metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Synthesis and crystal structure of a PdII complex of ortho-xylylenebis(pyridyl­triazole)

crossmark logo

aDepartment of Chemistry and Physical Sciences, Nicholls State University, 906 E. 1st St., Thibodaux, Louisiana 70301, USA, and bDepartment of Chemistry, Louisiana State University, Choppin Hall, Baton Rouge, Louisiana 70803, USA
*Correspondence e-mail: uttam.pokharel@nicholls.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 April 2023; accepted 20 April 2023; online 25 April 2023)

A tetra­dentate ligand, namely, ortho-xylylenebis(pyridyl­triazole), o-xpt, was synthesized using the `click' method and complexed with Pd(BF4)2. In the title com­plex, bis­{μ-1,1′-(o-xylylene)bis­[4-(pyridin-2-yl)triazole]-κN3:N3′}dipalladi­um(II) tetra­kis­(tetrafluoridoborate)–di­methyl­formamide–diethyl ether (1/2/1), as the BF4 salt, and including di­methyl­formamide and diethyl ether solvent mol­ecules, with stoichiometry [Pd2(C22H18N8)2](BF4)4·2C3H7NO·C4H10O, the Pd complex and the disordered diethyl ether mol­ecule lie on inversion centers. The ligand coordinates to the PdII centers with square-planar geometry, forming a dimeric macrocycle. The Pd⋯Pd separation in the complex [Pd2(o-xpt)2]4+ cation is 3.6184 (4) Å. In the crystal, the complex mol­ecules are stacked along the b axis, with ππ inter­actions between the pyridyl­triazole ligands of two mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The self-assembly of polydentate ligands with transition-metal ions to create functional metal–organic supra­molecules has been of great inter­est in recent years. In particular, the complexation of 2-pyridyl-1,2,3-triazole chelating pockets with transition-metal ions has intensified due to the ease of synthesis of the ligands through the copper-catalyzed azide–alkyne cyclo­addition (CuAAC) reaction (Crowley & McMorran, 2012[Crowley, J. D. & McMorran, D. A. (2012). Click Triazoles, edited by J. Košmrlj, pp. 31-83. Berlin, Heidelberg: Springer.]). We and others have studied the complexation of ortho-, meta-, and para-xylylene-bridged pyridyl­triazole tetra­dentate ligand with CuII (Pokharel et al., 2013[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2013). Dalton Trans. 42, 14064-14067.], 2014[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883.]), NiII (Pokharel et al., 2020b[Pokharel, U. R., Theriot, J. C., Fronczek, F. R. & Maverick, A. W. (2020b). Polyhedron, 191, 114805.]), FeII (Vellas et al., 2013[Vellas, S. K., Lewis, J. E. M., Shankar, M., Sagatova, A., Tyndall, J. D. A., Monk, B. C., Fitchett, C. M., Hanton, L. R. & Crowley, J. D. (2013). Molecules, 18, 6383-6407.]), AgI (Gower & Crowley, 2010[Gower, M. L. & Crowley, J. D. (2010). Dalton Trans. 39, 2371-2378.]), and CuI (Zhao et al., 2013[Zhao, H., Li, X., Wang, J., Li, L. & Wang, R. (2013). ChemPlusChem 78, 1491-1502.]). We have recently studied the crystal structure of 1,1-bis­(pyridyl­triazoylmeth­yl)ferrocene and its complexation with CuI (Pokharel et al., 2020a[Pokharel, U. R., Naquin, A. P., Brochon, C. P. & Fronczek, F. R. (2020a). Acta Cryst. E76, 1582-1586.]). As an extension of this work, we were also inter­ested in studying the complexation of ortho-xy­lyl­ene­bis(pyridyl­triazole), o-xpt, with PdII. Herein, we report the synthesis and crystal structure of the title compound.

