organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(23R,231S,25S)-231,26-Ep­­oxy-23-ethyl­furost-20(22)-en-3β-ol

crossmark logo

aInstituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, bLaboratorio de Investigación del Jardín Botánico, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, cFacultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, 72420 Puebla, Pue., Mexico, and dInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 April 2023; accepted 16 April 2023; online 21 April 2023)

The title compound, C29H46O3, is a steroid synthesized through a rearrangement of a sarsasapogenin derivative in acidic medium. The newly formed ring F is a tetra­hydro-2H-pyran heterocycle substituted by two methyl groups placed in equatorial positions. This ring displays a chair conformation, while di­hydro­furan ring E, to which it is bonded, has an envelope conformation. The mol­ecules are associated by weak O—H⋯O hydrogen bonds to form chains running in the [101] direction in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title steroid (2) was synthesized, starting from a derivative of sarsasapogenin (1), through a cleavage of ring F in acidic medium, followed by a Michael-type nucleophilic attack that affords a tetra­hydro-2H-pyran ring bonded to the steroidal E ring (Fig. 1[link]). The crystal structure of 1·0.5H2O has been reported previously (Viñas-Bravo et al., 2003[Viñas-Bravo, O., Hernández-Linares, G., Mata-Esma, M. Y., Martínez-Pascual, R., Montiel-Smith, S., Meza-Reyes, S., Bernès, S., Sandoval-Ramírez, J. & Iglesias-Arteaga, M. A. (2003). Arkivoc, part xi, pp. 163-171.]). On the other hand, the mechanism for the rearrangement 12 was described previously using a diosgenin derivative as substrate, instead of sarsasapogenin (del Río et al., 2006[Río, R. E. del, Santillán, R., Sandoval-Ramírez, J., Meza-Reyes, S., Montiel-Smith, S., Viñas-Bravo, O. & Farfán, N. (2006). J. Mex. Chem. Soc. 50, 119-125.]). As expected from this mechanism, both methyl groups substituting the pyran ring in 2 are placed in equatorial positions, defining the stereochemistry for atoms C25 and C27 as S,S (Fig. 2[link]). The pyran ring adopts a chair conformation, characterized by a puckering amplitude q = 0.578 (4) Å. Surprisingly, the Cambridge Structural Database (Version 5.43, with all updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) does not contain any structure including the same heterocycle. However, many polysubstituted monocyclic tetra­hydro-2H-pyran structures have been characterized by X-ray diffraction, showing that the chair conformation is almost always stabilized (e.g. Burton et al., 2007[Burton, S., Fronczek, F. R. & Maverick, A. W. (2007). Acta Cryst. E63, o2661-o2662.]). Only a few exceptions to this rule are known, for some large mol­ecules with steric hindrance issues (e.g. Aydillo et al., 2013[Aydillo, C., Navo, C. D., Busto, J. H., Corzana, F., Zurbano, M. M., Avenoza, A. & Peregrina, J. M. (2013). J. Org. Chem. 78, 10968-10977.]).

[Figure 1]
Figure 1
The synthesis of the title compound, 2, starting from 1. The atom-numbering scheme follows the recommendations of IUPAC (Moss, 1989[Moss, G. P. (1989). Pure Appl. Chem. 61, 1783-1822.]). Key R/S configurations are displayed in red. pTsOH is p-toluene­sulfonic acid.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, 2, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

The 2,3-di­hydro­furan ring E in 2 is close to being planar due to the presence of the C20=C22 double bond [1.324 (5) Å], also evidenced by a vibration at 1627 cm−1 in the IR spectrum. The conformation can be described as an envelope with atom C16 as the flap, which belongs to the C—C bond fusing the D and E rings. The E ring has a small puckering amplitude, q = 0.184 (4) Å. A very similar conformation was observed in other steroids having the same E ring (Shen et al., 2013[Shen, L. Q., Tang, Y. & Huang, S. Y. (2013). Res. Chem. Intermed. 39, 2043-2047.]; Jeong & Fuchs, 1994[Jeong, J. U. & Fuchs, P. L. (1994). J. Am. Chem. Soc. 116, 773-774.]). The remainder of the mol­ecular structure, i.e. the A/B/C/D steroidal nucleus, is identical to that of sarsasapogenin, with cis-fused A/B rings.

