFund), Nigeria for sponsoring this work.

References

First citationAkkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575–o1577.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanerjee, S. (2021). Int. J. Biol. Macromol. 187, 341–349.  CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzeleń, P., Skotnicka, A. & Szefler, B. (2022). Int. J. Mol. Sci. 23, 8046.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarima, M. & Sumitra, N. (2014). Med. Chem. 4, 417–427.  Google Scholar
First citationGuo, H. (2019). Eur. J. Med. Chem. 164, 678–688.  CrossRef CAS PubMed Google Scholar
First citationIkotun, A. A., Adelani, P. O. & Egharevba, G. O. (2012). Acta Cryst. E68, o2098.  CSD CrossRef IUCr Journals Google Scholar
First citationIkotun, A. A., Babajide, E. E., Omolekan, T. O. & Ajaelu, C. J. (2022). Trop. J. Nat. Prod. Res., 6, 1723-1726.  CAS Google Scholar
First citationIkotun, A. A., Coogan, M. P., Owoseni, A. A., Bhuvanesh, N. & Egharevba, G. O. (2015). Acta Cryst. E71, m106–m107.  CSD CrossRef IUCr Journals Google Scholar
First citationIkotun, A. A., Coogan, M. P., Owoseni, A. A. & Egharevba, G. O. (2019). J. Chem Soc. Nigeria, 44, 948–958.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G., Roodt, A. & Braband, H. (2012). Acta Cryst. E68, o777.  CSD CrossRef IUCr Journals Google Scholar
First citationShakir, T. H. & Al-Mudhafar, M. M. J. (2020). Sys. Rev. Pharm. 11, 1950–1955.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVisagaperumal, S., Ezekwem, J. E., Munji, H. & Chandy, V. (2018). Pharma Tutor. 6, 38-47.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146