organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-(Pyrrolidinium-1-yl)-9-boranuidabi­cyclo­[3.3.1]nona­ne

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 22 February 2023; accepted 11 April 2023; online 18 April 2023)

The title compound, C12H24BN, is an adduct formed from 9-borabi­cyclo­[3.3.1]nonane (9-BBN) and pyrrolidine. It crystallizes in the triclinic space group P[\overline{1}] with three mol­ecules in the asymmetric unit, one of which has disorder of the pyrrolidine ring. The B—N bond lengths are between 1.631 (2) and 1.641 (2) Å. The boron and nitro­gen atoms are bound to one hydrogen atom each. These hydrogen atoms are in anti­periplanar orientation. Both six-membered rings of the 9-BBN unit are in a chair conformation in all three mol­ecules. Differences between the three crystallographic independent mol­ecules are found in the five-membered rings of the pyrrolidine unit. These adopt different twisted and envelope conformations.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydro­boration has been proved to be a powerful tool in organic chemistry (Brown, 1961[Brown, H. C. (1961). Tetrahedron, 12, 117-138.]). 9-Borabi­cyclo­[3.3.1]nonane (9-BBN) has found extensive use among the various hydro­borating reagents because of its unique properties, commercial availability, convenient preparation, and enormous synthetic applications (Dhillon, 2007[Dhillon, R. S. (2007). Hydroboration and Organic Synthesis. Borabicyclo[3.3.1]nonane (9-BBN). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-49076-0]). The present work describes the synthesis and crystal structure of an adduct formed from 9-borabi­cyclo­[3.3.1]nonane and pyrrolidine.

There are three closely related structures that contain the 9-BBN unit bound to an amine, viz. N-[9-borabi­cyclo­(3.3.1)non­yl]quinuclidine (Yalpani et al., 1988[Yalpani, M., Boese, R. & Köster, R. (1988). Chem. Ber. 121, 287-293.]), 2,6-di­cyclo­hexyl-3,3:5,5-bis­(1,5-cyclo-octa­ndi­yl)-2,5-aza­zonia-4-hydro­nia-3,5-diboratin (Boese et al., 1994[Boese, R., Köster, R. & Yalpani, M. (1994). Z. Naturforsch. 49, 1453-1458.]), and 9-(di­methyl­amino)[9-borabi­cyclo­(3.3.1)nonan-9-yl]-9-borabi­cyclo­(3.3.1)non­ane (Metzler & Nöth, 1995[Metzler, N. & Nöth, H. (1995). Chem. Ber. 128, 711-717.]). The latter two are dimeric structures.

The title compound crystallizes in the triclinic space group P[\overline{1}] with three mol­ecules in the asymmetric unit (see Figs. 1[link]–4[link][link][link]). On first sight, all three mol­ecules look very similar. The B—N bond lengths are 1.632 (2), 1.631 (2), and 1.641 (2) Å in mol­ecules A, B, and C respectively. The sum of the covalent radii for nitro­gen (0.74 Å) and boron (0.81 Å) is 1.55 Å if one includes the Schomaker–Stevenson correction for partially ionic single covalent bonds (Pauling, 1962[Pauling, L. (1962). Die Natur der Chemischen Bindung. Weinheim/Bergstr: Verl. Chemie.]; Schomaker & Stevenson, 1941[Schomaker, V. & Stevenson, D. P. (1941). J. Am. Chem. Soc. 63, 37-40.]). The B—N bonds found in the title compound are longer, which might be explained with the adduct character of the compound under investigation, which formally consists of R2BH–NHR2+. Indeed, the closely related N-(9-borabi­cyclo­(3.3.1)non­yl)quinuclidine has a B—N bond length of 1.676 (3) Å.

[Figure 1]
Figure 1
The asymmetric unit of the crystal structure in the unit cell.
[Figure 2]
Figure 2
Diagram of mol­ecule A showing the atom-labelling scheme. Atomic displacement parameters are drawn at the 50% probability level.
[Figure 3]
Figure 3
Diagram of mol­ecule B showing the atom-labelling scheme. Atomic displacement parameters are drawn at the 50% probability level.
[Figure 4]
Figure 4
Diagram of mol­ecule C showing the atom-labelling scheme. Atomic displacement parameters are drawn at the 50% probability level.

The boron and nitro­gen atoms are bound to one hydrogen atom each. These hydrogen atoms are in an anti­periplanar orientation in all three mol­ecules.

The 9-BBN unit has a unique geometry imposed by the catenation of the atoms in the bicyclic heterocycles. Both six-membered rings B1/C1–C5 and B1/C5–C8/C1 are in a chair conformation in all three mol­ecules. Differences between the three crystallographic independent mol­ecules become visible with a closer inspection of the five-membered N1/C9–C12 rings. The conformational analysis was performed with the PLATON software (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.], 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The five-membered ring in mol­ecule A is an envelope on C10A and twisted on C9B—C10B in mol­ecule B. Mol­ecule C has disorder at the C11 atom of the ring with site-occupation factors of 0.723 (8)/0.277 (8). Therefore, two ring conformations result here. The ring N1C/C9C–C12C is twisted on C10C—C11C. The ring N1C—C9C—C10C—C11D—C12C is twisted on C12C—N1C (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). Fig. 5[link] shows a mol­ecule-fitting plot of all three crystallographically independent mol­ecules in order to visualize these differences. The fitting of the 9-BBN units is perfect, whereas the pyrrolidine rings show small differences.

[Figure 5]
Figure 5
Overlay between the three crystallographic independent mol­ecules obtained by fitting the 9-BBN units.

Inter­molecular inter­actions are dominated by close-packing. No specific hydrogen bonds can be identified.