The structure of the title compound consists of the cationic PdII complex [Pd2(o-xpt)2]4+ lying on an inversion center, two BF4 anions in general positions, a di­methyl­formamide solvent mol­ecule in a general position and a diethyl ether solvent mol­ecule disordered about an inversion center (Fig. 1[link]). In the complex, two PdII cations are coordinated by two tetra­dentate o-xpt ligands, giving a dimeric macrocycle. The two pyridyl­triazole units are coordinated to each metal center in a trans fashion. The PdII centers are tetra­coordinated in a square-planar geometry defined by four (N1, N2, N7 and N8) atoms of two pyridyl­triazole moieties. The N—Pd—N chelating angles are N1—Pd1—N2 = 79.46 (8)° and N7—Pd1—N8 = 79.75 (8)°. The N(py)—Pd bonds [py is pyridine; average 2.055 (2) Å] are slightly longer than N(trz)—Pd bonds [trz is triazole; average 1.995 (2) Å], suggesting the triazolium N atom coordinates more strongly to the Pd center than the pyridyl N atom of the ligand. These values are typical for the reported mononuclear PdII complex of pyridyl­triazole ligands (Kilpin et al., 2011[Kilpin, K. J., Gavey, E. L., McAdam, C. J., Anderson, C. B., Lind, S. J., Keep, C. C., Gordon, K. C. & Crowley, J. D. (2011). Inorg. Chem. 50, 6334-6346.]). The Pd⋯Pd separation in the complex is 3.6184 (4) Å. Two phenyl­ene moieties in the complex are in an antiparallel orientation, with an inter­planar separation of 7.802 Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level, and H atoms and disordered solvent mol­ecules have been omitted for clarity.

In the crystal packing, the pyridyl­triazole units between two adjacent mol­ecules are associated in a head-to-tail arrangement (the electron-rich pyridyl group of one molecule stacks over the electron-deficient triazole group of the other molecule) with an average interplanar distance of 3.364 Å, indicating ππ interaction between the mol­ecules; this is shown along the b axis in Fig. 2[link].

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Disordered diethyl ether mol­ecules have been omitted for clarity.

Synthesis and crystallization

To a stirred solution of [Pd(CH3CN)4]BF4 (0.112 mg, 0.253 mol) in aceto­nitrile (5 ml), o-xpt (0.100 g, 0.253 mmol) in aceto­nitrile (5 ml) was added dropwise. The solution was stirred for 1 h at room temperature. The volatiles were removed in vacuo. The residue was washed with di­chloro­methane (2 ml), followed by methanol (2 ml), and dried under vacuum to give [Pd2(o-xpt)2](BF4)4 (0.126 mg, 74%) as a pale-yellow solid. Crystals suitable for X-ray analysis were obtained by slow vapor diffusion of diethyl ether into a di­methyl­formamide (DMF) solution of the complex at room tem­per­ature. Our attempts to obtain a clean 1H NMR spectrum in DMSO-d6 were not successful, possibly due to the labile nature of the complex in solution. High resolution ESI–MS analysis showed a monocationic signal at m/z 1255.1478 {calculated 1255.1540 for [Pd2(o-xpt)2(BF4)4]+}.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were located in difference maps and thereafter treated as riding in geometrically idealized positions, with C—H = 0.95 Å for Csp2, 0.98 Å for methyl, and 0.99 Å for CH2. Uiso(H) values were assigned as 1.2Ueq for the attached atom (1.5 for meth­yl). A torsional parameter was refined for each methyl group, except for those of the diethyl ether mol­ecule, which were staggered with respect to CH2. The diethyl ether solvent mol­ecule is disordered about an inversion center with two half-populated sites. A number of distance and displacement parameter restraints were necessary to model the disorder.