The crystal structure is very simple, since it is based on a single weak O—H⋯O hydrogen bond, involving the hy­droxy group at C3 and the O-atom acceptor of the tetra­hydro-2H-pyran ring, O26 (Table 1[link] and Fig. 3[link]). The mol­ecules form infinite chains, running in the [101] direction. Neighbouring chains in the crystal are related by the twofold screw axis parallel to [010] in the space group P21.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O26i 0.87 (4) 2.11 (4) 2.943 (4) 159 (5)
Symmetry code: (i) x+1, y, z+1.
[Figure 3]
Figure 3
Part of the crystal structure of the title compound, 2, showing chains formed via O—H⋯O hydrogen bonds (dashed bonds). For symmetry code (i), see Table 1[link].

The mol­ecular structure of 2 is embedded in a broader project aimed at targeting steroidal compounds which could inter­act with signalling pathways that control skeletal muscle atrophy and hypertrophy (Cohen et al., 2015[Cohen, S., Nathan, J. A. & Goldberg, A. L. (2015). Nat. Rev. Drug Discov. 14, 58-74.]). Indeed, the web tool SwissTargetPrediction (Daina et al., 2019[Daina, A., Michielin, O. & Zoete, V. (2019). Nucleic Acids Res. 47, W357-W364.]) predicts that compound 2 presents a binding affinity for androgen and estrogen receptors, as well as for PI3K enzyme.

Synthesis and crystallization

In a round-bottomed flask was dissolved 275 mg (0.62 mmol) of 1 and 150 mg of pTsOH (ca 0.9 mmol) in 5 ml of benzene, and this mixture was refluxed for 30 min. The crude was then evaporated and the resulting solid dissolved in CH2Cl2, washed with distilled H2O, dried over Na2SO4 and evaporated in vacuo to dryness. The residue was purified by chromatography over silica gel with hexa­ne/EtOAc (4:1 v:v) as eluent, to give 268 mg of 2 (97% yield). IR (ν, cm−1): 2998 (C—H), 1627 (C=C). 1H NMR (500 MHz, CDCl3): δ (ppm) 4.70 (1H, m, H-16), 4.08 (1H, m, H-3), 3.79 (1H, ddd, J26eq,26ax = 11.0, J26eq,25 = 3.4 Hz, J26eq,24eq = 1.4, H-26eq), 3.36 (1H, dq, J23 (1),23 = 9.54, J23 (1),23 (2) = 6.2 Hz, H-231), 2.98 (1H, dd, J26ax,26eq = J26ax,25 = 11.0 Hz, H-26ax), 2.46 (1H, d, J17,16 = 10.0 Hz, H-17), 2.40 (1H, ddd, J23,23 (1) = 9.54, J23,24eq = 3.4, J23,24ax = 11.0 Hz, H-23), 1.57 (3H, s, CH3-21), 1.11 (3H, d, J23 (2),23 (1) = 6.5 Hz, C-232), 0.95 (3H, s, CH3-19), 0.76 (3H, d, J27,25 = 7.0 Hz, CH3-27), 0.67 (3H, s, CH3-18). 13C NMR (125 MHz, CDCl3): δ (ppm) 152.5 (C-22), 105.0 (C-20), 85.0 (C-16), 73.4 (C-231), 73.3 (C-26), 67.1 (C-3), 64.3 (C-17), 55.1 (C-14), 44.0 (C-9), 41.5 (C-10), 41.3 (C-23), 40.1 (C-5), 39.8 (C-4), 36.5 (C-6), 36.3 (C-15), 35.3 (C-1), 35.0 (C-12), 30.9 (C-2), 30.0 (C-13), 27.9 (C-7), 26.7 (C-8), 26.5 (C-25), 23.9 (C-24), 21.7 (C-11), 20.1 (CH3-232), 17.0 (CH3-19), 14.8 (CH3-27), 14.3 (CH3-18), 11.9 (CH3-21).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions, with C—H = 1.00 (methine CH), 0.99 (methyl­ene CH2) or 0.98 Å (methyl CH3). Atom H3A (of the hy­droxy group) was refined with free coordinates. Isotropic displacement parameters for the H atoms were calculated as Uiso(H) = xUeq(carrier atom), with x = 1.5 for methyl groups and the hydroxy H atom, and x = 1.2 for the other H atoms. The methyl groups were allowed to rotate but not to tip. Due to the absence of anomalous scatterers, the absolute configuration could not be determined and was set according to the starting material.