Synthesis and crystallization

1.34 g 9-BBN (11 mmol, synthesized from BH3·SMe2 and 1,5-cyclo­octa­diene) were suspended in 5 ml of toluene (VWR Analapuran, dried with MBRAUN SPS 800) and 1.75 g pyrrolidine (25 mmol, Sigma-Aldrich, distilled from sodium) were added. A gas evolved and the 9-BBN dissolved in the solvent. After standing overnight all volatiles were removed in vacuo. After recrystallization from CHCl3 1.15 g of white crystals were obtained, which were used for further analyses and crystal structure analysis.

Yield: 54%; m.p. 339 K (decomp.).

11B NMR (CDCl3, 160 MHz, δ p.p.m.) −1.50 (d, J = 95.4 Hz); 1H NMR (CDCl3, 500 MHz; the spectrum is difficult to inter­pret, because of many overlapping signals) 0.74 (1H, br, B–H), 1.32–2.05 (18H, m, 9-BBN unit and pyrrolidine C10—H and C11—H), 2.71–3.33 (4H, m, pyrrolidine C9—H and C12—H), 3.8 (1H, br, N–H); 13C NMR (CDCl3, 125 MHz, δ p.p.m.) 22.3 (B—CH), 24.4 (CH2CH2N), 24.7 and 25.8 (CH2CHB), 30.2 and 34.4 (CH2CH2CHB), 49.5 and 49.6 (NCH2) p.p.m..

IR (KBr, cm−1) 3232.3 (vw), 2971.9 (w), 2912.1 (m), 2836.9 (vs), 2821.5 (vs), 2682.6 (w), 2657.6 (w), 2217.8 (w), 2158.1 (w), 2127.2 (w), 1620.0 (w), 1600.7 (vw), 1512.0 (w), 1483.1 (m), 1454.1 (m), 1378.9 (w), 1365.4 (w), 1344.2 (w), 1305.6 (m), 1280.6 (m), 1269.0 (m), 1243.9 (m), 1232.4 (m), 1205.4 (vs), 1155.2 (s), 1091.6 (s), 1068.4 (s), 1041.4 (vs), 1008.6 (w), 964.3 (w), 945.0 (m), 912.2 (vs), 896.8 (vs), 875.6 (m), 813.9 (w), 756.0 (s), 729.0 (vs), 694.3 (m), 640.3 (m), 624.9 (m), 605.6 (w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H24BN
Mr 193.13
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 153
a, b, c (Å) 10.0432 (5), 12.7045 (6), 14.3846 (7)
α, β, γ (°) 81.305 (4), 84.313 (4), 82.068 (4)
V3) 1791.19 (15)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.45 × 0.45 × 0.40
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.806, 0.931
No. of measured, independent and observed [I > 2σ(I)] reflections 33005, 8226, 6579
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.04
No. of reflections 8226
No. of parameters 413
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.20
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015b).

