organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{N-[(4-Meth­­oxy-2-oxidophen­yl)(phen­yl)methyl­­idene]glycinato}di­phenyl­silicon(IV)

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by S. Parkin, University of Kentucky, USA (Received 24 March 2023; accepted 3 April 2023; online 6 April 2023)

The title compound, C28H23NO4Si, crystallizes in the monoclinic space group P21/c. The silicon complex consists of a tridentate dinegative Schiff base ligand bound to a di­phenyl­silyl unit. The coordination geometry of the penta­coordinate silicon atom is a distorted trigonal bipyramid.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Penta­coordinate silicon complexes can be generated with tridentate O,N,O′-chelate ligands based on Schiff bases (Wagler et al., 2014[Wagler, J., Böhme, U. & Kroke, E. (2014). Struct. Bond. 155, 29-106.]). The Schiff base {(E)-[(2-hy­droxy-4-meth­oxy­phen­yl)(phen­yl)methyl­idene]amino}­acetic acid has been utilized once previously to prepare a tin complex (Singh et al., 2018[Singh, N., Srivastav, N., Singh, R., Kaur, V., Brendler, E., Wagler, J. & Kroke, E. (2018). New J. Chem. 42, 1655-1664.]). The tin atom therein is coordinated to the tridentate Schiff-base ligand, two methyl groups and a methanol mol­ecule, resulting in a hexa­coordinate complex. This ligand has not been used so far for the generation of silicon complexes. Related silicon complexes contain Schiff base ligands derived from salicyl aldehyde (Warncke et al., 2012[Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46-52.]), aceto­phenone (Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]) or naphthyl aldehyde (Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]).

The asymmetric unit of the title compound contains one mol­ecule of {N-[(4-meth­oxy-2-oxidophen­yl)(phen­yl)methyl­idene]glycinato}di­phenyl­silicon(IV). The mol­ecular structure is shown in Fig. 1[link] (50% displacement ellipsoids). The Schiff base acts as tridentate dinegative ligand. The silicon complex contains a penta­coordinate silicon atom, which is coordinated to the carboxyl-O1, phen­oxy-O3, imine-N1 and two carbon atoms from phenyl groups (C17 and C23). The coordination geometry of the penta­coordinate silicon atom can be analysed with the parameter τ. The parameter is defined as τ = (β - α)/60° with β as largest and α as the second largest angle at the central atom (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). If τ = 0 it is a perfect square pyramid, while τ = 1 indicates a perfect trigonal bipyramid. The largest angle at the silicon atom is O1—Si1—O3 with 170.83 (4)° and second largest N1—Si1—C23 with 123.23 (5)° (see Table 1[link]). This leads to a parameter τ = 0.79, which corresponds to a distorted trigonal bipyramid. The apical positions are represented by O1 and O3 of the tridentate ligand, while the atoms N1, C17, and C23 represent the atoms in the trigonal plane.

Table 1
Selected geometric parameters (Å, °)

Si1—O3 1.7502 (9) Si1—C23 1.8817 (13)
Si1—O1 1.8361 (10) Si1—C17 1.8940 (13)
Si1—N1 1.8726 (11)    
       
O3—Si1—O1 170.83 (5) N1—Si1—C23 123.23 (5)
O3—Si1—N1 90.36 (4) O3—Si1—C17 96.56 (5)
O1—Si1—N1 82.80 (4) O1—Si1—C17 91.93 (5)
O3—Si1—C23 90.38 (5) N1—Si1—C17 115.75 (5)
O1—Si1—C23 88.28 (5) C23—Si1—C17 120.51 (5)
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The bond Si—O1 [1.8361 (10) Å] is longer than the bond Si1—O3 [1.7502 (9) Å]. This can be explained by the carboxyl-type oxygen atom O1 and the electronegative character of the phenyl bound atom O3. The bond lengths for Si1—N1 and Si—C are similar to those in comparable penta­coordinate silicon complexes (Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]; Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]; Böhme & Günther, 2007[Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482-484.]; Böhme & Foehn, 2007[Böhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613-o616.]). There is one closely related silicon complex with the 2-{(E)-[(2-hy­droxy-4-meth­oxy­phen­yl)(phen­yl)methyl­idene]amino}­propanoic acid as ligand (Böhme & Fels, 2023[Böhme, U. & Fels, S. (2023). Z. Krist. New Cryst. Struc. Submitted.]). The Schiff base ligand therein has an additional methyl group at C2 with an alaninato instead of an glycinato group. The geometric features of that complex are very similar to those of the title compound.