Table 2
Experimental details

Crystal data
Chemical formula C29H46O3
Mr 442.66
Crystal system, space group Monoclinic, P21
Temperature (K) 153
a, b, c (Å) 6.3829 (7), 12.6897 (8), 15.9539 (17)
β (°) 101.308 (8)
V3) 1267.1 (2)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.05
Crystal size (mm) 0.24 × 0.16 × 0.07
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.519, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15499, 4669, 2283
Rint 0.102
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.077, 0.70
No. of reflections 4669
No. of parameters 298
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(23R,231S,25S)-231,26-Epoxy-23-ethylfurost-20(22)-en-3β-ol top
Crystal data top
C29H46O3F(000) = 488
Mr = 442.66Dx = 1.160 Mg m3
Monoclinic, P21Ag Kα radiation, λ = 0.56083 Å
a = 6.3829 (7) ÅCell parameters from 7481 reflections
b = 12.6897 (8) Åθ = 2.4–27.7°
c = 15.9539 (17) ŵ = 0.05 mm1
β = 101.308 (8)°T = 153 K
V = 1267.1 (2) Å3Irregular, colourless
Z = 20.24 × 0.16 × 0.07 mm
Data collection top
Stoe Stadivari
diffractometer
4669 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source2283 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.102
Detector resolution: 5.81 pixels mm-1θmax = 20.5°, θmin = 2.4°
ω scansh = 77
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 1515
Tmin = 0.519, Tmax = 1.000l = 1919
15499 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.70(Δ/σ)max < 0.001
4669 reflectionsΔρmax = 0.16 e Å3
298 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: (SHELXL2018; Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0100 (10)
Primary atom site location: dual
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7075 (7)0.3112 (3)0.7615 (3)0.0303 (10)
H1A0.6213340.3094030.8067620.036*
H1B0.6747230.2463760.7268440.036*
C20.9432 (7)0.3097 (3)0.8037 (3)0.0335 (11)
H2A0.9725930.2471240.8412950.040*
H2B1.0308080.3038610.7591430.040*
C31.0065 (6)0.4089 (3)0.8563 (2)0.0353 (10)
H31.1652760.4103550.8757040.042*
O30.9070 (5)0.4036 (2)0.93021 (18)0.0447 (8)
H3A0.972 (8)0.449 (3)0.967 (3)0.067*
C40.9355 (6)0.5075 (3)0.8039 (2)0.0313 (10)
H4A1.0249770.5155000.7602040.038*
H4B0.9615350.5695820.8421680.038*
C50.7003 (7)0.5073 (3)0.7592 (2)0.0304 (10)
H50.6129500.5068690.8047830.036*
C60.6443 (7)0.6089 (3)0.7069 (3)0.0369 (12)
H6A0.4870380.6145930.6895240.044*
H6B0.6954090.6704650.7433490.044*
C70.7433 (7)0.6119 (3)0.6272 (2)0.0332 (11)
H7A0.9007170.6158080.6445730.040*