9-(Pyrrolidinium-1-yl)-9-boranuidabicyclo[3.3.1]nonane top
Crystal data top
C12H24BNZ = 6
Mr = 193.13F(000) = 648
Triclinic, P1Dx = 1.074 Mg m3
a = 10.0432 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7045 (6) ÅCell parameters from 33005 reflections
c = 14.3846 (7) Åθ = 2.7–27.9°
α = 81.305 (4)°µ = 0.06 mm1
β = 84.313 (4)°T = 153 K
γ = 82.068 (4)°Prism, colourless
V = 1791.19 (15) Å30.45 × 0.45 × 0.40 mm
Data collection top
Stoe IPDS 2T
diffractometer
8226 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus6579 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.9°
rotation method scansh = 1313
Absorption correction: integration
(X-RED; Stoe, 2009)
k = 1616
Tmin = 0.806, Tmax = 0.931l = 1818
33005 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.5868P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
8226 reflectionsΔρmax = 0.32 e Å3
413 parametersΔρmin = 0.20 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bonded to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.99 Å for CH2 and 1.0 Å for CH (C1 and C5). Uiso(H) = xUeq(C), where x = 1.2 for CH2 and CH. Hydrogen atoms at nitrogen and boron were localized from residual electron density maps. Hydrogen atoms at nitrogen were freely refined. Hydrogen atoms at boron were restrained at a B–H distance of 1.08 Å (DFIX restraint in SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B1A0.79459 (12)0.26768 (10)0.36908 (9)0.0229 (2)
H1D0.7013 (12)0.2510 (10)0.3343 (9)0.022 (3)*
N1A0.91179 (10)0.26727 (8)0.28198 (7)0.0237 (2)
H1N0.9888 (17)0.2866 (13)0.3007 (11)0.040 (4)*
C1A0.83681 (12)0.17621 (10)0.45594 (8)0.0269 (2)
H1A0.8522590.1049070.4326300.032*
C2A0.96854 (13)0.19650 (11)0.49325 (9)0.0345 (3)
H2A0.9873380.1430900.5495190.041*
H2B1.0434790.1842050.4444190.041*
C3A0.96769 (13)0.30920 (12)0.51990 (10)0.0373 (3)
H3A0.9159530.3129700.5818280.045*
H3B1.0615490.3203280.5271500.045*
C4A0.90690 (13)0.40062 (11)0.44809 (9)0.0335 (3)
H4A0.9748700.4132170.3942070.040*
H4B0.8885610.4669010.4780580.040*
C5A0.77558 (12)0.38105 (9)0.40966 (8)0.0252 (2)
H5A0.7527840.4396650.3568720.030*
C6A0.65506 (12)0.38055 (10)0.48518 (9)0.0296 (3)
H6A0.6465940.4474710.5139020.035*
H6B0.5716810.3813360.4535560.035*
C7A0.66454 (12)0.28469 (11)0.56439 (8)0.0312 (3)
H7A0.7247520.2984740.6104920.037*
H7B0.5738820.2801910.5975750.037*
C8A0.71689 (13)0.17584 (10)0.53178 (9)0.0314 (3)
H8A0.6416280.1489690.5067300.038*
H8B0.7441970.1244500.5875150.038*
C9A0.95264 (15)0.16064 (10)0.24822 (9)0.0355 (3)
H9A0.8747710.1193490.2543350.043*
H9B1.0249840.1181100.2849240.043*
C10A1.00278 (15)0.18694 (12)0.14554 (10)0.0394 (3)
H10A0.9993530.1264370.1101600.047*
H10B1.0960130.2057240.1391110.047*
C11A0.90267 (17)0.28319 (14)0.11258 (10)0.0458 (4)
H11A0.9413650.3269700.0561410.055*
H11B0.8183270.2599230.0971770.055*
C12A0.87631 (13)0.34629 (10)0.19567 (8)0.0298 (3)
H12A0.9330390.4054230.1868670.036*
H12B0.7803900.3772320.2021740.036*
B1B0.70440 (12)0.64836 (10)0.74750 (9)0.0219 (2)
H1E0.8054 (13)0.6822 (11)0.7314 (10)0.032 (4)*
N1B0.60317 (10)0.73847 (7)0.68679 (7)0.02243 (19)
H2N0.5214 (16)0.7158 (12)0.6902 (10)0.030 (4)*
C1B0.65523 (12)0.63456 (9)0.85877 (8)0.0251 (2)
H1B0.6505760.7057730.8813200.030*
C2B0.51348 (12)0.59802 (10)0.87556 (8)0.0284 (2)
H2C0.4885330.5863340.9443260.034*
H2D0.4478290.6564610.8470910.034*
C3B0.50149 (12)0.49525 (10)0.83492 (9)0.0298 (3)