Table 1
Experimental details

Crystal data
Chemical formula [Pd2(C22H18N8)2](BF4)4·2C3H7NO·C4H10O
Mr 1569.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 8.3546 (4), 12.4468 (5), 15.4504 (6)
α, β, γ (°) 85.540 (2), 79.660 (2), 76.997 (2)
V3) 1538.86 (11)
Z 1
Radiation type Cu Kα
μ (mm−1) 5.68
Crystal size (mm) 0.08 × 0.04 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEXII CCD DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.765, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 17544, 5427, 4983
Rint 0.039
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.03
No. of reflections 5427
No. of parameters 456
No. of restraints 34
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{µ-1,1'-(o-xylylene)bis[4-(pyridin-2-yl)triazole]-κN3:N3'}dipalladium(II) tetrakis(tetrafluoridoborate)–dimethylformamide–diethyl ether (1/2/1) top
Crystal data top
[Pd2(C22H18N8)2](BF4)4·2C3H7NO·C4H10OZ = 1
Mr = 1569.24F(000) = 790
Triclinic, P1Dx = 1.693 Mg m3
a = 8.3546 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.4468 (5) ÅCell parameters from 7868 reflections
c = 15.4504 (6) Åθ = 2.9–68.3°
α = 85.540 (2)°µ = 5.68 mm1
β = 79.660 (2)°T = 90 K
γ = 76.997 (2)°Fragment, pale yellow
V = 1538.86 (11) Å30.08 × 0.04 × 0.01 mm
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
5427 independent reflections
Radiation source: IµS microfocus4983 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.039
φ and ω scansθmax = 68.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 910
Tmin = 0.765, Tmax = 0.945k = 1410
17544 measured reflectionsl = 1818
Refinement top
Refinement on F234 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.022P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5427 reflectionsΔρmax = 0.68 e Å3
456 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.62296 (2)0.54481 (2)0.40085 (2)0.01235 (8)
N10.4910 (3)0.67202 (18)0.33215 (15)0.0177 (5)
N20.5621 (3)0.46128 (17)0.31114 (14)0.0154 (4)
N30.5861 (3)0.35595 (17)0.29813 (14)0.0154 (4)
N40.5089 (3)0.34974 (17)0.23042 (14)0.0156 (4)
N50.2946 (3)0.26548 (17)0.41317 (14)0.0145 (4)
N60.3668 (3)0.26845 (17)0.48321 (14)0.0157 (4)
N70.3247 (3)0.37183 (17)0.50545 (14)0.0144 (4)
N80.2416 (3)0.58271 (17)0.53220 (14)0.0152 (4)
C10.4641 (4)0.7791 (2)0.34815 (19)0.0218 (6)
H10.5068190.8007110.3954830.026*
C20.3757 (4)0.8589 (2)0.2975 (2)0.0310 (7)
H20.3589140.9346180.3099180.037*
C30.3116 (5)0.8291 (3)0.2290 (2)0.0378 (8)
