organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl-2-(methyl­sulfan­yl)-5,5-di­phenyl-3,5-di­hydro-4H-imidazol-4-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 2 March 2023; accepted 3 March 2023; online 10 March 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the title mol­ecule, C17H16N2OS, the di­hydro­imidazolone ring is slightly puckered and the methyl­sulfanyl group is nearly coplanar with it. In the crystal, two sets of C—H⋯O hydrogen bonds form corrugated layers of mol­ecules parallel to the ac plane. The layers pack with normal van der Waals contacts between them.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazole and its derivatives display various biological effects such as insecticides, herbicides and fungicides (Tutino et al., 2009[Tutino, F., Posteri, H., Borghi, D., Quartieri, F., Mongelli, N. & Papeo, G. (2009). Tetrahedron, 65, 2372-2376.]; Wu et al., 2023[Wu, Y., Wang, P., Zheng, L., Guo, H. & Yang, F. (2023). Sens. Actuators B Chem. 380, 133330.]; Takle et al., 2006[Takle, A. K., Brown, M. J., Davies, S., Dean, D. K., Francis, G., Gaiba, A., Hird, A. W., King, F. D., Lovell, P. J., Naylor, A., Reith, A. D., Steadman, J. G. & Wilson, D. M. (2006). Bioorg. Med. Chem. Lett. 16, 378-381.]). Our team has been working on these derivatives for some years to evaluate their biological activities (e.g. Guerrab et al., 2022a[Guerrab, W., Akachar, J., Jemli, M. E., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. pp. 1-9.],b[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, 8765-8782.]) and corrosion inhibition activities (e.g. Nabah et al., 2020[Nabah, R., Benhiba, F., Laabaissi, T., Zarrok, H., Cherkaoui, M., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2020). Surf. Rev. Lett. 27, 2050005.]). In a continuation of our recent work focused on the synthesis and biological evaluation of phenytoin derivatives (e.g. Guerrab et al., 2023[Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230125.]), we report here the crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability ellipsoids.

The mol­ecule adopts the conformation typical for this class of mol­ecule with the phenyl groups projecting out above and below the plane of the di­hydro­imidazolone ring. The latter ring is slightly puckered [C1 and C2 deviate by −0.0122 (7) and 0.0121 (7) Å, respectively, from the mean plane] and the mean planes of the C4–C9 and C10–C15 rings are inclined to its mean plane by 72.32 (5) and 67.03 (3)°, respectively. The terminal carbon atom of the methyl­sulfanyl group lies close to the mean plane of the di­hydro­imidazolone ring, as indicated by the C17—S1—C3—N2 torsion angle of −2.75 (13)°. In the crystal, C7—H7⋯O1 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the a-axis direction. These are linked by C15—H15⋯O1 hydrogen bonds, forming corrugated layers of mol­ecules parallel to the ac plane (Table 1[link] and Fig. 2[link]). The layers pack along the b-axis direction with normal van de Waals contacts (Fig. 3[link]) between them.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.55 3.390 (2) 148
C15—H15⋯O1ii 0.95 2.59 3.3797 (17) 140