H3C0.4047890.4870160.8356250.036*
H3D0.5443380.4330190.8763780.036*
C4B0.56666 (12)0.49307 (10)0.73374 (9)0.0276 (2)
H4C0.5050400.5379690.6897330.033*
H4D0.5750240.4185340.7193760.033*
C5B0.70668 (11)0.53243 (9)0.71410 (8)0.0231 (2)
H5B0.7317020.5392340.6446110.028*
C6B0.81818 (12)0.45578 (10)0.76475 (9)0.0291 (2)
H6C0.8180330.3831030.7478260.035*
H6D0.9065210.4796530.7407880.035*
C7B0.80494 (13)0.44822 (11)0.87269 (9)0.0338 (3)
H7C0.8924690.4154860.8966280.041*
H7D0.7373290.3993300.8982970.041*
C8B0.76362 (13)0.55556 (11)0.91104 (8)0.0315 (3)
H8C0.8452850.5917410.9090410.038*
H8D0.7298100.5401300.9780850.038*
C9B0.57846 (14)0.84566 (10)0.72116 (9)0.0325 (3)
H9C0.6611330.8631010.7445260.039*
H9D0.5052560.8468140.7725690.039*
C10B0.53817 (13)0.92408 (10)0.63525 (9)0.0322 (3)
H10C0.5510620.9982510.6423010.039*
H10D0.4430770.9223470.6235020.039*
C11B0.63473 (13)0.88215 (10)0.55673 (10)0.0351 (3)
H11C0.7227060.9097980.5539540.042*
H11D0.5966350.9035870.4947810.042*
C12B0.65039 (12)0.76050 (9)0.58322 (8)0.0266 (2)
H12C0.5950270.7279620.5447420.032*
H12D0.7458490.7299560.5723560.032*
B1C0.36310 (13)0.12899 (11)0.83426 (10)0.0270 (3)
H1F0.3975 (16)0.0402 (10)0.8482 (11)0.038 (4)*
N1C0.49310 (11)0.18179 (9)0.85926 (8)0.0305 (2)
H3N0.4766 (17)0.2531 (14)0.8425 (12)0.043 (4)*
C1C0.22926 (13)0.16740 (11)0.89924 (9)0.0338 (3)
H1C0.2469000.1440080.9669320.041*
C2C0.19823 (14)0.29047 (12)0.88339 (11)0.0395 (3)
H2E0.1129210.3112540.9206350.047*
H2F0.2706910.3209840.9083170.047*
C3C0.18534 (13)0.34108 (10)0.78081 (11)0.0376 (3)
H3E0.1892230.4191550.7762400.045*
H3F0.0957140.3314790.7626300.045*
C4C0.29416 (13)0.29474 (10)0.70996 (9)0.0318 (3)
H4E0.3773440.3277140.7121130.038*
H4F0.2633880.3160740.6457380.038*
C5C0.32941 (11)0.17170 (9)0.72638 (8)0.0258 (2)
H5C0.4112410.1518930.6840250.031*
C6C0.21508 (13)0.11162 (11)0.70492 (10)0.0345 (3)
H6E0.1909680.1384020.6397120.041*
H6F0.2494480.0344410.7075340.041*
C7C0.08666 (13)0.12307 (11)0.77209 (11)0.0370 (3)
H7E0.0358970.1947930.7548790.044*
H7F0.0290530.0687570.7630480.044*
C8C0.11333 (14)0.10963 (12)0.87666 (11)0.0413 (3)
H8E0.1338180.0320620.8993530.050*
H8F0.0295950.1365770.9126330.050*
C9C0.51960 (16)0.16283 (15)0.96171 (10)0.0459 (4)
H9E0.4795590.2254710.9928940.055*
H9F0.4799810.0986130.9942410.055*
C10C0.66937 (17)0.14639 (16)0.96501 (12)0.0564 (5)
H10E0.6968750.1037561.0250550.068*0.723 (8)
H10F0.7074000.2154400.9556050.068*0.723 (8)
H10G0.6985660.2054450.9925970.068*0.277 (8)
H10H0.6972220.0778921.0050310.068*0.277 (8)
C11C0.7120 (2)0.0813 (3)0.87756 (17)0.0442 (9)0.723 (8)
H11E0.8086480.0821950.8562240.053*0.723 (8)
H11F0.6923510.0060880.8928100.053*0.723 (8)
C11D0.7260 (5)0.1444 (8)0.8787 (5)0.044 (2)0.277 (8)
H11G0.7930370.0795800.8777750.053*0.277 (8)
H11H0.7745700.2079520.8601220.053*0.277 (8)
C12C0.62421 (13)0.14377 (13)0.80686 (10)0.0403 (3)
H12E0.6079720.0983290.7599860.048*0.723 (8)
H12F0.6672890.2058500.7732730.048*0.723 (8)
H12G0.6429400.1934320.7484710.048*0.277 (8)
H12H0.6239400.0707850.7906820.048*0.277 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B1A0.0199 (6)0.0270 (6)0.0223 (6)0.0059 (5)0.0002 (4)0.0042 (5)
N1A0.0226 (5)0.0256 (5)0.0235 (5)0.0044 (4)0.0003 (4)0.0055 (4)
C1A0.0277 (6)0.0269 (6)0.0258 (5)0.0046 (4)0.0009 (4)0.0028 (4)
C2A0.0256 (6)0.0448 (7)0.0312 (6)0.0002 (5)0.0055 (5)0.0009 (5)
C3A0.0240 (6)0.0589 (9)0.0333 (6)0.0110 (6)0.0044 (5)0.0142 (6)