H7B0.6938510.6758620.5935810.040*
C80.6827 (6)0.5142 (3)0.5712 (2)0.0257 (9)
H80.5243500.5142610.5503550.031*
C90.7450 (6)0.4127 (3)0.6240 (2)0.0234 (9)
H90.9021810.4178470.6468330.028*
C100.6379 (6)0.4079 (3)0.7034 (2)0.0255 (9)
C110.7125 (7)0.3130 (3)0.5679 (3)0.0287 (10)
H11A0.7758390.2520650.6026890.034*
H11B0.5574090.2995830.5499400.034*
C120.8121 (7)0.3202 (3)0.4879 (2)0.0283 (10)
H12A0.9696890.3224030.5053090.034*
H12B0.7734420.2566850.4522320.034*
C130.7352 (6)0.4182 (3)0.4354 (2)0.0229 (9)
C140.7897 (6)0.5144 (3)0.4943 (2)0.0235 (9)
H140.9470490.5115110.5172070.028*
C150.7515 (7)0.6089 (3)0.4321 (2)0.0314 (11)
H15A0.5977900.6268440.4167070.038*
H15B0.8323430.6716960.4570740.038*
C160.8341 (7)0.5686 (3)0.3548 (2)0.0288 (10)
H160.9755530.6012430.3527210.035*
O160.6841 (4)0.58617 (17)0.27418 (16)0.0291 (7)
C170.8563 (6)0.4468 (3)0.3631 (3)0.0251 (10)
H171.0104200.4270220.3805460.030*
C180.4938 (5)0.4103 (3)0.3978 (2)0.0277 (9)
H18A0.4667080.3490550.3598410.042*
H18B0.4462790.4744410.3654120.042*
H18C0.4150550.4024170.4443880.042*
C190.3914 (5)0.4007 (4)0.6764 (3)0.0373 (10)
H19A0.3399830.4559950.6344560.056*
H19B0.3266560.4101690.7267170.056*
H19C0.3517710.3315340.6508870.056*
C200.7720 (5)0.4121 (3)0.2728 (2)0.0246 (9)
C210.7993 (7)0.3020 (3)0.2430 (3)0.0340 (11)
H21A0.7207250.2530440.2730200.051*
H21B0.9513130.2834370.2551380.051*
H21C0.7437330.2973290.1813380.051*
C220.6775 (6)0.4928 (3)0.2281 (2)0.0261 (10)
C230.5667 (6)0.5036 (3)0.1365 (2)0.0268 (9)
H230.5858410.4361890.1063920.032*
C240.6676 (6)0.5930 (3)0.0927 (2)0.0300 (10)
H24A0.6624240.6593910.1247320.036*
H24B0.8193590.5762030.0932340.036*
C250.5498 (7)0.6076 (3)0.0008 (3)0.0338 (10)
H250.5651430.5419370.0320620.041*
C260.3142 (7)0.6251 (3)0.0011 (3)0.0381 (12)
H26A0.2971840.6902860.0332310.046*
H26B0.2352550.6344840.0583570.046*
O260.2251 (4)0.53738 (19)0.03962 (17)0.0344 (8)
C270.3263 (6)0.5230 (3)0.1284 (2)0.0276 (10)
H270.3045250.5878490.1612570.033*
C280.6418 (7)0.6999 (3)0.0415 (3)0.0475 (13)
H28A0.6123160.7658510.0140440.071*
H28B0.5757160.7022490.1023350.071*
H28C0.7965710.6908150.0352900.071*
C290.2096 (6)0.4323 (3)0.1596 (3)0.0335 (11)
H29A0.0590980.4512420.1556870.050*
H29B0.2743010.4167080.2192550.050*
H29C0.2194470.3700620.1242740.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.033 (2)0.022 (2)0.002 (2)0.008 (2)0.004 (2)
C20.037 (3)0.032 (2)0.033 (3)0.002 (2)0.010 (2)0.007 (2)