Inter­molecular inter­actions of the title compound are dominated by close-packing. No specific hydrogen bonds can be identified.

Synthesis and crystallization

The O,N,O′-ligand was prepared from 2-hy­droxy-4-meth­oxy­benzo­phenone and glycine according to a literature procedure (Fels, 2015[Fels, S. (2015). Höherkoordinierte Komplexverbindungen des Siliciums, Germaniums und Zinns mit chiralen O, N, O'-Liganden. Dissertation (PhD thesis), Freiberg, 2015.]). To a solution of 1.1 g (3.9 mmol) of {(E)-[(2-hy­droxy-4-meth­oxy­phen­yl)(phen­yl)methyl­idene]amino}­acetic acid in 40 ml of dry THF were added 0.9 g (8.9 mmol) of tri­ethyl­amine and the mixture was cooled to 0°C. 1.0 g (4.0 mmol) of SiCl2Ph2 was diluted with 20 ml of THF and added via a dropping funnel to the solution. The mixture was stirred for 16 h at room temperature. The white precipitate of tri­ethyl­ammonium chloride was separated by filtration. The filtrate was reduced in a vacuum and the pale-yellow residue was dissolved in 20 ml of chloro­form. The resulting suspension was filtered again. 2 ml of n-hexane were added to the filtrate and the solution was stored for 6 weeks at 8°C. Pale-yellow crystals suitable for crystal-structure analysis were obtained. Yield: 1.2 g (66%), m.p. = 437 K.

1H NMR (400 MHz, CDCl3) δ (p.p.m.): 4.10 (s, 2H, CH2), 4.13 (s, 3H, CH3—O), 6.37–8.17 (mm, 18Harom); 13C NMR (101 MHz,CDCl3) δ (p.p.m.): 54.5 (CH2), 55.9 (CH3—O), 102.5, 110.2, 111.9, 125.6, 127.5, 129.3, 129.6, 130.4, 134.0, 135.0, 136.7, 139.9 (12 Carom), 167.1, 168.2, 169.1 (C=N, Carom—O—Si, C—OMe), 179.1 (COO); 29Si NMR (CDCl3, 79.5 MHz) δ (p.p.m.): −99.7.

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H23NO4Si
Mr 465.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 10.7366 (3), 9.5341 (4), 22.6716 (7)
β (°) 91.603 (2)
V3) 2319.84 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.34 × 0.34 × 0.17
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Darmstadt, Germany,])
Tmin, Tmax 0.990, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 40516, 5326, 4713
Rint 0.058
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.07
No. of reflections 5326
No. of parameters 308
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.31
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Darmstadt, Germany,]), X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Darmstadt, Germany,]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

