organic compounds
Trimethylphosphine oxide dihydrate
aDepartment of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia, and bJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The title hydrate, Me3PO·2H2O, crystallizes in the orthorhombic Pbca with eight formula units per The extended structure displays O—H⋯O hydrogen bonding, with Me3PO molecules as acceptors and water molecules acting as donors and acceptors of hydrogen bonds, forming hydrogen-bonded layers, which propagate in the ac plane.
Keywords: phosphine oxide; hydrate; hydrogen bonding; crystal structure.
CCDC reference: 2254008
Structure description
Tertiary R3P=O (R = alkyl/aryl), are good hydrogen-bond acceptors and have been employed for co-crystallization and stabilization of hydrogen-bond donor species such as hydrogen peroxide (Arp et al., 2019) and di(hydroperoxy)alkanes (Ahn et al., 2015). However, only a limited number of simple tertiary phosphine oxide hydrates have been structurally characterized by single-crystal X-ray diffraction. For example: tricyclohexylphosphine oxide hydrate, Cy3PO·H2O (Cambridge Structural Database refcode ZOQHEU; Hilliard et al. 2014; Thomas et al., 2019); triphenylphosphine oxide hemihydrate, Ph3PO·0.5H2O (JEDTOB; Baures & Silverton, 1990; Baures, 1991; Ng, 2009); tri-p-tolylphosphine oxide hemihydrate p-Tol3PO·0.5H2O (JULBAT; Churchill et al., 1993); tris(2,4,6-trimethoxyphenyl)phosphine oxide hydrate, [(CH3O)3C6H2]3PO·H2O (WAMXIR; Chaloner et al., 1993); tris(2,4,6-trimethoxyphenyl)phosphine oxide dihydrate, [(CH3O)3C6H2]3PO·2H2O (LICVUO; Dunbar & Haefner, 1994); di-o-tolylphenylphosphine oxide hydrate, o-Tol2PhPO·H2O (POMRUH; Arp et al., 2019). The absence of crystal structures of trialkylphosphine oxide hydrates with a short alkyl chain is particularly noteworthy. Herein, the of the title phosphine oxide hydrate is reported.
Trimethylphosphine oxide dihydrate crystallizes in the orthorhombic Pbca with one Me3PO and two H2O molecules in the (Fig. 1). The P=O bond length [1.5067 (7) Å] and P—C distances [1.7805 (12), 1.7809 (11), and 1.7819 (11) Å] are in good agreement with the bond distances reported in crystal structures of trimethylphosphine oxide (FAKLUY; Engelhardt et al., 1986; Begimova et al., 2016).
The trimethylphosphine oxide molecule is an acceptor of two O⋯H—O hydrogen bonds, whereas both water molecules are donors of hydrogen bonds to Me3PO and H2O, and acceptors of hydrogen bonds from adjacent water molecules (Table 1, Fig. 2). Two Me3PO and six H2O molecules form a hydrogen-bonded 16-membered ring (Fig. 2) with an R86(16) graph-set motif (Etter, 1990). Each water molecule participates in three rings, whereas the trimethylphosphine molecule participates in two rings. These rings are interconnected into layers that extend parallel to the ac plane, whereby each ring is surrounded by six other rings (Figs. 2, 3). Hydrogen-bonded layers and layers of Me3P groups are stacked along the b-axis direction (Fig. 3).
Synthesis and crystallization
Trimethylphosphine oxide (2.3 mg) was dissolved in a mixture of acetone-d6 (0.6 ml) and diethyl ether-d10 (0.3 ml) in an NMR tube that was capped and cooled to −20 °C in an ethanol cooling bath. The Dewar flask containing the bath and sample was sealed and placed in a freezer at −80 °C. Crystals of Me3PO·2H2O grew within 3 days. The single crystals were examined, selected, and transferred to the diffractometer employing a previously described low-temperature crystal-mounting procedure (Lozinšek et al., 2021). The crystals melt at room temperature.