C4A0.0299 (6)0.0388 (7)0.0365 (7)0.0147 (5)0.0045 (5)0.0154 (5)
C5A0.0248 (5)0.0261 (5)0.0249 (5)0.0050 (4)0.0007 (4)0.0040 (4)
C6A0.0241 (6)0.0357 (6)0.0292 (6)0.0016 (5)0.0011 (4)0.0094 (5)
C7A0.0249 (6)0.0446 (7)0.0243 (6)0.0078 (5)0.0035 (4)0.0058 (5)
C8A0.0319 (6)0.0355 (6)0.0262 (6)0.0107 (5)0.0002 (5)0.0014 (5)
C9A0.0421 (7)0.0282 (6)0.0356 (7)0.0033 (5)0.0077 (5)0.0107 (5)
C10A0.0431 (8)0.0434 (8)0.0343 (7)0.0102 (6)0.0093 (6)0.0176 (6)
C11A0.0515 (9)0.0615 (10)0.0264 (6)0.0073 (7)0.0042 (6)0.0122 (6)
C12A0.0291 (6)0.0344 (6)0.0243 (6)0.0043 (5)0.0008 (4)0.0002 (5)
B1B0.0194 (5)0.0229 (6)0.0230 (6)0.0026 (4)0.0015 (4)0.0018 (5)
N1B0.0221 (5)0.0202 (4)0.0245 (5)0.0027 (4)0.0008 (4)0.0034 (4)
C1B0.0273 (6)0.0257 (5)0.0233 (5)0.0043 (4)0.0014 (4)0.0057 (4)
C2B0.0266 (6)0.0313 (6)0.0252 (5)0.0025 (5)0.0044 (4)0.0025 (5)
C3B0.0248 (6)0.0304 (6)0.0333 (6)0.0075 (5)0.0001 (5)0.0000 (5)
C4B0.0288 (6)0.0251 (6)0.0305 (6)0.0057 (4)0.0059 (5)0.0045 (5)
C5B0.0237 (5)0.0236 (5)0.0212 (5)0.0006 (4)0.0013 (4)0.0034 (4)
C6B0.0257 (6)0.0263 (6)0.0329 (6)0.0039 (4)0.0023 (5)0.0031 (5)
C7B0.0304 (6)0.0354 (7)0.0320 (6)0.0033 (5)0.0078 (5)0.0037 (5)
C8B0.0325 (6)0.0390 (7)0.0236 (6)0.0065 (5)0.0068 (5)0.0014 (5)
C9B0.0422 (7)0.0223 (6)0.0319 (6)0.0023 (5)0.0032 (5)0.0060 (5)
C10B0.0322 (6)0.0231 (6)0.0391 (7)0.0007 (5)0.0021 (5)0.0013 (5)
C11B0.0312 (6)0.0296 (6)0.0388 (7)0.0005 (5)0.0040 (5)0.0062 (5)
C12B0.0278 (6)0.0281 (6)0.0228 (5)0.0030 (4)0.0006 (4)0.0012 (4)
B1C0.0237 (6)0.0255 (6)0.0309 (7)0.0012 (5)0.0008 (5)0.0040 (5)
N1C0.0264 (5)0.0347 (6)0.0302 (5)0.0028 (4)0.0053 (4)0.0079 (4)
C1C0.0278 (6)0.0417 (7)0.0297 (6)0.0025 (5)0.0036 (5)0.0040 (5)
C2C0.0277 (6)0.0441 (8)0.0481 (8)0.0019 (5)0.0054 (6)0.0224 (6)
C3C0.0279 (6)0.0238 (6)0.0601 (9)0.0014 (5)0.0021 (6)0.0077 (6)
C4C0.0264 (6)0.0296 (6)0.0375 (7)0.0028 (5)0.0034 (5)0.0015 (5)
C5C0.0194 (5)0.0279 (6)0.0303 (6)0.0020 (4)0.0015 (4)0.0078 (5)
C6C0.0248 (6)0.0387 (7)0.0436 (7)0.0048 (5)0.0018 (5)0.0168 (6)
C7C0.0241 (6)0.0340 (7)0.0551 (8)0.0076 (5)0.0010 (5)0.0127 (6)
C8C0.0280 (7)0.0437 (8)0.0492 (8)0.0090 (6)0.0085 (6)0.0005 (6)
C9C0.0433 (8)0.0642 (10)0.0300 (7)0.0089 (7)0.0091 (6)0.0154 (7)
C10C0.0501 (9)0.0769 (12)0.0440 (9)0.0300 (9)0.0238 (7)0.0195 (8)
C11C0.0258 (10)0.0500 (19)0.0503 (13)0.0014 (10)0.0009 (8)0.0061 (11)
C11D0.021 (2)0.050 (5)0.067 (4)0.003 (2)0.008 (2)0.022 (3)
C12C0.0225 (6)0.0581 (9)0.0417 (7)0.0008 (6)0.0026 (5)0.0147 (7)
Geometric parameters (Å, º) top
B1A—C5A1.6148 (17)C7B—C8B1.5370 (19)
B1A—C1A1.6191 (17)C7B—H7C0.9900
B1A—N1A1.6319 (15)C7B—H7D0.9900
B1A—H1D1.163 (11)C8B—H8C0.9900
N1A—C9A1.4985 (15)C8B—H8D0.9900
N1A—C12A1.5127 (15)C9B—C10B1.5163 (17)
N1A—H1N0.919 (17)C9B—H9C0.9900
C1A—C8A1.5428 (16)C9B—H9D0.9900
C1A—C2A1.5431 (17)C10B—C11B1.5239 (18)
C1A—H1A1.0000C10B—H10C0.9900
C2A—C3A1.536 (2)C10B—H10D0.9900
C2A—H2A0.9900C11B—C12B1.5248 (17)
C2A—H2B0.9900C11B—H11C0.9900
C3A—C4A1.535 (2)C11B—H11D0.9900
C3A—H3A0.9900C12B—H12C0.9900
C3A—H3B0.9900C12B—H12D0.9900
C4A—C5A1.5438 (17)B1C—C5C1.6173 (18)
C4A—H4A0.9900B1C—C1C1.6207 (18)
C4A—H4B0.9900B1C—N1C1.6406 (17)
C5A—C6A1.5442 (16)B1C—H1F1.127 (12)
C5A—H5A1.0000N1C—C9C1.5013 (17)
C6A—C7A1.5364 (18)N1C—C12C1.5077 (17)
C6A—H6A0.9900N1C—H3N0.899 (18)
C6A—H6B0.9900C1C—C2C1.538 (2)
C7A—C8A1.5347 (19)C1C—C8C1.5436 (19)
C7A—H7A0.9900C1C—H1C1.0000
C7A—H7B0.9900C2C—C3C1.528 (2)