{N-[(4-Methoxy-2-oxidophenyl)(phenyl)methylidene]glycinato}diphenylsilicon(IV) top
Crystal data top
C28H23NO4SiDx = 1.333 Mg m3
Mr = 465.56Melting point: 437 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7366 (3) ÅCell parameters from 46011 reflections
b = 9.5341 (4) Åθ = 1.8–29.7°
c = 22.6716 (7) ŵ = 0.14 mm1
β = 91.603 (2)°T = 150 K
V = 2319.84 (14) Å3Prism, pale yellow
Z = 40.34 × 0.34 × 0.17 mm
F(000) = 976
Data collection top
Stoe IPDS 2
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube4713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
h = 1313
Tmin = 0.990, Tmax = 0.996k = 1212
40516 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.3299P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.31392 (3)0.99714 (4)0.16974 (2)0.01342 (9)
O10.36844 (8)1.11274 (10)0.22987 (4)0.0200 (2)
O20.51231 (9)1.13834 (12)0.30212 (4)0.0258 (2)
O30.27872 (8)0.86736 (10)0.11728 (4)0.01574 (18)
O40.27972 (10)0.61405 (12)0.05856 (4)0.0277 (2)
N10.48371 (9)0.95425 (11)0.16594 (5)0.0139 (2)
C10.47765 (11)1.09141 (14)0.25473 (6)0.0171 (2)
C20.55949 (12)1.00210 (16)0.21702 (6)0.0219 (3)
H2A0.6314901.0574250.2037000.026*
H2B0.5913470.9205910.2399050.026*
C30.54093 (11)0.89558 (13)0.12145 (5)0.0139 (2)
C40.47505 (11)0.83159 (13)0.07284 (5)0.0156 (2)
C50.34401 (11)0.81485 (13)0.07368 (5)0.0138 (2)
C60.28246 (12)0.73953 (13)0.02917 (6)0.0168 (2)
H60.1947140.7274120.0301600.020*
C70.34862 (13)0.68184 (14)0.01680 (6)0.0192 (3)
C80.47862 (13)0.69729 (16)0.01858 (6)0.0234 (3)
H80.5238370.6578620.0499560.028*
C90.53918 (13)0.77042 (15)0.02588 (6)0.0218 (3)
H90.6271650.7801000.0249520.026*
C100.34222 (17)0.5619 (2)0.10933 (7)0.0372 (4)
H10A0.3833790.6397150.1292260.056*
H10B0.2812740.5182210.1365750.056*
H10C0.4046090.4921870.0968100.056*
C110.68034 (11)0.89973 (13)0.12084 (5)0.0150 (2)
C120.73492 (12)1.00221 (14)0.08643 (6)0.0202 (3)
H120.6841621.0650730.0638520.024*
C130.86400 (13)1.01245 (15)0.08514 (6)0.0225 (3)
H130.9015061.0831110.0620210.027*
C140.93778 (12)0.91996 (16)0.11744 (6)0.0222 (3)
H141.0259650.9265050.1162310.027*
C150.88319 (12)0.81768 (16)0.15161 (6)0.0229 (3)
H150.9343250.7545120.1738310.027*
C160.75420 (12)0.80664 (14)0.15365 (6)0.0197 (3)
H160.7170030.7364800.1771450.024*
C170.25867 (11)1.15154 (14)0.12341 (6)0.0164 (2)
C180.19408 (12)1.13196 (14)0.06931 (6)0.0195 (3)
H180.1798251.0392010.0553870.023*
C190.15030 (13)1.24442 (16)0.03546 (7)0.0253 (3)
H190.1054471.2274680.0005440.030*
C200.17187 (15)1.38089 (16)0.05406 (7)0.0302 (3)
H200.1426941.4576670.0308100.036*
C210.23654 (16)1.40427 (16)0.10701 (8)0.0320 (3)
H210.2522361.4974410.1200790.038*
C220.27826 (14)1.29152 (15)0.14085 (7)0.0253 (3)
H220.3216701.3095830.1771440.030*
C230.20681 (11)0.91139 (14)0.22325 (5)0.0153 (2)
C240.20644 (12)0.76595 (14)0.23268 (6)0.0196 (3)
H240.2572470.7073860.2094670.024*
C250.13269 (13)0.70607 (15)0.27559 (6)0.0235 (3)
H250.1364030.6079020.2825860.028*