C30.031 (2)0.048 (2)0.027 (2)0.004 (2)0.005 (2)0.007 (2)
O30.050 (2)0.0554 (19)0.0292 (19)0.0094 (18)0.0075 (16)0.0026 (17)
C40.033 (3)0.035 (2)0.024 (2)0.004 (2)0.001 (2)0.002 (2)
C50.031 (3)0.032 (2)0.028 (2)0.002 (2)0.007 (2)0.000 (2)
C60.042 (3)0.032 (2)0.035 (3)0.008 (2)0.004 (2)0.006 (2)
C70.045 (3)0.0236 (19)0.029 (3)0.005 (2)0.002 (2)0.0007 (19)
C80.025 (2)0.0226 (19)0.026 (2)0.000 (2)0.0029 (19)0.003 (2)
C90.022 (2)0.0236 (17)0.025 (2)0.004 (2)0.0046 (18)0.001 (2)
C100.020 (2)0.031 (2)0.024 (2)0.002 (2)0.0025 (19)0.001 (2)
C110.033 (3)0.022 (2)0.030 (2)0.0007 (19)0.004 (2)0.002 (2)
C120.030 (3)0.026 (2)0.029 (3)0.0032 (18)0.007 (2)0.0023 (19)
C130.023 (2)0.0224 (18)0.024 (2)0.002 (2)0.0064 (18)0.0032 (19)
C140.022 (2)0.0216 (18)0.025 (2)0.0012 (19)0.0010 (19)0.004 (2)
C150.040 (3)0.0238 (19)0.029 (3)0.004 (2)0.001 (2)0.0005 (19)
C160.030 (3)0.026 (2)0.027 (2)0.0041 (18)0.003 (2)0.0039 (19)
O160.0371 (18)0.0245 (14)0.0235 (16)0.0008 (13)0.0006 (14)0.0011 (12)
C170.015 (2)0.028 (2)0.032 (3)0.0028 (16)0.004 (2)0.0017 (18)
C180.028 (2)0.0282 (18)0.026 (2)0.000 (2)0.0025 (18)0.001 (2)
C190.025 (2)0.049 (2)0.039 (3)0.001 (2)0.009 (2)0.004 (2)
C200.022 (2)0.0290 (19)0.025 (2)0.001 (2)0.0094 (18)0.001 (2)
C210.042 (3)0.031 (2)0.031 (3)0.004 (2)0.010 (2)0.003 (2)
C220.024 (2)0.029 (2)0.027 (2)0.0041 (19)0.008 (2)0.0045 (19)
C230.028 (2)0.0256 (19)0.026 (2)0.000 (2)0.0030 (19)0.000 (2)
C240.030 (3)0.033 (2)0.027 (2)0.0035 (19)0.006 (2)0.0073 (19)
C250.037 (3)0.035 (2)0.028 (2)0.005 (2)0.003 (2)0.006 (2)
C260.037 (3)0.043 (2)0.030 (3)0.001 (2)0.005 (2)0.009 (2)
O260.0336 (18)0.0410 (17)0.0252 (17)0.0081 (14)0.0027 (14)0.0052 (13)
C270.025 (2)0.034 (2)0.022 (2)0.0020 (19)0.0002 (19)0.0017 (19)
C280.050 (4)0.056 (3)0.036 (3)0.006 (3)0.008 (3)0.014 (2)
C290.030 (3)0.043 (3)0.029 (2)0.002 (2)0.010 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.523 (5)C15—H15A0.9900
C1—C101.551 (5)C15—H15B0.9900
C1—H1A0.9900C16—O161.462 (4)
C1—H1B0.9900C16—C171.556 (4)
C2—C31.523 (5)C16—H161.0000
C2—H2A0.9900O16—C221.391 (4)
C2—H2B0.9900C17—C201.501 (5)
C3—O31.446 (4)C17—H171.0000
C3—C41.524 (5)C18—H18A0.9800
C3—H31.0000C18—H18B0.9800
O3—H3A0.87 (4)C18—H18C0.9800
C4—C51.531 (5)C19—H19A0.9800
C4—H4A0.9900C19—H19B0.9800
C4—H4B0.9900C19—H19C0.9800
C5—C61.539 (5)C20—C221.324 (5)
C5—C101.550 (5)C20—C211.498 (5)
C5—H51.0000C21—H21A0.9800
C6—C71.527 (5)C21—H21B0.9800
C6—H6A0.9900C21—H21C0.9800
C6—H6B0.9900C22—C231.500 (5)