H30.2487160.8834480.1944980.045*
C40.3410 (4)0.7178 (2)0.2113 (2)0.0294 (7)
H40.2994550.6948200.1640410.035*
C50.4312 (3)0.6413 (2)0.26347 (18)0.0189 (5)
C60.4704 (3)0.5227 (2)0.25314 (17)0.0173 (5)
C70.4363 (3)0.4500 (2)0.20031 (17)0.0175 (5)
H70.3750860.4666340.1529770.021*
C80.5148 (3)0.2393 (2)0.19970 (18)0.0176 (5)
H8A0.5809390.1827750.2355080.021*
H8B0.5720490.2338420.1377650.021*
C90.3437 (3)0.2151 (2)0.20577 (17)0.0171 (5)
C100.2720 (4)0.2300 (2)0.12980 (18)0.0212 (6)
H100.3292200.2576540.0770490.025*
C110.1185 (4)0.2050 (2)0.12995 (19)0.0255 (6)
H110.0708240.2160100.0777020.031*
C120.0348 (4)0.1642 (2)0.20627 (19)0.0252 (6)
H120.0698970.1462200.2064460.030*
C130.1041 (3)0.1494 (2)0.28270 (18)0.0206 (6)
H130.0461370.1210300.3349330.025*
C140.2570 (3)0.1754 (2)0.28398 (17)0.0161 (5)
C150.3232 (3)0.1588 (2)0.36990 (17)0.0171 (5)
H15A0.2669540.1071260.4094900.021*
H15B0.4440770.1257120.3586760.021*
C160.2068 (3)0.3655 (2)0.39066 (16)0.0146 (5)
H160.1442320.3838360.3439300.018*
C170.2283 (3)0.4345 (2)0.45040 (16)0.0148 (5)
C180.1818 (3)0.5523 (2)0.46399 (17)0.0154 (5)
C190.0907 (3)0.6280 (2)0.41110 (17)0.0176 (5)
H190.0496190.6043550.3640090.021*
C200.0605 (3)0.7394 (2)0.42825 (18)0.0198 (6)
H200.0006570.7933520.3927190.024*
C210.1214 (3)0.7704 (2)0.49825 (18)0.0198 (5)
H210.1020350.8460910.5111810.024*
C220.2102 (3)0.6906 (2)0.54896 (17)0.0178 (5)
H220.2503800.7125690.5970950.021*
B10.7437 (5)0.3502 (4)0.0041 (2)0.0341 (8)
F10.8450 (3)0.2509 (2)0.03601 (14)0.0497 (5)
F20.7818 (2)0.43622 (19)0.06116 (12)0.0442 (5)
F30.7724 (2)0.36416 (16)0.07958 (11)0.0324 (4)
F40.5762 (2)0.34747 (19)0.00012 (12)0.0429 (5)
B20.7718 (4)0.9939 (3)0.3743 (3)0.0305 (8)
F50.8893 (3)0.94186 (17)0.30537 (14)0.0536 (6)
F60.7324 (2)1.10683 (13)0.35316 (12)0.0273 (4)
F70.8434 (3)0.97815 (15)0.45036 (12)0.0394 (5)
F80.6308 (3)0.95332 (18)0.3871 (2)0.0773 (9)
O10.9776 (3)0.49882 (17)0.27263 (13)0.0280 (5)
N90.8519 (3)0.6141 (2)0.17162 (16)0.0248 (5)
C230.9211 (3)0.5157 (2)0.20272 (19)0.0239 (6)
H230.9279280.4536560.1690540.029*
C240.8557 (4)0.7145 (3)0.2135 (2)0.0314 (7)
H24A0.8579460.6985130.2763960.047*
H24B0.7561910.7711290.2058560.047*
H24C0.9555170.7412190.1862000.047*
C250.8014 (4)0.6276 (3)0.0849 (2)0.0364 (8)
H25A0.8762350.6658800.0441400.055*
H25B0.6869500.6711190.0896510.055*
H25C0.8070630.5549430.0627870.055*
O20.4535 (11)0.9884 (7)1.0054 (7)0.067 (3)0.5
C260.3717 (19)1.0268 (16)0.9327 (11)0.072 (4)0.5
H26A0.4413920.9954100.8779550.086*0.5