C260.05394 (13)0.78922 (16)0.30807 (6)0.0246 (3)
H260.0031260.7482950.3370840.030*
C270.04988 (13)0.93253 (16)0.29792 (6)0.0243 (3)
H270.0058870.9896100.3191560.029*
C280.12701 (12)0.99305 (14)0.25682 (6)0.0192 (3)
H280.1255251.0918530.2514180.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00968 (15)0.01667 (17)0.01402 (16)0.00076 (12)0.00254 (11)0.00194 (12)
O10.0130 (4)0.0261 (5)0.0210 (5)0.0006 (4)0.0010 (3)0.0089 (4)
O20.0209 (5)0.0365 (6)0.0200 (5)0.0031 (4)0.0007 (4)0.0107 (4)
O30.0122 (4)0.0194 (4)0.0159 (4)0.0013 (3)0.0038 (3)0.0035 (3)
O40.0297 (5)0.0337 (6)0.0197 (5)0.0019 (4)0.0022 (4)0.0118 (4)
N10.0116 (5)0.0162 (5)0.0139 (5)0.0009 (4)0.0008 (4)0.0012 (4)
C10.0138 (6)0.0203 (6)0.0172 (6)0.0035 (5)0.0028 (5)0.0024 (5)
C20.0146 (6)0.0325 (7)0.0185 (6)0.0025 (5)0.0025 (5)0.0089 (5)
C30.0121 (5)0.0142 (5)0.0156 (6)0.0005 (4)0.0033 (4)0.0029 (4)
C40.0142 (6)0.0176 (6)0.0151 (6)0.0003 (4)0.0025 (4)0.0008 (5)
C50.0151 (5)0.0134 (5)0.0129 (5)0.0005 (4)0.0026 (4)0.0018 (4)
C60.0168 (6)0.0169 (6)0.0168 (6)0.0014 (5)0.0007 (5)0.0004 (5)
C70.0251 (7)0.0179 (6)0.0145 (6)0.0000 (5)0.0013 (5)0.0013 (5)
C80.0240 (7)0.0295 (7)0.0170 (6)0.0030 (6)0.0053 (5)0.0053 (5)
C90.0176 (6)0.0292 (7)0.0189 (6)0.0007 (5)0.0054 (5)0.0035 (5)
C100.0427 (9)0.0461 (10)0.0225 (7)0.0060 (8)0.0027 (7)0.0186 (7)
C110.0113 (5)0.0181 (6)0.0156 (6)0.0001 (4)0.0031 (4)0.0021 (5)
C120.0172 (6)0.0221 (6)0.0215 (6)0.0001 (5)0.0023 (5)0.0043 (5)
C130.0186 (6)0.0267 (7)0.0225 (7)0.0071 (5)0.0054 (5)0.0032 (5)
C140.0123 (6)0.0329 (7)0.0215 (6)0.0033 (5)0.0027 (5)0.0024 (6)
C150.0145 (6)0.0290 (7)0.0250 (7)0.0031 (5)0.0002 (5)0.0045 (6)
C160.0151 (6)0.0208 (6)0.0234 (6)0.0002 (5)0.0036 (5)0.0045 (5)
C170.0121 (5)0.0188 (6)0.0186 (6)0.0006 (4)0.0064 (4)0.0006 (5)
C180.0165 (6)0.0210 (6)0.0210 (6)0.0008 (5)0.0045 (5)0.0013 (5)
C190.0241 (7)0.0281 (7)0.0238 (7)0.0019 (6)0.0028 (5)0.0057 (6)
C200.0335 (8)0.0233 (7)0.0342 (8)0.0048 (6)0.0074 (6)0.0098 (6)
C210.0410 (9)0.0186 (7)0.0369 (9)0.0004 (6)0.0081 (7)0.0008 (6)
C220.0290 (7)0.0213 (7)0.0258 (7)0.0027 (5)0.0033 (6)0.0022 (6)
C230.0104 (5)0.0211 (6)0.0142 (5)0.0007 (4)0.0000 (4)0.0000 (5)
C240.0147 (6)0.0216 (6)0.0226 (6)0.0022 (5)0.0023 (5)0.0011 (5)
C250.0197 (6)0.0232 (7)0.0276 (7)0.0009 (5)0.0017 (5)0.0072 (6)
C260.0188 (6)0.0331 (8)0.0222 (7)0.0033 (5)0.0055 (5)0.0069 (6)
C270.0190 (6)0.0318 (8)0.0225 (7)0.0015 (5)0.0084 (5)0.0007 (6)
C280.0168 (6)0.0215 (6)0.0195 (6)0.0004 (5)0.0046 (5)0.0004 (5)
Geometric parameters (Å, º) top
Si1—O31.7502 (9)C12—C131.3905 (18)
Si1—O11.8361 (10)C12—H120.9500
Si1—N11.8726 (11)C13—C141.382 (2)
Si1—C231.8817 (13)C13—H130.9500
Si1—C171.8940 (13)C14—C151.386 (2)
O1—C11.3026 (15)C14—H140.9500
O2—C11.2128 (16)C15—C161.3910 (18)
O3—C51.3257 (15)C15—H150.9500
O4—C71.3499 (16)C16—H160.9500
O4—C101.4371 (18)C17—C181.4044 (18)
N1—C31.3201 (16)C17—C221.4062 (19)
N1—C21.4693 (16)C18—C191.3926 (19)