Refinement
Crystal data, data collection, and structure . Positions and isotropic thermal displacement parameters of hydrogen atoms were freely refined (Cooper et al., 2010).
details are summarized in Table 2Structural data
CCDC reference: 2254008
https://doi.org/10.1107/S2414314623003140/hb4428sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623003140/hb4428Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623003140/hb4428Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2023); cell
CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, 2010).C3H9OP·2H2O | Dx = 1.209 Mg m−3 |
Mr = 128.10 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 18569 reflections |
a = 9.33514 (8) Å | θ = 3.3–75.4° |
b = 11.39118 (9) Å | µ = 2.88 mm−1 |
c = 13.23961 (11) Å | T = 150 K |
V = 1407.88 (2) Å3 | Block, colourless |
Z = 8 | 0.70 × 0.24 × 0.13 mm |
F(000) = 560 |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 1451 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1417 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 5.2466 pixels mm-1 | θmax = 75.5°, θmin = 7.0° |
ω scans | h = −11→11 |
Absorption correction: gaussian (CrysalisPro; Rigaku OD, 2023) | k = −14→14 |
Tmin = 0.299, Tmax = 1.000 | l = −16→16 |
24977 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.032P)2 + 0.4017P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.057 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.27 e Å−3 |
1451 reflections | Δρmin = −0.24 e Å−3 |
117 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0019 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.29293 (2) | 0.43133 (2) | 0.43709 (2) | 0.01874 (11) | |
O3 | 0.38810 (7) | 0.33831 (6) | 0.48229 (5) | 0.02332 (17) | |
O1 | 0.50092 (9) | 0.18661 (7) | 0.33846 (6) | 0.02949 (19) | |
O2 | 0.30184 (8) | 0.28005 (8) | 0.68067 (6) | 0.0309 (2) | |
C3 | 0.12748 (12) | 0.37348 (12) | 0.39205 (10) | 0.0361 (3) | |
C1 | 0.25087 (15) | 0.54386 (11) | 0.52559 (9) | 0.0360 (3) | |
C2 | 0.37390 (13) | 0.50121 (11) | 0.33118 (9) | 0.0363 (3) | |
H1 | 0.4749 (17) | 0.2314 (14) | 0.3820 (13) | 0.049 (4)* | |
H3 | 0.3357 (17) | 0.2929 (13) | 0.6272 (13) | 0.044 (4)* | |
H1A | 0.1928 (16) | 0.6023 (14) | 0.4936 (12) | 0.049 (4)* | |
H3A | 0.0705 (17) | 0.4349 (13) | 0.3682 (13) | 0.049 (4)* | |
H2 | 0.5911 (19) | 0.2011 (13) | 0.3261 (11) | 0.048 (4)* | |
H3B | 0.0772 (19) | 0.3342 (15) | 0.4489 (14) | 0.062 (5)* | |
H4 | 0.3659 (17) | 0.2931 (12) | 0.7231 (12) | 0.042 (4)* | |
H2A | 0.3129 (17) | 0.5592 (14) | 0.3018 (13) | 0.050 (4)* | |
H3C | 0.148 (2) | 0.3195 (15) | 0.3342 (15) | 0.068 (5)* | |
H2B | 0.395 (2) | 0.4400 (15) | 0.2808 (14) | 0.063 (5)* | |
H1C | 0.2035 (16) | 0.5079 (16) | 0.5804 (12) | 0.055 (5)* | |
H2C | 0.457 (2) | 0.5422 (15) | 0.3541 (14) | 0.066 (5)* | |
H1B | 0.337 (2) | 0.5830 (16) | 0.5464 (14) | 0.067 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01726 (15) | 0.02106 (16) | 0.01790 (16) | 0.00154 (8) | 0.00075 (7) | 0.00121 (8) |
O3 | 0.0247 (3) | 0.0246 (3) | 0.0206 (3) | 0.0062 (3) | 0.0018 (2) | 0.0022 (3) |
O1 | 0.0265 (4) | 0.0370 (4) | 0.0249 (4) | 0.0048 (3) | 0.0004 (3) | −0.0075 (3) |
O2 | 0.0240 (4) | 0.0472 (5) | 0.0214 (4) | −0.0027 (3) | 0.0013 (3) | 0.0014 (3) |
C3 | 0.0252 (5) | 0.0464 (7) | 0.0366 (6) | −0.0071 (5) | −0.0062 (5) | 0.0026 (5) |
C1 | 0.0422 (7) | 0.0322 (5) | 0.0336 (6) | 0.0156 (5) | −0.0049 (6) | −0.0071 (5) |
