organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[3-Meth­­oxy-5-(meth­­oxy­carbon­yl)isoxazol-4-yl](4-meth­­oxy­phen­yl)iodo­nium 2,2,2-tri­fluoro­acetate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 21 March 2023; accepted 1 April 2023; online 6 April 2023)

A new isoxazole-based iodo­noium salt, C13H13INO5+·C2F3O2, has been synthesized and structurally characterized. In the crystal, ions are linked by short I⋯O contacts to form a neutral tetra-ion aggregate. These combine with C—H⋯F and C—H⋯O inter­actions to form double-layered two-dimensional sheets in the (001) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hypervalent iodine compounds exhibit attractive features of low cost, mild and selective reagents in organic synthesis (Wirth, 2005[Wirth, T. (2005). Angew. Chem. Int. Ed. 44, 3656-3665.]; Richardson & Wirth, 2006[Richardson, R. D. & Wirth, T. (2006). Angew. Chem. Int. Ed. 45, 4402-4404.]). These reagents serve as environmentally benign alternatives to toxic heavy-metal-based oxidants and expensive organometallic catalysts (Satam et al., 2010[Satam, V., Harad, A., Rajule, R. & Pati, H. (2010). Tetrahedron, 66, 7659-7706.]; Wirth, 2001[Wirth, T. (2001). Angew. Chem. Int. Ed. 40, 2812-2814.]). The application of iodo­nium reagents in organic transformation encompasses areas such as C—C, C–heteroatom and heteroatom–heteroatom bond formation, oxidations, rearrangements and radical reactions (Frigerio & Santagostino, 1994[Frigerio, M. & Santagostino, M. (1994). Tetrahedron Lett. 35, 8019-8022.]; Zhdankin & Stang, 2008[Zhdankin, V. V. & Stang, P. J. (2008). Chem. Rev. 108, 5299-5358.]; Zhdankin, 2009[Zhdankin, V. V. (2009). Arkivoc, https://doi.org/10.3998/ark.5550190.0010.101.], 2011[Zhdankin, V. V. (2011). J. Org. Chem. 76, 1185-1197.]).

A particularly important application is the reaction of di­aryl­iodo­nium salts with fluorine anions, allowing the introduction of fluorine into chemical compounds of inter­est (Tredwell & Gouverneur 2012[Tredwell, M. & Gouverneur, V. (2012). Angew. Chem. Int. Ed. 51, 11426-11437.]; Tredwell et al., 2008[Tredwell, M., Luft, J. A., Schuler, M., Tenza, K., Houk, K. N. & Gouverneur, V. (2008). Angew. Chem. Int. Ed. 47, 357-360.]). Furthermore, by using di­aryl­iodo­nium salts, both electron-deficient and electron-rich rings can be fluorinated, allowing access to all regioisomers of a particular arene over standard SNAr chemistry (Shah et al., 1998[Shah, A., Pike, V. W. & Widdowson, D. A. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2043-2046.]). Moreover, these types of reaction typically require milder conditions than standard SNAr reactions, and they can even take place in wet solvents (Chun et al., 2013[Chun, J. H., Telu, S., Lu, S. & Pike, V. W. (2013). Org. Biomol. Chem. 11, 5094-5099.]). Features which are privileged for the incorporation of radioactive [18F]-fluoride into radiotracer mol­ecules established for Positron Emission Tomography.

The versatility of isoxazoles core components in biologically active compounds, natural products and functional materials (Abdul Manan et al., 2017[Abdul Manan, M. A. F., Cordes, D. B., Slawin, A. M., Bühl, M., Liao, V. W., Chua, H. C., Chebib, M. & O'Hagan, D. (2017). Chem. Eur. J. 23, 10848-10852.]; Frolund et al., 2002[Frølund, B., Jørgensen, A. T., Tagmose, L., Stensbøl, T. B., Vestergaard, H. T., Engblom, C., Kristiansen, U., Sanchez, C., Krogsgaard-Larsen, P. & Liljefors, T. (2002). J. Med. Chem. 45, 2454-2468.]; Lee et al., 2009[Lee, Y. G., Koyama, Y., Yonekawa, M. & Takata, T. (2009). Macromolecules, 42, 7709-7717.]) led us to examine the synthesis of iodo­noum salts bearing an isoxazole motif possessing novel structural features with the possibly of some inter­est as a precursor to fluoro­isoxazole.