C1—C21.5066 (18)C18—H180.9500
C2—H2A0.9900C19—C201.385 (2)
C2—H2B0.9900C19—H190.9500
C3—C41.4295 (17)C20—C211.388 (2)
C3—C111.4977 (16)C20—H200.9500
C4—C91.4102 (18)C21—C221.388 (2)
C4—C51.4166 (17)C21—H210.9500
C5—C61.3905 (17)C22—H220.9500
C6—C71.3910 (18)C23—C281.3986 (17)
C6—H60.9500C23—C241.4030 (18)
C7—C81.4052 (19)C24—C251.3936 (19)
C8—C91.3741 (19)C24—H240.9500
C8—H80.9500C25—C261.386 (2)
C9—H90.9500C25—H250.9500
C10—H10A0.9800C26—C271.386 (2)
C10—H10B0.9800C26—H260.9500
C10—H10C0.9800C27—C281.3893 (19)
C11—C121.3901 (18)C27—H270.9500
C11—C161.3917 (18)C28—H280.9500
O3—Si1—O1170.83 (5)C12—C11—C3117.43 (11)
O3—Si1—N190.36 (4)C16—C11—C3122.20 (11)
O1—Si1—N182.80 (4)C11—C12—C13119.81 (12)
O3—Si1—C2390.38 (5)C11—C12—H12120.1
O1—Si1—C2388.28 (5)C13—C12—H12120.1
N1—Si1—C23123.23 (5)C14—C13—C12120.07 (13)
O3—Si1—C1796.56 (5)C14—C13—H13120.0
O1—Si1—C1791.93 (5)C12—C13—H13120.0
N1—Si1—C17115.75 (5)C13—C14—C15120.02 (12)
C23—Si1—C17120.51 (5)C13—C14—H14120.0
C1—O1—Si1119.47 (8)C15—C14—H14120.0
C5—O3—Si1131.68 (8)C14—C15—C16120.60 (13)
C7—O4—C10117.93 (12)C14—C15—H15119.7
C3—N1—C2118.34 (10)C16—C15—H15119.7
C3—N1—Si1127.02 (9)C15—C16—C11119.13 (12)
C2—N1—Si1114.47 (8)C15—C16—H16120.4
O2—C1—O1125.16 (12)C11—C16—H16120.4
O2—C1—C2122.80 (12)C18—C17—C22115.98 (12)
O1—C1—C2112.02 (11)C18—C17—Si1121.36 (10)
N1—C2—C1107.69 (10)C22—C17—Si1122.66 (10)
N1—C2—H2A110.2C19—C18—C17121.99 (13)
C1—C2—H2A110.2C19—C18—H18119.0
N1—C2—H2B110.2C17—C18—H18119.0
C1—C2—H2B110.2C20—C19—C18120.30 (14)
H2A—C2—H2B108.5C20—C19—H19119.8
N1—C3—C4122.62 (11)C18—C19—H19119.8
N1—C3—C11118.84 (11)C19—C20—C21119.30 (14)
C4—C3—C11118.51 (11)C19—C20—H20120.3
C9—C4—C5118.01 (12)C21—C20—H20120.3
C9—C4—C3121.13 (11)C22—C21—C20119.98 (14)
C5—C4—C3120.52 (11)C22—C21—H21120.0
O3—C5—C6119.05 (11)C20—C21—H21120.0
O3—C5—C4120.90 (11)C21—C22—C17122.43 (14)
C6—C5—C4120.03 (11)C21—C22—H22118.8
C5—C6—C7120.38 (12)C17—C22—H22118.8
C5—C6—H6119.8C28—C23—C24117.57 (12)
C7—C6—H6119.8C28—C23—Si1120.25 (10)
O4—C7—C6115.69 (12)C24—C23—Si1122.15 (10)
O4—C7—C8123.73 (12)C25—C24—C23121.02 (13)
C6—C7—C8120.56 (12)C25—C24—H24119.5
C9—C8—C7118.83 (12)C23—C24—H24119.5
C9—C8—H8120.6C26—C25—C24120.24 (13)
C7—C8—H8120.6C26—C25—H25119.9
C8—C9—C4122.18 (12)C24—C25—H25119.9
C8—C9—H9118.9C25—C26—C27119.50 (13)
C4—C9—H9118.9C25—C26—H26120.3
O4—C10—H10A109.5C27—C26—H26120.3
O4—C10—H10B109.5C26—C27—C28120.28 (13)
H10A—C10—H10B109.5C26—C27—H27119.9
O4—C10—H10C109.5C28—C27—H27119.9
H10A—C10—H10C109.5C27—C28—C23121.30 (13)
H10B—C10—H10C109.5C27—C28—H28119.3
C12—C11—C16120.36 (11)C23—C28—H28119.3
N1—Si1—O1—C118.70 (10)N1—C3—C11—C1298.98 (14)
C23—Si1—O1—C1105.11 (10)C4—C3—C11—C1279.26 (15)
C17—Si1—O1—C1134.41 (10)N1—C3—C11—C1680.30 (16)
N1—Si1—O3—C528.46 (11)C4—C3—C11—C16101.47 (15)
C23—Si1—O3—C5151.69 (11)C16—C11—C12—C130.5 (2)
C17—Si1—O3—C587.53 (11)C3—C11—C12—C13178.79 (12)
O3—Si1—N1—C324.52 (11)C11—C12—C13—C140.7 (2)