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of one layer viewed along the b-axis direction with C—H⋯O hydrogen bonds depicted by dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction giving end views of parts of four layers with C—H⋯O hydrogen bonds depicted by dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

Synthesis and crystallization

Thio­hydantoin (1000 mg, 3.73 mmol) was placed in a flask with K2CO3 (1030 mg, 7.46 mmol) in 20 ml of absolute di­methyl­formamide (DMF), and two equivalents of iodo­methane (0.5 ml, 1160 mg) were added. The solution was left stirring for 2 h at room temperature. The reaction mixture was filtered, and the solvent was distilled off under reduced pressure. The residue obtained was recrystallized from methanol solution to yield colorless, plate-like single crystals (Akrad et al., 2018[Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180934.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2OS
Mr 296.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.4129 (1), 22.9217 (4), 8.6719 (1)
β (°) 117.417 (1)
V3) 1484.44 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.93
Crystal size (mm) 0.20 × 0.06 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 37955, 2930, 2733
Rint 0.036
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections 2930
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.24
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Methyl-2-(methylsulfanyl)-5,5-diphenyl-3,5-dihydro-4H-imidazol-4-one top
Crystal data top
C17H16N2OSF(000) = 624
Mr = 296.38Dx = 1.326 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.4129 (1) ÅCell parameters from 9855 reflections
b = 22.9217 (4) Åθ = 3.9–72.4°
c = 8.6719 (1) ŵ = 1.93 mm1
β = 117.417 (1)°T = 150 K
V = 1484.44 (4) Å3Plate, colourless
Z = 40.20 × 0.06 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
2930 independent reflections
Radiation source: INCOATEC IµS micro—-focus source2733 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 7.3910 pixels mm-1θmax = 72.4°, θmin = 3.9°
φ and ω scansh = 910
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2828
Tmin = 0.85, Tmax = 0.94l = 1010
37955 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.040P)2 + 0.6009P]
where P = (Fo2 + 2Fc2)/3
2930 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 15 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 5 to 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72407 (4)0.53586 (2)1.16914 (4)0.02823 (11)
O10.54051 (12)0.71912 (4)0.82460 (12)0.0271 (2)
N10.61671 (14)0.63912 (5)1.00499 (13)0.0236 (2)
N20.70761 (14)0.57313 (4)0.86599 (13)0.0217 (2)
C10.64968 (16)0.62639 (5)0.75658 (15)0.0202 (2)
C20.59464 (16)0.66941 (5)0.86029 (16)0.0216 (2)
C30.68352 (15)0.58379 (5)0.99846 (15)0.0216 (2)
C40.80769 (16)0.64949 (5)0.73319 (16)0.0219 (3)
C50.92075 (18)0.69236 (6)0.84133 (18)0.0305 (3)
H50.8969280.7093870.9284420.037*
C61.0688 (2)0.71050 (7)0.8226 (2)0.0369 (3)
H61.1458820.7396640.8976660.044*
C71.10450 (18)0.68648 (7)0.69606 (19)0.0346 (3)
H71.2052890.6992220.6833530.041*
C80.99264 (19)0.64370 (6)0.58764 (18)0.0321 (3)
H81.0167720.6269910.5003370.039*
C90.84503 (17)0.62513 (6)0.60624 (17)0.0260 (3)
H90.7690910.5956150.5318330.031*
C100.48418 (16)0.61446 (5)0.58351 (15)0.0209 (2)
C110.39872 (18)0.56066 (6)0.54725 (17)0.0273 (3)