C7—C81.532 (5)C23—C271.535 (5)
C7—H7A0.9900C23—C241.538 (5)
C7—H7B0.9900C23—H231.0000
C8—C141.517 (5)C24—C251.522 (5)
C8—C91.548 (5)C24—H24A0.9900
C8—H81.0000C24—H24B0.9900
C9—C111.540 (5)C25—C261.521 (5)
C9—C101.554 (5)C25—C281.525 (5)
C9—H91.0000C25—H251.0000
C10—C191.550 (5)C26—O261.441 (4)
C11—C121.537 (5)C26—H26A0.9900
C11—H11A0.9900C26—H26B0.9900
C11—H11B0.9900O26—C271.449 (4)
C12—C131.525 (5)C27—C291.507 (5)
C12—H12A0.9900C27—H271.0000
C12—H12B0.9900C28—H28A0.9800
C13—C141.538 (5)C28—H28B0.9800
C13—C181.543 (5)C28—H28C0.9800
C13—C171.552 (5)C29—H29A0.9800
C14—C151.545 (5)C29—H29B0.9800
C14—H141.0000C29—H29C0.9800
C15—C161.521 (5)
C2—C1—C10114.6 (3)C16—C15—H15A111.2
C2—C1—H1A108.6C14—C15—H15A111.2
C10—C1—H1A108.6C16—C15—H15B111.2
C2—C1—H1B108.6C14—C15—H15B111.2
C10—C1—H1B108.6H15A—C15—H15B109.1
H1A—C1—H1B107.6O16—C16—C15113.0 (3)
C3—C2—C1111.4 (3)O16—C16—C17105.0 (3)
C3—C2—H2A109.3C15—C16—C17107.8 (3)
C1—C2—H2A109.3O16—C16—H16110.3
C3—C2—H2B109.3C15—C16—H16110.3
C1—C2—H2B109.3C17—C16—H16110.3
H2A—C2—H2B108.0C22—O16—C16106.4 (3)
O3—C3—C2107.4 (3)C20—C17—C13120.5 (3)
O3—C3—C4110.7 (3)C20—C17—C16101.5 (3)
C2—C3—C4111.0 (3)C13—C17—C16104.2 (3)
O3—C3—H3109.2C20—C17—H17109.9
C2—C3—H3109.2C13—C17—H17109.9
C4—C3—H3109.2C16—C17—H17109.9
C3—O3—H3A107 (3)C13—C18—H18A109.5
C3—C4—C5114.5 (3)C13—C18—H18B109.5
C3—C4—H4A108.6H18A—C18—H18B109.5
C5—C4—H4A108.6C13—C18—H18C109.5
C3—C4—H4B108.6H18A—C18—H18C109.5
C5—C4—H4B108.6H18B—C18—H18C109.5
H4A—C4—H4B107.6C10—C19—H19A109.5
C4—C5—C6110.7 (3)C10—C19—H19B109.5
C4—C5—C10112.8 (3)H19A—C19—H19B109.5
C6—C5—C10111.4 (3)C10—C19—H19C109.5
C4—C5—H5107.2H19A—C19—H19C109.5
C6—C5—H5107.2H19B—C19—H19C109.5
C10—C5—H5107.2C22—C20—C21128.3 (4)
C7—C6—C5112.4 (3)C22—C20—C17109.3 (3)
C7—C6—H6A109.1C21—C20—C17122.4 (3)
C5—C6—H6A109.1C20—C21—H21A109.5
C7—C6—H6B109.1C20—C21—H21B109.5
C5—C6—H6B109.1H21A—C21—H21B109.5
H6A—C6—H6B107.9C20—C21—H21C109.5
C6—C7—C8111.5 (3)H21A—C21—H21C109.5
C6—C7—H7A109.3H21B—C21—H21C109.5
C8—C7—H7A109.3C20—C22—O16114.2 (3)
C6—C7—H7B109.3C20—C22—C23132.4 (4)
C8—C7—H7B109.3O16—C22—C23113.4 (3)
H7A—C7—H7B108.0C22—C23—C27111.7 (3)
C14—C8—C7111.6 (3)C22—C23—C24110.6 (3)
C14—C8—C9109.5 (3)C27—C23—C24110.2 (3)
C7—C8—C9110.3 (3)C22—C23—H23108.1
C14—C8—H8108.5C27—C23—H23108.1
C7—C8—H8108.5C24—C23—H23108.1
C9—C8—H8108.5C25—C24—C23110.9 (3)
C11—C9—C8112.1 (3)C25—C24—H24A109.5
C11—C9—C10114.2 (3)C23—C24—H24A109.5
C8—C9—C10111.6 (3)C25—C24—H24B109.5
C11—C9—H9106.0C23—C24—H24B109.5