The title salt, C13H13INO5+·C2F3O2, crystallizes in the space group P[\overline{1}] with one ion pair in the asymmetric-unit (Fig. 1[link]). In the crystal, the ring of the isoxazole group is inclined to the meth­oxy­phenyl ring at an angle of 84.4 (3)° and the C—I—C bond angle is 90.8 (3)°. Short I⋯O contacts of 2.555 (6) and 2.823 (7) Å are observed due to the strong electrostatic inter­action between two iodo­nium cations and two tri­fluoro­acetate counter-ions (Fig. 2[link]). There are also C—H⋯F and C—H⋯O inter­actions present (Table 1[link]). The C—H⋯O inter­actions give rise to two-dimensional sheets in the (001) plane, with the C—H⋯F inter­actions holding the tri­fluoro­acetate anion in place within the sheets (Fig. 3[link]). The combination of the weak hydrogen bonds with the I⋯O inter­actions gives rise to double-layered sheets, also in the (001) plane. These inter­actions are comparable to those observed in phen­yl(phenyl­ethyn­yl)iodo­nium tosyl­ate and phen­yl(phenyl­ethyn­yl)iodo­nium tri­fluoro­acetate salts (Dixon et al., 2013[Dixon, L. I., Carroll, M. A., Gregson, T. J., Ellames, G. J., Harrington, R. W. & Clegg, W. (2013). Eur. J. Org. Chem. pp. 2334-2345.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O12i 0.98 2.58 3.475 (14) 152
C11—H11⋯F16ii 0.95 2.56 3.405 (17) 148
C15—H15C⋯O6iii 0.98 2.62 3.503 (14) 151
Symmetry codes: (i) x, y+1, z; (ii) [x, y-1, z]; (iii) x+1, y, z.
[Figure 1]
Figure 1
Mol­ecular structures of the constituents of the asymmetric unit of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
View down the [110] axis of the neutral, tetra-ion aggregate formed by I⋯O inter­actions, shown as dashed lines. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
View down the [001] axis of the two-dimensional sheet formed by weak hydrogen-bonding inter­actions, shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted.

Synthesis and crystallization

m-CPBA (70% active oxidant, 791 mg, 3.21 mmol, 1.3 eq.) was added to a solution of methyl 4-iodo-3-meth­oxy­isoxazole-5-carboxyl­ate (700 mg, 2.47 mmol, 1.0 eq.) in AcOH (20 ml). After stirring at 55°C for 96 h, water (30 ml) was added to the reaction mixture followed by extraction into DCM (3 × 20 ml). The combined organic layers were washed with a saturated aqueous solution of Na2CO3 (60 ml), dried over Na2SO4, filtered and concentrated under reduced pressure to afford a colourless solid, which was used without further purification.

Methyl (4-di­acet­oxy­iodo)-3-meth­oxy­isoxazole-5-carboxyl­ate (281 mg, 0.7 mmol, 1.0 eq.), as a 40% mixture determined by 1H-NMR, with methyl 4-iodo-3-meth­oxy­isoxazole-5-carboxyl­ate, was dissolved in DCM (10 ml) and cooled to −30°C, followed by dropwise addition of TFA (110 ml, 1.40 mmol, 2.0 eq.). The solution was stirred with the exclusion of light for 30 min, followed by 1 h at rt. The reaction mixture was re-cooled to −30°C and tribut­yl(4-meth­oxy­phen­yl)stannane (278 mg, 0.70 mmol, 1.0 eq.) added. The reaction was warmed to rt for the second time and left to stir overnight. The solvent was removed in vacuo. Upon the addition of Et2O, the (3-meth­oxy-5-(meth­oxy­carbon­yl)isoxazol-4-yl)(4-meth­oxy­phen­yl)iodo­nium TFA salt (35 mg, 10%) crystallized. Crystals suitable for X-ray structure determination were obtained from the diffusion of diethyl ether into a dichloromethane solution of the title compound.