H26B0.3530211.1082110.9264630.086*0.5
C270.2032 (17)0.9910 (10)0.9481 (10)0.094 (4)0.5
H27A0.1453571.0171460.8980660.141*0.5
H27B0.2226220.9103100.9537780.141*0.5
H27C0.1345181.0227711.0021390.141*0.5
C280.6073 (17)1.0284 (14)0.9992 (12)0.067 (3)0.5
H28A0.5800691.1100430.9994180.081*0.5
H28B0.6806091.0062140.9428380.081*0.5
C290.699 (2)0.9832 (15)1.0748 (12)0.086 (5)0.5
H29A0.8013331.0116681.0683630.129*0.5
H29B0.6280241.0062031.1306440.129*0.5
H29C0.7285160.9024231.0740910.129*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01319 (11)0.00994 (11)0.01434 (11)0.00127 (7)0.00446 (7)0.00152 (7)
N10.0181 (11)0.0147 (11)0.0203 (11)0.0029 (9)0.0039 (9)0.0016 (9)
N20.0137 (10)0.0129 (10)0.0187 (11)0.0014 (8)0.0024 (9)0.0003 (8)
N30.0146 (10)0.0140 (10)0.0183 (11)0.0027 (8)0.0038 (9)0.0033 (8)
N40.0164 (11)0.0157 (11)0.0156 (10)0.0035 (9)0.0041 (9)0.0039 (8)
N50.0162 (11)0.0131 (10)0.0154 (10)0.0024 (8)0.0052 (8)0.0034 (8)
N60.0168 (11)0.0130 (10)0.0181 (11)0.0023 (8)0.0055 (9)0.0023 (8)
N70.0144 (10)0.0134 (10)0.0150 (10)0.0019 (8)0.0024 (8)0.0006 (8)
N80.0155 (11)0.0145 (10)0.0161 (10)0.0026 (8)0.0030 (9)0.0035 (8)
C10.0275 (15)0.0146 (13)0.0239 (14)0.0032 (11)0.0067 (12)0.0026 (11)
C20.0466 (19)0.0138 (13)0.0343 (17)0.0009 (13)0.0178 (15)0.0021 (12)
C30.059 (2)0.0178 (15)0.0375 (18)0.0055 (14)0.0276 (17)0.0004 (13)
C40.0412 (18)0.0213 (14)0.0272 (16)0.0004 (13)0.0188 (14)0.0006 (12)
C50.0213 (13)0.0167 (13)0.0187 (13)0.0022 (11)0.0056 (11)0.0014 (10)
C60.0177 (13)0.0168 (13)0.0174 (13)0.0028 (10)0.0048 (10)0.0002 (10)
C70.0192 (13)0.0175 (13)0.0160 (12)0.0027 (10)0.0049 (10)0.0020 (10)
C80.0187 (13)0.0141 (12)0.0205 (13)0.0021 (10)0.0044 (11)0.0045 (10)
C90.0178 (13)0.0129 (12)0.0208 (13)0.0013 (10)0.0043 (10)0.0050 (10)
C100.0257 (14)0.0183 (13)0.0200 (13)0.0042 (11)0.0048 (11)0.0027 (10)
C110.0239 (15)0.0297 (15)0.0252 (15)0.0044 (12)0.0107 (12)0.0032 (12)
C120.0189 (14)0.0300 (15)0.0298 (15)0.0071 (12)0.0073 (12)0.0061 (12)
C130.0198 (13)0.0194 (13)0.0226 (14)0.0040 (11)0.0019 (11)0.0049 (11)
C140.0187 (13)0.0112 (11)0.0180 (13)0.0009 (10)0.0055 (10)0.0056 (9)
C150.0224 (13)0.0109 (12)0.0182 (13)0.0014 (10)0.0055 (11)0.0030 (10)
C160.0143 (12)0.0143 (12)0.0154 (12)0.0024 (10)0.0034 (10)0.0009 (9)
C170.0128 (12)0.0150 (12)0.0150 (12)0.0010 (10)0.0009 (10)0.0002 (9)
C180.0148 (12)0.0118 (12)0.0185 (13)0.0007 (10)0.0010 (10)0.0045 (10)
C190.0170 (13)0.0187 (13)0.0169 (13)0.0011 (10)0.0045 (10)0.0024 (10)