C8A—H8A0.9900C2C—H2E0.9900
C8A—H8B0.9900C2C—H2F0.9900
C9A—C10A1.5154 (18)C3C—C4C1.5372 (19)
C9A—H9A0.9900C3C—H3E0.9900
C9A—H9B0.9900C3C—H3F0.9900
C10A—C11A1.520 (2)C4C—C5C1.5417 (17)
C10A—H10A0.9900C4C—H4E0.9900
C10A—H10B0.9900C4C—H4F0.9900
C11A—C12A1.5197 (19)C5C—C6C1.5427 (16)
C11A—H11A0.9900C5C—H5C1.0000
C11A—H11B0.9900C6C—C7C1.5368 (18)
C12A—H12A0.9900C6C—H6E0.9900
C12A—H12B0.9900C6C—H6F0.9900
B1B—C5B1.6134 (17)C7C—C8C1.534 (2)
B1B—C1B1.6182 (16)C7C—H7E0.9900
B1B—N1B1.6308 (15)C7C—H7F0.9900
B1B—H1E1.145 (12)C8C—H8E0.9900
N1B—C9B1.4988 (15)C8C—H8F0.9900
N1B—C12B1.5144 (14)C9C—C10C1.494 (2)
N1B—H2N0.902 (15)C9C—H9E0.9900
C1B—C2B1.5430 (16)C9C—H9F0.9900
C1B—C8B1.5461 (17)C10C—C11D1.316 (7)
C1B—H1B1.0000C10C—C11C1.600 (4)
C2B—C3B1.5326 (18)C10C—H10E0.9900
C2B—H2C0.9900C10C—H10F0.9900
C2B—H2D0.9900C10C—H10G0.9900
C3B—C4B1.5382 (17)C10C—H10H0.9900
C3B—H3C0.9900C11C—C12C1.477 (3)
C3B—H3D0.9900C11C—H11E0.9900
C4B—C5B1.5427 (16)C11C—H11F0.9900
C4B—H4C0.9900C11D—C12C1.525 (6)
C4B—H4D0.9900C11D—H11G0.9900
C5B—C6B1.5424 (15)C11D—H11H0.9900
C5B—H5B1.0000C12C—H12E0.9900
C6B—C7B1.5348 (18)C12C—H12F0.9900
C6B—H6C0.9900C12C—H12G0.9900
C6B—H6D0.9900C12C—H12H0.9900
C5A—B1A—C1A106.44 (9)C6B—C7B—H7D108.5
C5A—B1A—N1A110.22 (9)C8B—C7B—H7D108.5
C1A—B1A—N1A110.77 (9)H7C—C7B—H7D107.5
C5A—B1A—H1D114.2 (7)C7B—C8B—C1B116.04 (10)
C1A—B1A—H1D112.7 (6)C7B—C8B—H8C108.3
N1A—B1A—H1D102.5 (7)C1B—C8B—H8C108.3
C9A—N1A—C12A106.20 (9)C7B—C8B—H8D108.3
C9A—N1A—B1A114.85 (9)C1B—C8B—H8D108.3
C12A—N1A—B1A114.01 (9)H8C—C8B—H8D107.4
C9A—N1A—H1N105.9 (10)N1B—C9B—C10B104.44 (10)
C12A—N1A—H1N105.8 (10)N1B—C9B—H9C110.9
B1A—N1A—H1N109.4 (10)C10B—C9B—H9C110.9
C8A—C1A—C2A113.04 (10)N1B—C9B—H9D110.9
C8A—C1A—B1A107.59 (10)C10B—C9B—H9D110.9
C2A—C1A—B1A110.52 (9)H9C—C9B—H9D108.9
C8A—C1A—H1A108.5C9B—C10B—C11B102.28 (10)
C2A—C1A—H1A108.5C9B—C10B—H10C111.3
B1A—C1A—H1A108.5C11B—C10B—H10C111.3
C3A—C2A—C1A115.10 (11)C9B—C10B—H10D111.3
C3A—C2A—H2A108.5C11B—C10B—H10D111.3
C1A—C2A—H2A108.5H10C—C10B—H10D109.2
C3A—C2A—H2B108.5C10B—C11B—C12B104.44 (10)
C1A—C2A—H2B108.5C10B—C11B—H11C110.9
H2A—C2A—H2B107.5C12B—C11B—H11C110.9
C4A—C3A—C2A114.34 (10)C10B—C11B—H11D110.9
C4A—C3A—H3A108.7C12B—C11B—H11D110.9
C2A—C3A—H3A108.7H11C—C11B—H11D108.9
C4A—C3A—H3B108.7N1B—C12B—C11B106.66 (10)
C2A—C3A—H3B108.7N1B—C12B—H12C110.4
H3A—C3A—H3B107.6C11B—C12B—H12C110.4
C3A—C4A—C5A115.16 (10)N1B—C12B—H12D110.4
C3A—C4A—H4A108.5C11B—C12B—H12D110.4
C5A—C4A—H4A108.5H12C—C12B—H12D108.6
C3A—C4A—H4B108.5C5C—B1C—C1C105.87 (10)
C5A—C4A—H4B108.5C5C—B1C—N1C110.05 (9)
H4A—C4A—H4B107.5C1C—B1C—N1C110.56 (10)
C4A—C5A—C6A112.81 (10)C5C—B1C—H1F114.0 (8)
C4A—C5A—B1A110.98 (10)C1C—B1C—H1F113.7 (8)
C6A—C5A—B1A107.77 (9)N1C—B1C—H1F102.8 (8)
C4A—C5A—H5A108.4C9C—N1C—C12C105.72 (10)
C6A—C5A—H5A108.4C9C—N1C—B1C114.81 (11)
B1A—C5A—H5A108.4C12C—N1C—B1C113.99 (10)
C7A—C6A—C5A115.09 (10)C9C—N1C—H3N107.2 (11)
C7A—C6A—H6A108.5C12C—N1C—H3N107.3 (11)
C5A—C6A—H6A108.5B1C—N1C—H3N107.4 (11)
C7A—C6A—H6B108.5C2C—C1C—C8C113.47 (11)
C5A—C6A—H6B108.5C2C—C1C—B1C110.27 (10)
H6A—C6A—H6B107.5C8C—C1C—B1C107.90 (11)
C8A—C7A—C6A115.00 (10)C2C—C1C—H1C108.4
C8A—C7A—H7A108.5C8C—C1C—H1C108.4
C6A—C7A—H7A108.5B1C—C1C—H1C108.4
C8A—C7A—H7B108.5C3C—C2C—C1C115.29 (11)
C6A—C7A—H7B108.5C3C—C2C—H2E108.5
H7A—C7A—H7B107.5C1C—C2C—H2E108.5
C7A—C8A—C1A115.62 (10)C3C—C2C—H2F108.5
C7A—C8A—H8A108.4C1C—C2C—H2F108.5
C1A—C8A—H8A108.4H2E—C2C—H2F107.5
C7A—C8A—H8B108.4C2C—C3C—C4C114.57 (11)