H110.4435920.5301420.6305530.033*
C120.24745 (19)0.55132 (6)0.38914 (19)0.0337 (3)
H120.1900020.5143420.3646850.040*
C130.18031 (17)0.59563 (6)0.26740 (17)0.0301 (3)
H130.0769310.5892030.1596820.036*
C140.26501 (17)0.64947 (6)0.30376 (17)0.0277 (3)
H140.2189620.6800580.2208020.033*
C150.41649 (17)0.65893 (6)0.46046 (16)0.0249 (3)
H150.4743050.6958420.4840190.030*
C160.5778 (2)0.66282 (7)1.13960 (19)0.0364 (3)
H16A0.6902650.6715381.2432960.055*
H16B0.5093630.6341891.1688030.055*
H16C0.5075000.6986911.0973640.055*
C170.7916 (2)0.47276 (6)1.0905 (2)0.0348 (3)
H17A0.7009080.4640560.9715970.052*
H17B0.8042080.4392951.1655890.052*
H17C0.9066030.4805491.0913730.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03234 (19)0.03103 (18)0.02251 (17)0.00075 (12)0.01364 (14)0.00651 (12)
O10.0333 (5)0.0212 (4)0.0296 (5)0.0024 (4)0.0169 (4)0.0003 (4)
N10.0283 (5)0.0254 (5)0.0210 (5)0.0013 (4)0.0146 (4)0.0003 (4)
N20.0236 (5)0.0217 (5)0.0209 (5)0.0003 (4)0.0112 (4)0.0020 (4)
C10.0232 (6)0.0197 (5)0.0202 (6)0.0001 (4)0.0120 (5)0.0006 (4)
C20.0207 (6)0.0239 (6)0.0210 (6)0.0026 (5)0.0102 (5)0.0018 (5)
C30.0201 (6)0.0240 (6)0.0206 (6)0.0016 (4)0.0092 (5)0.0011 (5)
C40.0213 (6)0.0249 (6)0.0199 (6)0.0016 (4)0.0098 (5)0.0046 (5)
C50.0308 (7)0.0374 (7)0.0256 (6)0.0069 (6)0.0150 (6)0.0020 (5)
C60.0305 (7)0.0444 (8)0.0340 (8)0.0126 (6)0.0132 (6)0.0001 (6)
C70.0235 (6)0.0466 (8)0.0359 (8)0.0009 (6)0.0157 (6)0.0139 (6)
C80.0300 (7)0.0418 (8)0.0312 (7)0.0081 (6)0.0199 (6)0.0080 (6)
C90.0262 (6)0.0292 (6)0.0250 (6)0.0030 (5)0.0137 (5)0.0022 (5)
C100.0216 (6)0.0239 (6)0.0208 (6)0.0007 (4)0.0130 (5)0.0014 (4)
C110.0279 (6)0.0237 (6)0.0297 (7)0.0007 (5)0.0129 (5)0.0006 (5)
C120.0295 (7)0.0294 (7)0.0371 (8)0.0057 (5)0.0111 (6)0.0065 (6)
C130.0231 (6)0.0398 (7)0.0250 (6)0.0013 (5)0.0090 (5)0.0068 (5)
C140.0274 (7)0.0334 (7)0.0229 (6)0.0056 (5)0.0122 (5)0.0030 (5)
C150.0280 (6)0.0246 (6)0.0245 (6)0.0005 (5)0.0141 (5)0.0003 (5)
C160.0501 (9)0.0395 (8)0.0285 (7)0.0082 (6)0.0257 (7)0.0008 (6)
C170.0381 (8)0.0278 (7)0.0356 (8)0.0051 (6)0.0145 (6)0.0074 (6)
Geometric parameters (Å, º) top
S1—C31.7461 (12)C8—H80.9500
S1—C171.7995 (15)C9—H90.9500
O1—C21.2130 (15)C10—C111.3887 (17)
N1—C21.3699 (16)C10—C151.3937 (17)
N1—C31.3991 (16)C11—C121.3922 (19)
N1—C161.4550 (16)C11—H110.9500
N2—C31.2786 (16)C12—C131.384 (2)
N2—C11.4840 (15)C12—H120.9500
C1—C41.5287 (16)C13—C141.387 (2)
C1—C101.5302 (16)C13—H130.9500
C1—C21.5426 (16)C14—C151.3867 (19)
C4—C51.3888 (18)C14—H140.9500
C4—C91.3932 (18)C15—H150.9500
C5—C61.391 (2)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.379 (2)C16—H16C0.9800
C6—H60.9500C17—H17A0.9800
C7—C81.384 (2)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C8—C91.3907 (19)
C3—S1—C1799.02 (6)C8—C9—H9119.8
C2—N1—C3108.05 (10)C4—C9—H9119.8
C2—N1—C16124.06 (11)C11—C10—C15119.33 (12)
C3—N1—C16127.88 (11)C11—C10—C1121.54 (11)
C3—N2—C1106.02 (10)C15—C10—C1119.12 (11)
N2—C1—C4108.67 (9)C10—C11—C12120.18 (12)
N2—C1—C10111.27 (9)C10—C11—H11119.9
C4—C1—C10112.70 (10)C12—C11—H11119.9
N2—C1—C2104.57 (9)C13—C12—C11120.34 (13)
C4—C1—C2111.64 (10)C13—C12—H12119.8
C10—C1—C2107.71 (9)C11—C12—H12119.8
O1—C2—N1125.90 (11)C12—C13—C14119.54 (12)
O1—C2—C1129.05 (11)C12—C13—H13120.2
N1—C2—C1105.04 (10)C14—C13—H13120.2