1H (500 MHz, d6-DMSO), δ: (p.p.m): 8.00 (2H, d, 3JHH 7.2), 7.06 (2H, d, 3JHH 7.2), 4.07 (3H, s), 4.01 (3H, s), 3.80 (3H, s); 13C (125 MHz, d6-DMSO), δ: (p.p.m): 170.1, 162.0, 161.0, 155.3, 137.0, 117.5, 107.0, 83.9, 59.0, 55.7, 54.0; 19F (470 MHz, d6-DMSO), δ: (p.p.m): −73.6 (3 F, s); HRMS m/z (ESI+), [M − TFA]+ calculated (C13H13NO5127I) 389.9833, found 389.9819.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum residual electron density peak of 1.48 e Å−3 was located 1.01 Å from the I4 atom.

Table 2
Experimental details

Crystal data
Chemical formula C13H13INO5+·C2F3O2
Mr 503.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.436 (2), 10.750 (3), 11.338 (3)
α, β, γ (°) 113.913 (5), 97.392 (4), 98.975 (5)
V3) 907.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.83
Crystal size (mm) 0.16 × 0.03 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB P200
Absorption correction Multi-scan (CrystalClear; Rigaku, 2014[Rigaku (2014). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.862, 0.982
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 11079, 3270, 2423
Rint 0.053
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.145, 1.04
No. of reflections 3270
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.49, −0.65
Computer programs: CrystalClear (Rigaku, 2014[Rigaku (2014). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2014); cell refinement: CrystalClear (Rigaku, 2014); data reduction: CrystalClear (Rigaku, 2014); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2018), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