C200.0224 (14)0.0150 (13)0.0209 (13)0.0009 (11)0.0068 (11)0.0009 (10)
C210.0232 (14)0.0139 (12)0.0217 (14)0.0015 (10)0.0046 (11)0.0018 (10)
C220.0180 (13)0.0162 (13)0.0182 (13)0.0015 (10)0.0017 (10)0.0044 (10)
B10.0245 (18)0.057 (2)0.0206 (17)0.0070 (16)0.0061 (14)0.0010 (16)
F10.0433 (12)0.0655 (14)0.0374 (11)0.0002 (10)0.0085 (9)0.0133 (10)
F20.0301 (10)0.0731 (15)0.0282 (10)0.0117 (10)0.0081 (8)0.0160 (9)
F30.0284 (9)0.0488 (11)0.0214 (9)0.0099 (8)0.0073 (7)0.0014 (8)
F40.0256 (10)0.0762 (15)0.0305 (10)0.0159 (9)0.0090 (8)0.0007 (9)
B20.0278 (18)0.0158 (15)0.050 (2)0.0031 (13)0.0145 (16)0.0013 (14)
F50.0783 (16)0.0320 (11)0.0404 (11)0.0168 (10)0.0169 (11)0.0069 (9)
F60.0243 (8)0.0179 (8)0.0408 (10)0.0040 (7)0.0110 (7)0.0029 (7)
F70.0525 (12)0.0270 (9)0.0368 (10)0.0019 (8)0.0169 (9)0.0014 (8)
F80.0483 (14)0.0306 (11)0.166 (3)0.0230 (10)0.0454 (17)0.0217 (15)
O10.0344 (12)0.0262 (11)0.0247 (11)0.0014 (9)0.0149 (9)0.0006 (8)
N90.0210 (12)0.0313 (13)0.0234 (12)0.0070 (10)0.0079 (10)0.0047 (10)
C230.0200 (14)0.0287 (15)0.0234 (14)0.0045 (12)0.0060 (11)0.0003 (12)
C240.0302 (16)0.0278 (16)0.0364 (17)0.0059 (13)0.0081 (14)0.0030 (13)
C250.0362 (18)0.050 (2)0.0264 (16)0.0138 (15)0.0149 (14)0.0119 (14)
O20.077 (7)0.041 (4)0.071 (3)0.004 (5)0.013 (5)0.006 (3)
C260.091 (9)0.048 (6)0.067 (7)0.000 (6)0.007 (6)0.004 (5)
C270.100 (9)0.057 (7)0.121 (11)0.028 (6)0.021 (8)0.038 (7)
C280.077 (7)0.041 (4)0.071 (3)0.004 (5)0.013 (5)0.006 (3)
C290.107 (13)0.047 (8)0.082 (9)0.011 (9)0.007 (10)0.002 (6)
Geometric parameters (Å, º) top
Pd1—N21.994 (2)C16—C171.369 (4)
Pd1—N7i2.007 (2)C16—H160.9500
Pd1—N12.055 (2)C17—C181.451 (4)
Pd1—N8i2.056 (2)C18—C191.384 (4)
N1—C11.336 (4)C19—C201.390 (4)
N1—C51.364 (3)C19—H190.9500
N2—N31.307 (3)C20—C211.389 (4)
N2—C61.360 (3)C20—H200.9500
N3—N41.339 (3)C21—C221.381 (4)
N4—C71.346 (3)C21—H210.9500
N4—C81.477 (3)C22—H220.9500
N5—N61.337 (3)B1—F31.387 (4)
N5—C161.350 (3)B1—F21.389 (4)
N5—C151.485 (3)B1—F41.398 (4)
N6—N71.311 (3)B1—F11.400 (5)
N7—C171.357 (3)B2—F81.360 (4)
N8—C221.346 (3)B2—F71.394 (4)
N8—C181.356 (3)B2—F61.396 (4)
C1—C21.379 (4)B2—F51.401 (5)
C1—H10.9500O1—C231.240 (3)
C2—C31.379 (4)N9—C231.325 (4)
C2—H20.9500N9—C241.459 (4)
C3—C41.392 (4)N9—C251.462 (4)
C3—H30.9500C23—H230.9500
C4—C51.378 (4)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—C61.453 (4)C24—H24C0.9800
C6—C71.372 (4)C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—C91.512 (4)C25—H25C0.9800