C1A—C8A—H8B108.4C2C—C3C—H3E108.6
H8A—C8A—H8B107.4C4C—C3C—H3E108.6
N1A—C9A—C10A105.05 (10)C2C—C3C—H3F108.6
N1A—C9A—H9A110.7C4C—C3C—H3F108.6
C10A—C9A—H9A110.7H3E—C3C—H3F107.6
N1A—C9A—H9B110.7C3C—C4C—C5C115.27 (10)
C10A—C9A—H9B110.7C3C—C4C—H4E108.5
H9A—C9A—H9B108.8C5C—C4C—H4E108.5
C9A—C10A—C11A101.71 (11)C3C—C4C—H4F108.5
C9A—C10A—H10A111.4C5C—C4C—H4F108.5
C11A—C10A—H10A111.4H4E—C4C—H4F107.5
C9A—C10A—H10B111.4C4C—C5C—C6C113.07 (10)
C11A—C10A—H10B111.4C4C—C5C—B1C111.44 (10)
H10A—C10A—H10B109.3C6C—C5C—B1C107.34 (10)
C12A—C11A—C10A104.56 (11)C4C—C5C—H5C108.3
C12A—C11A—H11A110.8C6C—C5C—H5C108.3
C10A—C11A—H11A110.8B1C—C5C—H5C108.3
C12A—C11A—H11B110.8C7C—C6C—C5C114.83 (11)
C10A—C11A—H11B110.8C7C—C6C—H6E108.6
H11A—C11A—H11B108.9C5C—C6C—H6E108.6
N1A—C12A—C11A106.15 (11)C7C—C6C—H6F108.6
N1A—C12A—H12A110.5C5C—C6C—H6F108.6
C11A—C12A—H12A110.5H6E—C6C—H6F107.5
N1A—C12A—H12B110.5C8C—C7C—C6C114.04 (11)
C11A—C12A—H12B110.5C8C—C7C—H7E108.7
H12A—C12A—H12B108.7C6C—C7C—H7E108.7
C5B—B1B—C1B106.44 (9)C8C—C7C—H7F108.7
C5B—B1B—N1B110.51 (9)C6C—C7C—H7F108.7
C1B—B1B—N1B111.52 (9)H7E—C7C—H7F107.6
C5B—B1B—H1E113.3 (8)C7C—C8C—C1C115.40 (11)
C1B—B1B—H1E112.9 (7)C7C—C8C—H8E108.4
N1B—B1B—H1E102.3 (7)C1C—C8C—H8E108.4
C9B—N1B—C12B105.84 (9)C7C—C8C—H8F108.4
C9B—N1B—B1B114.84 (9)C1C—C8C—H8F108.4
C12B—N1B—B1B113.61 (9)H8E—C8C—H8F107.5
C9B—N1B—H2N105.5 (9)C10C—C9C—N1C106.46 (12)
C12B—N1B—H2N107.1 (9)C10C—C9C—H9E110.4
B1B—N1B—H2N109.3 (9)N1C—C9C—H9E110.4
C2B—C1B—C8B113.32 (10)C10C—C9C—H9F110.4
C2B—C1B—B1B110.65 (9)N1C—C9C—H9F110.4
C8B—C1B—B1B107.61 (9)H9E—C9C—H9F108.6
C2B—C1B—H1B108.4C11D—C10C—C9C108.9 (2)
C8B—C1B—H1B108.4C9C—C10C—C11C100.14 (14)
B1B—C1B—H1B108.4C9C—C10C—H10E111.7
C3B—C2B—C1B114.31 (10)C11C—C10C—H10E111.7
C3B—C2B—H2C108.7C9C—C10C—H10F111.7
C1B—C2B—H2C108.7C11C—C10C—H10F111.7
C3B—C2B—H2D108.7H10E—C10C—H10F109.5
C1B—C2B—H2D108.7C11D—C10C—H10G109.9
H2C—C2B—H2D107.6C9C—C10C—H10G109.9
C2B—C3B—C4B114.03 (9)C11D—C10C—H10H109.9
C2B—C3B—H3C108.7C9C—C10C—H10H109.9
C4B—C3B—H3C108.7H10G—C10C—H10H108.3
C2B—C3B—H3D108.7C12C—C11C—C10C100.65 (19)
C4B—C3B—H3D108.7C12C—C11C—H11E111.6
H3C—C3B—H3D107.6C10C—C11C—H11E111.6
C3B—C4B—C5B115.65 (10)C12C—C11C—H11F111.6
C3B—C4B—H4C108.4C10C—C11C—H11F111.6
C5B—C4B—H4C108.4H11E—C11C—H11F109.4
C3B—C4B—H4D108.4C10C—C11D—C12C112.8 (4)
C5B—C4B—H4D108.4C10C—C11D—H11G109.0
H4C—C4B—H4D107.4C12C—C11D—H11G109.0
C6B—C5B—C4B113.19 (9)C10C—C11D—H11H109.0
C6B—C5B—B1B107.20 (9)C12C—C11D—H11H109.0
C4B—C5B—B1B111.05 (9)H11G—C11D—H11H107.8
C6B—C5B—H5B108.4C11C—C12C—N1C107.17 (13)
C4B—C5B—H5B108.4N1C—C12C—C11D102.0 (2)
B1B—C5B—H5B108.4C11C—C12C—H12E110.3
C7B—C6B—C5B115.05 (10)N1C—C12C—H12E110.3
C7B—C6B—H6C108.5C11C—C12C—H12F110.3
C5B—C6B—H6C108.5N1C—C12C—H12F110.3
C7B—C6B—H6D108.5H12E—C12C—H12F108.5
C5B—C6B—H6D108.5N1C—C12C—H12G111.4
H6C—C6B—H6D107.5C11D—C12C—H12G111.4
C6B—C7B—C8B115.14 (10)N1C—C12C—H12H111.4
C6B—C7B—H7C108.5C11D—C12C—H12H111.4
C8B—C7B—H7C108.5H12G—C12C—H12H109.2
C5A—B1A—N1A—C9A171.27 (10)C4B—C5B—C6B—C7B67.50 (14)
C1A—B1A—N1A—C9A53.73 (13)B1B—C5B—C6B—C7B55.30 (13)
C5A—B1A—N1A—C12A65.85 (12)C5B—C6B—C7B—C8B41.75 (15)
C1A—B1A—N1A—C12A176.61 (9)C6B—C7B—C8B—C1B40.06 (15)
C5A—B1A—C1A—C8A64.51 (11)C2B—C1B—C8B—C7B70.93 (14)
N1A—B1A—C1A—C8A175.66 (9)B1B—C1B—C8B—C7B51.74 (13)
C5A—B1A—C1A—C2A59.35 (12)C12B—N1B—C9B—C10B29.66 (12)
N1A—B1A—C1A—C2A60.48 (12)B1B—N1B—C9B—C10B155.83 (10)
C8A—C1A—C2A—C3A67.16 (14)N1B—C9B—C10B—C11B40.54 (13)