[3-Methoxy-5-(methoxycarbonyl)isoxazol-4-yl](4-methoxyphenyl)iodonium 2,2,2-trifluoroacetate top
Crystal data top
C13H13INO5+·C2F3O2Z = 2
Mr = 503.17F(000) = 492.00
Triclinic, P1Dx = 1.842 Mg m3
a = 8.436 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.750 (3) ÅCell parameters from 1722 reflections
c = 11.338 (3) Åθ = 2.0–25.3°
α = 113.913 (5)°µ = 1.83 mm1
β = 97.392 (4)°T = 173 K
γ = 98.975 (5)°Plate, colourless
V = 907.2 (4) Å30.16 × 0.03 × 0.01 mm
Data collection top
Rigaku XtaLAB P200
diffractometer
3270 independent reflections
Radiation source: Rotating Anode, Rigaku FR-X2423 reflections with F2 > 2.0σ(F2)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.053
Detector resolution: 5.814 pixels mm-1θmax = 25.4°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2014)
k = 1212
Tmin = 0.862, Tmax = 0.982l = 1313
11079 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0635P)2 + 4.1326P]
where P = (Fo2 + 2Fc2)/3
3270 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 0.65 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were included in calculated positions (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq (sp2) or Uiso(H) = 1.5Ueq (sp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I40.20970 (6)0.42981 (5)0.12013 (5)0.0509 (2)
F160.2459 (9)0.9270 (9)0.2807 (8)0.152 (4)
F170.0378 (8)0.9854 (6)0.3427 (6)0.111 (3)
F180.1490 (12)0.8548 (8)0.4008 (6)0.136 (3)
O10.4332 (8)0.6834 (6)0.5238 (5)0.0632 (16)
O30.5054 (8)0.7371 (7)0.2570 (7)0.0717 (18)
O60.1162 (9)0.3812 (7)0.3838 (7)0.0777 (19)
O70.2682 (9)0.4996 (8)0.5853 (7)0.081 (2)
O120.7116 (10)0.0695 (8)0.1381 (8)0.094 (2)
O170.0913 (8)0.7775 (6)0.1053 (6)0.076 (2)
O180.0342 (9)0.6423 (7)0.1656 (7)0.086 (2)
N20.5171 (10)0.7647 (9)0.4715 (8)0.074 (2)
C30.4577 (11)0.6993 (9)0.3442 (9)0.061 (3)
C40.3342 (10)0.5742 (9)0.3109 (8)0.057 (2)
C50.3256 (11)0.5714 (10)0.4265 (9)0.064 (2)
C60.2232 (12)0.4716 (11)0.4574 (9)0.064 (3)
C70.1665 (14)0.4074 (13)0.6255 (13)0.095 (4)
H7A0.1655500.3099830.5689180.143*
H7B0.0541060.4210580.6169620.143*
H7C0.2113810.4293390.7175810.143*
C80.6252 (12)0.8788 (11)0.3162 (11)0.084 (3)
H8A0.7239220.8763680.3704870.126*
H8B0.5734360.9505700.3712790.126*
H8C0.6555930.9009160.2451800.126*
C90.3799 (11)0.3064 (9)0.1113 (8)0.055 (2)
C100.3599 (15)0.2162 (11)0.1705 (9)0.080 (3)
H100.2679850.2101690.2099620.096*
C110.4686 (15)0.1368 (12)0.1732 (10)0.083 (3)
H110.4479990.0680520.2052820.099*
C120.5986 (13)0.1563 (11)0.1318 (11)0.070 (3)
C130.6360 (12)0.2401 (12)0.0699 (11)0.090 (4)
H130.7334640.2452000.0367410.108*
C140.5113 (13)0.3240 (11)0.0579 (10)0.077 (3)
H140.5244580.3844090.0159100.093*
C150.8561 (13)0.1021 (16)0.1053 (14)0.137 (7)
H15A0.9250820.0389370.1120250.206*
H15B0.8350170.0922380.0145170.206*
H15C0.9125450.1988180.1655800.206*
C160.1083 (10)0.8821 (9)0.3002 (8)0.056 (2)
C170.0083 (9)0.7542 (9)0.1774 (8)0.049 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I40.0529 (4)0.0449 (3)0.0430 (3)0.0166 (2)0.0062 (2)0.0102 (2)
F160.085 (5)0.135 (7)0.130 (7)0.041 (5)0.028 (5)0.023 (5)
F170.099 (5)0.068 (4)0.098 (5)0.038 (4)0.031 (4)0.021 (3)
F180.212 (9)0.098 (5)0.057 (4)0.025 (5)0.042 (5)0.017 (4)
O10.067 (4)0.062 (4)0.040 (3)0.014 (3)0.004 (3)0.007 (3)
O30.069 (4)0.068 (4)0.077 (5)0.009 (3)0.009 (4)0.035 (4)
O60.075 (5)0.071 (5)0.073 (4)0.005 (4)0.003 (4)0.029 (4)
O70.080 (5)0.101 (5)0.063 (4)0.023 (4)0.009 (4)0.037 (4)
O120.105 (6)0.095 (6)0.093 (5)0.038 (5)0.019 (5)0.047 (5)
O170.089 (5)0.054 (4)0.060 (4)0.020 (3)0.024 (3)0.011 (3)
O180.096 (5)0.057 (4)0.083 (5)0.032 (4)0.019 (4)0.013 (4)
N20.070 (5)0.067 (5)0.068 (5)0.006 (4)0.002 (4)0.019 (5)
C30.052 (5)0.046 (5)0.054 (5)0.012 (4)0.015 (4)0.002 (4)