C8—C9—H9106.0H24A—C24—H24B108.1
C10—C9—H9106.0C26—C25—C24108.5 (3)
C19—C10—C5109.9 (3)C26—C25—C28110.9 (3)
C19—C10—C1106.0 (3)C24—C25—C28111.1 (3)
C5—C10—C1106.8 (3)C26—C25—H25108.8
C19—C10—C9111.2 (3)C24—C25—H25108.8
C5—C10—C9109.4 (3)C28—C25—H25108.8
C1—C10—C9113.5 (3)O26—C26—C25111.2 (3)
C12—C11—C9113.7 (3)O26—C26—H26A109.4
C12—C11—H11A108.8C25—C26—H26A109.4
C9—C11—H11A108.8O26—C26—H26B109.4
C12—C11—H11B108.8C25—C26—H26B109.4
C9—C11—H11B108.8H26A—C26—H26B108.0
H11A—C11—H11B107.7C26—O26—C27112.1 (3)
C13—C12—C11111.3 (3)O26—C27—C29105.4 (3)
C13—C12—H12A109.4O26—C27—C23110.4 (3)
C11—C12—H12A109.4C29—C27—C23113.6 (3)
C13—C12—H12B109.4O26—C27—H27109.1
C11—C12—H12B109.4C29—C27—H27109.1
H12A—C12—H12B108.0C23—C27—H27109.1
C12—C13—C14107.6 (3)C25—C28—H28A109.5
C12—C13—C18110.5 (3)C25—C28—H28B109.5
C14—C13—C18112.2 (3)H28A—C28—H28B109.5
C12—C13—C17116.4 (3)C25—C28—H28C109.5
C14—C13—C17100.5 (3)H28A—C28—H28C109.5
C18—C13—C17109.3 (3)H28B—C28—H28C109.5
C8—C14—C13114.1 (3)C27—C29—H29A109.5
C8—C14—C15118.8 (3)C27—C29—H29B109.5
C13—C14—C15103.6 (3)H29A—C29—H29B109.5
C8—C14—H14106.5C27—C29—H29C109.5
C13—C14—H14106.5H29A—C29—H29C109.5
C15—C14—H14106.5H29B—C29—H29C109.5
C16—C15—C14102.9 (3)
C10—C1—C2—C356.8 (4)C18—C13—C14—C1570.0 (4)
C1—C2—C3—O370.1 (4)C17—C13—C14—C1546.1 (4)
C1—C2—C3—C451.1 (4)C8—C14—C15—C16166.3 (3)
O3—C3—C4—C568.4 (4)C13—C14—C15—C1638.5 (4)
C2—C3—C4—C550.8 (4)C14—C15—C16—O16131.1 (3)
C3—C4—C5—C6179.1 (3)C14—C15—C16—C1715.5 (4)
C3—C4—C5—C1053.6 (5)C15—C16—O16—C22135.1 (3)
C4—C5—C6—C771.5 (4)C17—C16—O16—C2217.8 (4)
C10—C5—C6—C754.9 (5)C12—C13—C17—C2095.8 (4)
C5—C6—C7—C854.7 (4)C14—C13—C17—C20148.4 (3)
C6—C7—C8—C14177.2 (3)C18—C13—C17—C2030.2 (5)
C6—C7—C8—C955.3 (4)C12—C13—C17—C16151.3 (3)
C14—C8—C9—C1149.8 (4)C14—C13—C17—C1635.5 (4)
C7—C8—C9—C11173.0 (4)C18—C13—C17—C1682.6 (4)
C14—C8—C9—C10179.5 (3)O16—C16—C17—C2017.8 (4)
C7—C8—C9—C1057.4 (4)C15—C16—C17—C20138.5 (3)
C4—C5—C10—C19167.6 (3)O16—C16—C17—C13108.1 (4)
C6—C5—C10—C1967.1 (4)C15—C16—C17—C1312.7 (4)
C4—C5—C10—C153.1 (4)C13—C17—C20—C22102.3 (4)
C6—C5—C10—C1178.3 (4)C16—C17—C20—C2212.0 (4)
C4—C5—C10—C970.1 (4)C13—C17—C20—C2178.2 (5)
C6—C5—C10—C955.1 (4)C16—C17—C20—C21167.5 (3)
C2—C1—C10—C19173.3 (3)C21—C20—C22—O16178.3 (3)
C2—C1—C10—C556.1 (4)C17—C20—C22—O161.2 (5)
C2—C1—C10—C964.5 (4)C21—C20—C22—C230.7 (7)
C11—C9—C10—C1964.1 (4)C17—C20—C22—C23179.9 (4)
C8—C9—C10—C1964.5 (4)C16—O16—C22—C2011.1 (4)
C11—C9—C10—C5174.4 (3)C16—O16—C22—C23168.1 (3)