O1—Si1—N1—C3161.61 (11)C12—C13—C14—C150.6 (2)
C23—Si1—N1—C3115.21 (11)C13—C14—C15—C160.2 (2)
C17—Si1—N1—C372.95 (12)C14—C15—C16—C110.1 (2)
O3—Si1—N1—C2160.30 (9)C12—C11—C16—C150.1 (2)
O1—Si1—N1—C213.57 (9)C3—C11—C16—C15179.16 (12)
C23—Si1—N1—C269.60 (11)O3—Si1—C17—C188.59 (11)
C17—Si1—N1—C2102.24 (10)O1—Si1—C17—C18174.89 (10)
Si1—O1—C1—O2162.69 (11)N1—Si1—C17—C18102.18 (11)
Si1—O1—C1—C218.35 (15)C23—Si1—C17—C1885.74 (11)
C3—N1—C2—C1167.96 (11)O3—Si1—C17—C22171.99 (11)
Si1—N1—C2—C17.67 (14)O1—Si1—C17—C224.53 (11)
O2—C1—C2—N1175.01 (13)N1—Si1—C17—C2278.40 (12)
O1—C1—C2—N15.99 (16)C23—Si1—C17—C2293.67 (12)
C2—N1—C3—C4172.82 (12)C22—C17—C18—C191.02 (19)
Si1—N1—C3—C412.16 (18)Si1—C17—C18—C19178.44 (10)
C2—N1—C3—C119.02 (17)C17—C18—C19—C201.3 (2)
Si1—N1—C3—C11166.00 (9)C18—C19—C20—C210.6 (2)
N1—C3—C4—C9179.71 (12)C19—C20—C21—C220.3 (2)
C11—C3—C4—C91.54 (18)C20—C21—C22—C170.6 (2)
N1—C3—C4—C57.05 (19)C18—C17—C22—C210.1 (2)
C11—C3—C4—C5174.79 (11)Si1—C17—C22—C21179.37 (12)
Si1—O3—C5—C6163.06 (9)O3—Si1—C23—C28137.42 (10)
Si1—O3—C5—C418.54 (17)O1—Si1—C23—C2851.65 (10)
C9—C4—C5—O3178.59 (12)N1—Si1—C23—C28131.89 (10)
C3—C4—C5—O35.14 (18)C17—Si1—C23—C2839.57 (12)
C9—C4—C5—C60.20 (18)O3—Si1—C23—C2444.86 (11)
C3—C4—C5—C6173.25 (12)O1—Si1—C23—C24126.07 (11)
O3—C5—C6—C7179.28 (11)N1—Si1—C23—C2445.83 (13)
C4—C5—C6—C70.87 (19)C17—Si1—C23—C24142.71 (10)
C10—O4—C7—C6175.29 (13)C28—C23—C24—C252.43 (19)
C10—O4—C7—C83.7 (2)Si1—C23—C24—C25175.35 (10)
C5—C6—C7—O4178.26 (12)C23—C24—C25—C262.8 (2)
C5—C6—C7—C80.8 (2)C24—C25—C26—C270.5 (2)
O4—C7—C8—C9178.94 (13)C25—C26—C27—C282.0 (2)
C6—C7—C8—C90.0 (2)C26—C27—C28—C232.4 (2)
C7—C8—C9—C40.7 (2)C24—C23—C28—C270.17 (19)
C5—C4—C9—C80.6 (2)Si1—C23—C28—C27177.99 (11)
C3—C4—C9—C8173.98 (13)
 

Acknowledgements

The authors thank TU Bergakademie Freiberg (Freiberg, Germany) for financial support. Open Access Funding was provided by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBöhme, U. & Fels, S. (2023). Z. Krist. New Cryst. Struc. Submitted.  Google Scholar
First citationBöhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613–o616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482–484.  Google Scholar
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFels, S. (2015). Höherkoordinierte Komplexverbindungen des Siliciums, Germaniums und Zinns mit chiralen O, N, O'-Liganden. Dissertation (PhD thesis), Freiberg, 2015.  Google Scholar
First citationSchwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Srivastav, N., Singh, R., Kaur, V., Brendler, E., Wagler, J. & Kroke, E. (2018). New J. Chem. 42, 1655–1664.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2009). X-RED and X-AREA. Darmstadt, Germany,  Google Scholar
First citationWagler, J., Böhme, U. & Kroke, E. (2014). Struct. Bond. 155, 29–106.  Web of Science CrossRef CAS Google Scholar
First citationWarncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146