C40.057 (5)0.060 (6)0.045 (5)0.027 (5)0.000 (4)0.011 (4)
C50.056 (5)0.065 (6)0.055 (5)0.019 (5)0.002 (4)0.013 (5)
C60.058 (6)0.069 (7)0.057 (6)0.027 (5)0.002 (5)0.021 (5)
C70.078 (8)0.118 (10)0.118 (10)0.029 (7)0.036 (7)0.073 (9)
C80.065 (6)0.067 (7)0.091 (8)0.002 (5)0.010 (5)0.020 (6)
C90.059 (5)0.051 (5)0.043 (4)0.023 (4)0.006 (4)0.010 (4)
C100.115 (9)0.073 (7)0.051 (5)0.054 (6)0.009 (5)0.016 (5)
C110.099 (9)0.090 (8)0.062 (6)0.044 (7)0.016 (6)0.028 (6)
C120.057 (6)0.083 (7)0.079 (7)0.012 (5)0.002 (5)0.051 (6)
C130.055 (6)0.083 (8)0.078 (7)0.000 (6)0.025 (5)0.015 (6)
C140.074 (7)0.060 (6)0.079 (7)0.014 (5)0.025 (6)0.010 (5)
C150.042 (6)0.154 (13)0.122 (11)0.036 (7)0.039 (7)0.018 (9)
C160.043 (5)0.057 (6)0.051 (5)0.008 (4)0.003 (4)0.013 (4)
C170.043 (4)0.048 (5)0.047 (5)0.018 (4)0.005 (4)0.012 (4)
Geometric parameters (Å, º) top
I4—C92.087 (8)C7—H7A0.9800
I4—C42.092 (8)C7—H7B0.9800
F16—C161.268 (11)C7—H7C0.9800
F17—C161.290 (10)C8—H8A0.9800
F18—C161.307 (11)C8—H8B0.9800
O1—C51.347 (10)C8—H8C0.9800
O1—N21.397 (10)C9—C141.353 (13)
O3—C31.297 (12)C9—C101.388 (14)
O3—C81.520 (11)C10—C111.353 (14)
O6—C61.154 (11)C10—H100.9500
O7—C61.344 (11)C11—C121.268 (15)
O7—C71.459 (13)C11—H110.9500
O12—C151.355 (12)C12—C131.374 (15)
O12—C121.449 (12)C13—C141.515 (16)
O17—C171.221 (9)C13—H130.9500
O18—C171.214 (10)C14—H140.9500
N2—C31.308 (12)C15—H15A0.9800
C3—C41.445 (13)C15—H15B0.9800
C4—C51.334 (13)C15—H15C0.9800
C5—C61.453 (14)C16—C171.524 (11)
C9—I4—C490.8 (3)C10—C9—I4117.9 (7)
C5—O1—N2110.3 (7)C11—C10—C9121.3 (11)
C3—O3—C8113.8 (8)C11—C10—H10119.3
C6—O7—C7114.1 (9)C9—C10—H10119.3
C15—O12—C12114.6 (11)C12—C11—C10118.4 (12)
C3—N2—O1104.8 (8)C12—C11—H11120.8
O3—C3—N2125.4 (9)C10—C11—H11120.8
O3—C3—C4123.4 (8)C11—C12—C13127.0 (11)
N2—C3—C4111.1 (10)C11—C12—O12116.1 (10)
C5—C4—C3104.5 (8)C13—C12—O12116.5 (10)
C5—C4—I4129.6 (8)C12—C13—C14115.5 (9)
C3—C4—I4125.8 (7)C12—C13—H13122.2
C4—C5—O1109.2 (9)C14—C13—H13122.2
C4—C5—C6130.6 (9)C9—C14—C13115.1 (10)
O1—C5—C6120.2 (9)C9—C14—H14122.5
O6—C6—O7123.9 (10)C13—C14—H14122.5
O6—C6—C5125.4 (9)O12—C15—H15A109.5
O7—C6—C5110.8 (9)O12—C15—H15B109.5
O7—C7—H7A109.5H15A—C15—H15B109.5
O7—C7—H7B109.5O12—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15C109.5
O7—C7—H7C109.5H15B—C15—H15C109.5
H7A—C7—H7C109.5F16—C16—F17107.8 (9)
H7B—C7—H7C109.5F16—C16—F18103.2 (9)
O3—C8—H8A109.5F17—C16—F18105.7 (8)
O3—C8—H8B109.5F16—C16—C17110.8 (8)
H8A—C8—H8B109.5F17—C16—C17115.2 (7)
O3—C8—H8C109.5F18—C16—C17113.2 (8)
H8A—C8—H8C109.5O18—C17—O17128.3 (8)
H8B—C8—H8C109.5O18—C17—C16116.1 (7)
C14—C9—C10122.3 (9)O17—C17—C16115.6 (7)
C14—C9—I4119.7 (7)
C5—O1—N2—C30.0 (9)O1—C5—C6—O77.7 (11)
C8—O3—C3—N27.7 (13)C14—C9—C10—C112.6 (15)
C8—O3—C3—C4174.8 (8)I4—C9—C10—C11177.5 (8)
O1—N2—C3—O3177.8 (8)C9—C10—C11—C126.9 (16)
O1—N2—C3—C40.1 (10)C10—C11—C12—C137.7 (18)
O3—C3—C4—C5177.9 (8)C10—C11—C12—O12179.4 (9)
N2—C3—C4—C50.1 (10)C15—O12—C12—C11173.9 (10)
O3—C3—C4—I40.4 (12)C15—O12—C12—C1312.4 (14)
N2—C3—C4—I4177.4 (6)C11—C12—C13—C143.9 (17)
C3—C4—C5—O10.1 (10)O12—C12—C13—C14176.8 (8)
I4—C4—C5—O1177.3 (5)C10—C9—C14—C131.1 (13)
C3—C4—C5—C6179.6 (9)I4—C9—C14—C13173.7 (6)
I4—C4—C5—C63.0 (15)C12—C13—C14—C90.7 (13)
N2—O1—C5—C40.1 (10)F16—C16—C17—O1886.1 (11)
N2—O1—C5—C6179.7 (8)F17—C16—C17—O18151.2 (9)
C7—O7—C6—O61.6 (14)F18—C16—C17—O1829.4 (12)
C7—O7—C6—C5177.5 (8)F16—C16—C17—O1796.1 (11)
C4—C5—C6—O68.3 (16)F17—C16—C17—O1726.7 (12)
O1—C5—C6—O6171.4 (9)F18—C16—C17—O17148.5 (9)
C4—C5—C6—O7172.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O12i0.982.583.475 (14)152
C11—H11···F16ii0.952.563.405 (17)148
C15—H15C···O6iii0.982.623.503 (14)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Funding information