C8—H8A0.9900O2—C261.415 (14)
C8—H8B0.9900O2—C281.465 (12)
C9—C101.393 (4)C26—C271.543 (14)
C9—C141.408 (4)C26—H26A0.9900
C10—C111.385 (4)C26—H26B0.9900
C10—H100.9500C27—H27A0.9800
C11—C121.381 (4)C27—H27B0.9800
C11—H110.9500C27—H27C0.9800
C12—C131.388 (4)C28—C291.515 (16)
C12—H120.9500C28—H28A0.9900
C13—C141.390 (4)C28—H28B0.9900
C13—H130.9500C29—H29A0.9800
C14—C151.510 (3)C29—H29B0.9800
C15—H15A0.9900C29—H29C0.9800
C15—H15B0.9900
N2—Pd1—N7i177.57 (8)N5—C16—C17104.4 (2)
N2—Pd1—N179.46 (8)N5—C16—H16127.8
N7i—Pd1—N1100.55 (8)C17—C16—H16127.8
N2—Pd1—N8i100.27 (8)N7—C17—C16107.1 (2)
N7i—Pd1—N8i79.75 (8)N7—C17—C18116.8 (2)
N1—Pd1—N8i179.01 (9)C16—C17—C18136.0 (2)
C1—N1—C5119.1 (2)N8—C18—C19122.4 (2)
C1—N1—Pd1125.63 (18)N8—C18—C17113.5 (2)
C5—N1—Pd1115.24 (17)C19—C18—C17124.0 (2)
N3—N2—C6111.1 (2)C18—C19—C20118.7 (2)
N3—N2—Pd1132.75 (17)C18—C19—H19120.7
C6—N2—Pd1116.02 (17)C20—C19—H19120.7
N2—N3—N4105.32 (19)C21—C20—C19118.8 (2)
N3—N4—C7112.2 (2)C21—C20—H20120.6
N3—N4—C8118.0 (2)C19—C20—H20120.6
C7—N4—C8129.8 (2)C22—C21—C20119.6 (2)
N6—N5—C16112.4 (2)C22—C21—H21120.2
N6—N5—C15118.5 (2)C20—C21—H21120.2
C16—N5—C15129.2 (2)N8—C22—C21121.9 (2)
N7—N6—N5105.12 (19)N8—C22—H22119.0
N6—N7—C17111.1 (2)C21—C22—H22119.0
N6—N7—Pd1i134.09 (16)F3—B1—F2110.5 (3)
C17—N7—Pd1i114.81 (17)F3—B1—F4109.4 (3)
C22—N8—C18118.5 (2)F2—B1—F4109.3 (3)
C22—N8—Pd1i126.47 (17)F3—B1—F1109.2 (3)
C18—N8—Pd1i115.02 (16)F2—B1—F1108.6 (3)
N1—C1—C2121.5 (3)F4—B1—F1109.7 (3)
N1—C1—H1119.2F8—B2—F7110.6 (3)
C2—C1—H1119.2F8—B2—F6109.4 (3)
C3—C2—C1120.1 (3)F7—B2—F6108.7 (3)
C3—C2—H2120.0F8—B2—F5111.1 (3)
C1—C2—H2120.0F7—B2—F5108.4 (3)
C2—C3—C4118.7 (3)F6—B2—F5108.5 (3)
C2—C3—H3120.6C23—N9—C24120.9 (2)
C4—C3—H3120.6C23—N9—C25121.0 (3)
C5—C4—C3118.9 (3)C24—N9—C25116.9 (3)
C5—C4—H4120.6O1—C23—N9124.7 (3)
C3—C4—H4120.6O1—C23—H23117.7
N1—C5—C4121.7 (2)N9—C23—H23117.7
N1—C5—C6113.4 (2)N9—C24—H24A109.5
C4—C5—C6124.9 (3)N9—C24—H24B109.5
N2—C6—C7106.7 (2)H24A—C24—H24B109.5
N2—C6—C5115.9 (2)N9—C24—H24C109.5
C7—C6—C5137.4 (2)H24A—C24—H24C109.5
N4—C7—C6104.7 (2)H24B—C24—H24C109.5
N4—C7—H7127.7N9—C25—H25A109.5
C6—C7—H7127.7N9—C25—H25B109.5
N4—C8—C9112.7 (2)H25A—C25—H25B109.5
N4—C8—H8A109.1N9—C25—H25C109.5
C9—C8—H8A109.1H25A—C25—H25C109.5
N4—C8—H8B109.1H25B—C25—H25C109.5
C9—C8—H8B109.1C26—O2—C28111.7 (9)
H8A—C8—H8B107.8O2—C26—C27108.8 (12)
C10—C9—C14119.1 (2)O2—C26—H26A109.9
C10—C9—C8118.1 (2)C27—C26—H26A109.9
C14—C9—C8122.7 (2)O2—C26—H26B109.9