C8—C9—C10—C557.0 (4)C20—C22—C23—C27112.5 (5)
C11—C9—C10—C155.3 (4)O16—C22—C23—C2768.5 (4)
C8—C9—C10—C1176.2 (3)C20—C22—C23—C24124.5 (5)
C8—C9—C11—C1249.6 (4)O16—C22—C23—C2454.5 (4)
C10—C9—C11—C12177.9 (3)C22—C23—C24—C25177.5 (3)
C9—C11—C12—C1353.6 (4)C27—C23—C24—C2553.6 (4)
C11—C12—C13—C1456.6 (4)C23—C24—C25—C2654.9 (4)
C11—C12—C13—C1866.2 (4)C23—C24—C25—C28177.0 (3)
C11—C12—C13—C17168.4 (3)C24—C25—C26—O2658.8 (4)
C7—C8—C14—C13180.0 (3)C28—C25—C26—O26179.0 (3)
C9—C8—C14—C1357.6 (4)C25—C26—O26—C2762.2 (4)
C7—C8—C14—C1557.3 (4)C26—O26—C27—C29177.6 (3)
C9—C8—C14—C15179.7 (3)C26—O26—C27—C2359.3 (4)
C12—C13—C14—C861.0 (4)C22—C23—C27—O26177.7 (3)
C18—C13—C14—C860.7 (4)C24—C23—C27—O2654.4 (4)
C17—C13—C14—C8176.8 (3)C22—C23—C27—C2964.2 (4)
C12—C13—C14—C15168.3 (3)C24—C23—C27—C29172.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O26i0.87 (4)2.11 (4)2.943 (4)159 (5)
Symmetry code: (i) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant Nos. 168178 and 171508).

References

First citationAydillo, C., Navo, C. D., Busto, J. H., Corzana, F., Zurbano, M. M., Avenoza, A. & Peregrina, J. M. (2013). J. Org. Chem. 78, 10968–10977.  CSD CrossRef CAS PubMed Google Scholar
First citationBurton, S., Fronczek, F. R. & Maverick, A. W. (2007). Acta Cryst. E63, o2661–o2662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, S., Nathan, J. A. & Goldberg, A. L. (2015). Nat. Rev. Drug Discov. 14, 58–74.  CrossRef CAS PubMed Google Scholar
First citationDaina, A., Michielin, O. & Zoete, V. (2019). Nucleic Acids Res. 47, W357–W364.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeong, J. U. & Fuchs, P. L. (1994). J. Am. Chem. Soc. 116, 773–774.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoss, G. P. (1989). Pure Appl. Chem. 61, 1783–1822.  CrossRef CAS Google Scholar
First citationRío, R. E. del, Santillán, R., Sandoval-Ramírez, J., Meza-Reyes, S., Montiel-Smith, S., Viñas-Bravo, O. & Farfán, N. (2006). J. Mex. Chem. Soc. 50, 119–125.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, L. Q., Tang, Y. & Huang, S. Y. (2013). Res. Chem. Intermed. 39, 2043–2047.  CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationViñas-Bravo, O., Hernández-Linares, G., Mata-Esma, M. Y., Martínez-Pascual, R., Montiel-Smith, S., Meza-Reyes, S., Bernès, S., Sandoval-Ramírez, J. & Iglesias-Arteaga, M. A. (2003). Arkivoc, part xi, pp. 163–171.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146