The authors acknowledge the Universiti Teknologi MARA for funding under the UMP-IIUM-UiTM Sustainable Research Collaboration Grant [600–RMC/SRC/5/3(043/2020)].

References

First citationAbdul Manan, M. A. F., Cordes, D. B., Slawin, A. M., Bühl, M., Liao, V. W., Chua, H. C., Chebib, M. & O'Hagan, D. (2017). Chem. Eur. J. 23, 10848–10852.  Web of Science CAS PubMed Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationChun, J. H., Telu, S., Lu, S. & Pike, V. W. (2013). Org. Biomol. Chem. 11, 5094–5099.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDixon, L. I., Carroll, M. A., Gregson, T. J., Ellames, G. J., Harrington, R. W. & Clegg, W. (2013). Eur. J. Org. Chem. pp. 2334–2345.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrigerio, M. & Santagostino, M. (1994). Tetrahedron Lett. 35, 8019–8022.  CrossRef CAS Google Scholar
First citationFrølund, B., Jørgensen, A. T., Tagmose, L., Stensbøl, T. B., Vestergaard, H. T., Engblom, C., Kristiansen, U., Sanchez, C., Krogsgaard-Larsen, P. & Liljefors, T. (2002). J. Med. Chem. 45, 2454–2468.  Web of Science PubMed Google Scholar
First citationLee, Y. G., Koyama, Y., Yonekawa, M. & Takata, T. (2009). Macromolecules, 42, 7709–7717.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRichardson, R. D. & Wirth, T. (2006). Angew. Chem. Int. Ed. 45, 4402–4404.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2014). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSatam, V., Harad, A., Rajule, R. & Pati, H. (2010). Tetrahedron, 66, 7659–7706.  Web of Science CrossRef CAS Google Scholar
First citationShah, A., Pike, V. W. & Widdowson, D. A. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2043–2046.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTredwell, M. & Gouverneur, V. (2012). Angew. Chem. Int. Ed. 51, 11426–11437.  Web of Science CrossRef CAS Google Scholar
First citationTredwell, M., Luft, J. A., Schuler, M., Tenza, K., Houk, K. N. & Gouverneur, V. (2008). Angew. Chem. Int. Ed. 47, 357–360.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWirth, T. (2001). Angew. Chem. Int. Ed. 40, 2812–2814.  CrossRef CAS Google Scholar
First citationWirth, T. (2005). Angew. Chem. Int. Ed. 44, 3656–3665.  Web of Science CrossRef CAS Google Scholar
First citationZhdankin, V. V. (2009). Arkivoc, https://doi.org/10.3998/ark.5550190.0010.101.  Google Scholar
First citationZhdankin, V. V. (2011). J. Org. Chem. 76, 1185–1197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhdankin, V. V. & Stang, P. J. (2008). Chem. Rev. 108, 5299–5358.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146