C11—C10—C9121.0 (3)C27—C26—H26B109.9
C11—C10—H10119.5H26A—C26—H26B108.3
C9—C10—H10119.5C26—C27—H27A109.5
C12—C11—C10119.8 (3)C26—C27—H27B109.5
C12—C11—H11120.1H27A—C27—H27B109.5
C10—C11—H11120.1C26—C27—H27C109.5
C11—C12—C13119.9 (3)H27A—C27—H27C109.5
C11—C12—H12120.1H27B—C27—H27C109.5
C13—C12—H12120.1O2—C28—C29111.9 (12)
C12—C13—C14121.0 (3)O2—C28—H28A109.2
C12—C13—H13119.5C29—C28—H28A109.2
C14—C13—H13119.5O2—C28—H28B109.2
C13—C14—C9119.1 (2)C29—C28—H28B109.2
C13—C14—C15118.0 (2)H28A—C28—H28B107.9
C9—C14—C15122.9 (2)C28—C29—H29A109.5
N5—C15—C14110.7 (2)C28—C29—H29B109.5
N5—C15—H15A109.5H29A—C29—H29B109.5
C14—C15—H15A109.5C28—C29—H29C109.5
N5—C15—H15B109.5H29A—C29—H29C109.5
C14—C15—H15B109.5H29B—C29—H29C109.5
H15A—C15—H15B108.1
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Physical Sciences at Nicholls State University and the X-ray Diffraction Laboratory at Louisiana State University, Baton Rouge. The upgrade of the diffractometer was made possible by a grant administered by the Louisiana Board of Regents.

Funding information

Funding for this research was provided by: Louisiana Board of Regents Support Fund (contract No. LEQSF(2011-12)-ENH-TR-01).

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowley, J. D. & McMorran, D. A. (2012). Click Triazoles, edited by J. Košmrlj, pp. 31–83. Berlin, Heidelberg: Springer.  Google Scholar
First citationGower, M. L. & Crowley, J. D. (2010). Dalton Trans. 39, 2371–2378.  CrossRef CAS PubMed Google Scholar
First citationKilpin, K. J., Gavey, E. L., McAdam, C. J., Anderson, C. B., Lind, S. J., Keep, C. C., Gordon, K. C. & Crowley, J. D. (2011). Inorg. Chem. 50, 6334–6346.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2013). Dalton Trans. 42, 14064–14067.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPokharel, U. R., Naquin, A. P., Brochon, C. P. & Fronczek, F. R. (2020a). Acta Cryst. E76, 1582–1586.  CrossRef IUCr Journals Google Scholar
First citationPokharel, U. R., Theriot, J. C., Fronczek, F. R. & Maverick, A. W. (2020b). Polyhedron, 191, 114805.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVellas, S. K., Lewis, J. E. M., Shankar, M., Sagatova, A., Tyndall, J. D. A., Monk, B. C., Fitchett, C. M., Hanton, L. R. & Crowley, J. D. (2013). Molecules, 18, 6383–6407.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Li, X., Wang, J., Li, L. & Wang, R. (2013). ChemPlusChem 78, 1491–1502.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146