N2—C3—N1116.26 (11)C15—C14—C13120.41 (12)
N2—C3—S1126.26 (10)C15—C14—H14119.8
N1—C3—S1117.47 (9)C13—C14—H14119.8
C5—C4—C9118.93 (12)C14—C15—C10120.20 (12)
C5—C4—C1121.51 (11)C14—C15—H15119.9
C9—C4—C1119.49 (11)C10—C15—H15119.9
C4—C5—C6120.28 (13)N1—C16—H16A109.5
C4—C5—H5119.9N1—C16—H16B109.5
C6—C5—H5119.9H16A—C16—H16B109.5
C7—C6—C5120.55 (14)N1—C16—H16C109.5
C7—C6—H6119.7H16A—C16—H16C109.5
C5—C6—H6119.7H16B—C16—H16C109.5
C6—C7—C8119.62 (13)S1—C17—H17A109.5
C6—C7—H7120.2S1—C17—H17B109.5
C8—C7—H7120.2H17A—C17—H17B109.5
C7—C8—C9120.14 (13)S1—C17—H17C109.5
C7—C8—H8119.9H17A—C17—H17C109.5
C9—C8—H8119.9H17B—C17—H17C109.5
C8—C9—C4120.49 (13)
C3—N2—C1—C4121.22 (11)C10—C1—C4—C941.41 (15)
C3—N2—C1—C10114.13 (11)C2—C1—C4—C9162.79 (11)
C3—N2—C1—C21.88 (12)C9—C4—C5—C60.0 (2)
C3—N1—C2—O1179.29 (12)C1—C4—C5—C6176.77 (12)
C16—N1—C2—O10.1 (2)C4—C5—C6—C70.4 (2)
C3—N1—C2—C11.68 (12)C5—C6—C7—C80.4 (2)
C16—N1—C2—C1179.13 (12)C6—C7—C8—C90.1 (2)
N2—C1—C2—O1178.84 (12)C7—C8—C9—C40.3 (2)
C4—C1—C2—O161.52 (16)C5—C4—C9—C80.33 (19)
C10—C1—C2—O162.70 (16)C1—C4—C9—C8177.20 (12)
N2—C1—C2—N12.18 (12)N2—C1—C10—C114.07 (15)
C4—C1—C2—N1119.50 (11)C4—C1—C10—C11126.43 (12)
C10—C1—C2—N1116.28 (10)C2—C1—C10—C11109.99 (12)
C1—N2—C3—N10.95 (14)N2—C1—C10—C15176.77 (10)
C1—N2—C3—S1178.44 (9)C4—C1—C10—C1554.41 (14)
C2—N1—C3—N20.54 (15)C2—C1—C10—C1569.17 (13)
C16—N1—C3—N2179.68 (13)C15—C10—C11—C120.28 (19)
C2—N1—C3—S1179.98 (8)C1—C10—C11—C12179.44 (12)
C16—N1—C3—S10.87 (18)C10—C11—C12—C130.4 (2)
C17—S1—C3—N22.75 (13)C11—C12—C13—C140.1 (2)
C17—S1—C3—N1176.63 (10)C12—C13—C14—C150.3 (2)
N2—C1—C4—C594.40 (14)C13—C14—C15—C100.50 (19)
C10—C1—C4—C5141.79 (12)C11—C10—C15—C140.19 (18)
C2—C1—C4—C520.42 (16)C1—C10—C15—C14178.99 (11)
N2—C1—C4—C982.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.553.390 (2)148
C15—H15···O1ii0.952.593.3797 (17)140
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, YR; methodology, AEMAA and AA; investigation, AEMAA and WG; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal structure determination and validation, JTM.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAkrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180934.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akachar, J., Jemli, M. E., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, 8765–8782.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230125.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNabah, R., Benhiba, F., Laabaissi, T., Zarrok, H., Cherkaoui, M., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2020). Surf. Rev. Lett. 27, 2050005.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakle, A. K., Brown, M. J., Davies, S., Dean, D. K., Francis, G., Gaiba, A., Hird, A. W., King, F. D., Lovell, P. J., Naylor, A., Reith, A. D., Steadman, J. G. & Wilson, D. M. (2006). Bioorg. Med. Chem. Lett. 16, 378–381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTutino, F., Posteri, H., Borghi, D., Quartieri, F., Mongelli, N. & Papeo, G. (2009). Tetrahedron, 65, 2372–2376.  Web of Science CrossRef CAS Google Scholar
First citationWu, Y., Wang, P., Zheng, L., Guo, H. & Yang, F. (2023). Sens. Actuators B Chem. 380, 133330.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146