C2 | 0.0336 (6) | 0.0393 (6) | 0.0359 (6) | 0.0022 (5) | 0.0068 (5) | 0.0174 (5) |
P1—O3 | 1.5067 (7) | C3—H3B | 0.993 (18) |
P1—C3 | 1.7819 (11) | C3—H3C | 1.001 (19) |
P1—C1 | 1.7805 (12) | C1—H1A | 0.957 (17) |
P1—C2 | 1.7809 (11) | C1—H1C | 0.943 (17) |
O1—H1 | 0.807 (17) | C1—H1B | 0.96 (2) |
O1—H2 | 0.873 (18) | C2—H2A | 0.955 (17) |
O2—H3 | 0.789 (18) | C2—H2B | 0.985 (18) |
O2—H4 | 0.834 (17) | C2—H2C | 0.958 (19) |
C3—H3A | 0.934 (16) | ||
O3—P1—C3 | 112.58 (5) | H3B—C3—H3C | 113.3 (13) |
O3—P1—C1 | 112.02 (5) | P1—C1—H1A | 109.6 (10) |
O3—P1—C2 | 112.13 (5) | P1—C1—H1C | 107.3 (11) |
C1—P1—C3 | 107.18 (7) | P1—C1—H1B | 109.7 (11) |
C1—P1—C2 | 106.85 (7) | H1A—C1—H1C | 112.1 (13) |
C2—P1—C3 | 105.64 (6) | H1A—C1—H1B | 106.2 (14) |
H1—O1—H2 | 107.7 (14) | H1C—C1—H1B | 112.0 (15) |
H3—O2—H4 | 106.5 (15) | P1—C2—H2A | 112.1 (10) |
P1—C3—H3A | 109.3 (9) | P1—C2—H2B | 107.6 (10) |
P1—C3—H3B | 108.8 (10) | P1—C2—H2C | 108.3 (11) |
P1—C3—H3C | 108.3 (11) | H2A—C2—H2B | 109.5 (14) |
H3A—C3—H3B | 108.9 (14) | H2A—C2—H2C | 106.1 (13) |
H3A—C3—H3C | 108.2 (14) | H2B—C2—H2C | 113.3 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.807 (17) | 1.976 (18) | 2.7787 (10) | 173.2 (16) |
O2—H3···O3 | 0.789 (18) | 2.046 (18) | 2.8261 (11) | 169.7 (15) |
O1—H2···O2i | 0.873 (18) | 1.981 (18) | 2.8460 (12) | 170.6 (14) |
O2—H4···O1ii | 0.834 (17) | 1.993 (17) | 2.8218 (11) | 172.0 (14) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x, −y+1/2, z+1/2. |
Footnotes
‡Current address: Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Acknowledgements
We thank the EN-FIST Center of Excellence, Ljubljana, Slovenia, for access to a single-crystal X-ray diffractometer.
Funding information
Funding for this research was provided by: Slovenian Research Agency (grant No. P1-0230; grant No. N1-0189).
References
Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345. Web of Science CSD CrossRef CAS Google Scholar
Arp, F. F., Bhuvanesh, N. & Blümel, J. (2019). Dalton Trans. 48, 14312–14325. CSD CrossRef CAS PubMed Google Scholar
Baures, P. W. (1991). Acta Cryst. C47, 2715–2716. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715–717. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Begimova, G., Tupikina, E. Yu., Yu, V. K., Denisov, G. S., Bodensteiner, M. & Shenderovich, I. G. (2016). J. Phys. Chem. C, 120, 8717–8729. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1993). Acta Cryst. C49, 1072–1075. CSD CrossRef CAS IUCr Journals Google Scholar
Churchill, M. R., See, R. F., Randall, S. L. & Atwood, J. D. (1993). Acta Cryst. C49, 345–347. CSD CrossRef Web of Science IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dunbar, K. R. & Haefner, S. C. (1994). Polyhedron, 13, 727–736. CSD CrossRef CAS Web of Science Google Scholar
Engelhardt, L. M., Raston, C. L., Whitaker, C. R. & White, A. H. (1986). Aust. J. Chem. 39, 2151–2154. CSD CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Hilliard, C. R., Kharel, S., Cluff, K. J., Bhuvanesh, N., Gladysz, J. A. & Blümel, J. (2014). Chem. Eur. J. 20, 17292–17295. CSD CrossRef CAS PubMed Google Scholar
Lozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149–8156. Google Scholar
Ng, S. W. (2009). Acta Cryst. E65, o1431. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thomas, S. D., Tizzard, G. J., Coles, S. J. & Owen, G. R. (2019). CSD Communication (CCDC 1970272). CCDC, Cambridge, England. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.