B1A—C1A—C2A—C3A53.49 (14)C9B—C10B—C11B—C12B35.66 (13)
C1A—C2A—C3A—C4A44.22 (15)C9B—N1B—C12B—C11B7.11 (12)
C2A—C3A—C4A—C5A43.60 (15)B1B—N1B—C12B—C11B134.02 (10)
C3A—C4A—C5A—C6A68.50 (14)C10B—C11B—C12B—N1B17.95 (13)
C3A—C4A—C5A—B1A52.55 (14)C5C—B1C—N1C—C9C170.23 (11)
C1A—B1A—C5A—C4A58.97 (12)C1C—B1C—N1C—C9C53.62 (14)
N1A—B1A—C5A—C4A61.21 (12)C5C—B1C—N1C—C12C67.60 (13)
C1A—B1A—C5A—C6A65.01 (11)C1C—B1C—N1C—C12C175.79 (11)
N1A—B1A—C5A—C6A174.81 (9)C5C—B1C—C1C—C2C60.16 (13)
C4A—C5A—C6A—C7A68.70 (14)N1C—B1C—C1C—C2C59.01 (14)
B1A—C5A—C6A—C7A54.17 (13)C5C—B1C—C1C—C8C64.27 (13)
C5A—C6A—C7A—C8A42.02 (15)N1C—B1C—C1C—C8C176.56 (10)
C6A—C7A—C8A—C1A41.88 (15)C8C—C1C—C2C—C3C66.64 (15)
C2A—C1A—C8A—C7A68.79 (14)B1C—C1C—C2C—C3C54.52 (15)
B1A—C1A—C8A—C7A53.52 (13)C1C—C2C—C3C—C4C43.87 (16)
C12A—N1A—C9A—C10A25.89 (13)C2C—C3C—C4C—C5C41.93 (16)
B1A—N1A—C9A—C10A152.87 (10)C3C—C4C—C5C—C6C69.78 (14)
N1A—C9A—C10A—C11A39.37 (14)C3C—C4C—C5C—B1C51.24 (14)
C9A—C10A—C11A—C12A37.79 (14)C1C—B1C—C5C—C4C58.88 (12)
C9A—N1A—C12A—C11A1.97 (13)N1C—B1C—C5C—C4C60.62 (12)
B1A—N1A—C12A—C11A129.45 (11)C1C—B1C—C5C—C6C65.42 (12)
C10A—C11A—C12A—N1A22.52 (14)N1C—B1C—C5C—C6C175.08 (10)
C5B—B1B—N1B—C9B171.79 (9)C4C—C5C—C6C—C7C66.79 (15)
C1B—B1B—N1B—C9B53.61 (12)B1C—C5C—C6C—C7C56.53 (14)
C5B—B1B—N1B—C12B66.17 (11)C5C—C6C—C7C—C8C44.76 (16)
C1B—B1B—N1B—C12B175.65 (9)C6C—C7C—C8C—C1C43.55 (17)
C5B—B1B—C1B—C2B59.92 (12)C2C—C1C—C8C—C7C68.32 (16)
N1B—B1B—C1B—C2B60.68 (12)B1C—C1C—C8C—C7C54.17 (15)
C5B—B1B—C1B—C8B64.37 (11)C12C—N1C—C9C—C10C16.44 (17)
N1B—B1B—C1B—C8B175.03 (9)B1C—N1C—C9C—C10C142.99 (13)
C8B—C1B—C2B—C3B65.74 (13)N1C—C9C—C10C—C11D5.6 (5)
B1B—C1B—C2B—C3B55.23 (13)N1C—C9C—C10C—C11C36.84 (18)
C1B—C2B—C3B—C4B45.59 (14)C9C—C10C—C11C—C12C43.9 (2)
C2B—C3B—C4B—C5B43.93 (14)C9C—C10C—C11D—C12C7.8 (8)
C3B—C4B—C5B—C6B69.13 (13)C10C—C11C—C12C—N1C35.1 (2)
C3B—C4B—C5B—B1B51.51 (13)C9C—N1C—C12C—C11C13.2 (2)
C1B—B1B—C5B—C6B66.31 (11)B1C—N1C—C12C—C11C113.8 (2)
N1B—B1B—C5B—C6B172.44 (9)C9C—N1C—C12C—C11D19.7 (4)
C1B—B1B—C5B—C4B57.81 (11)B1C—N1C—C12C—C11D146.8 (4)
N1B—B1B—C5B—C4B63.44 (11)C10C—C11D—C12C—N1C17.7 (8)
 

Acknowledgements

The authors thank TU Bergakademie Freiberg (Freiberg, Germany) for financial support and acknowledge Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

Funding information

Funding for this research was provided by: Technische Universität Bergakademie Freiberg ; Publication Fund of the TU Bergakademie Freiberg .

References

First citationBoese, R., Köster, R. & Yalpani, M. (1994). Z. Naturforsch. 49, 1453–1458.  CrossRef CAS Google Scholar
First citationBrown, H. C. (1961). Tetrahedron, 12, 117–138.  CrossRef CAS Google Scholar
First citationDhillon, R. S. (2007). Hydroboration and Organic Synthesis. Borabicyclo[3.3.1]nonane (9-BBN). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-49076-0  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMetzler, N. & Nöth, H. (1995). Chem. Ber. 128, 711–717.  CSD CrossRef CAS Web of Science Google Scholar
First citationPauling, L. (1962). Die Natur der Chemischen Bindung. Weinheim/Bergstr: Verl. Chemie.  Google Scholar
First citationSchomaker, V. & Stevenson, D. P. (1941). J. Am. Chem. Soc. 63, 37–40.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYalpani, M., Boese, R. & Köster, R. (1988). Chem. Ber. 121, 287–293.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146