organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1S,2S)-2-[(S)-2,2,2-Tri­fluoro-1-hy­dr­oxy­eth­yl]-1-tetra­lol

crossmark logo

aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerceva cesta 7, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 3 March 2023; accepted 7 March 2023; online 15 March 2023)

The crystal structure of the title enanti­opure tetralol derivative {systematic name: (1S,2S)-2-[(S)-2,2,2-tri­fluoro-1-hy­droxy­eth­yl]-1,2,3,4-tetra­hydro­naph­thalen-1-ol}, C12H13F3O2, synthesized by asymmetric transfer hydrogenation, was elucidated by low-temperature single-crystal X-ray diffraction. The enanti­opure compound crystallizes in the Sohncke space group P212121 with one mol­ecule in the asymmetric unit and features intra­molecular as well as inter­molecular O—H⋯O hydrogen bonding. The absolute configuration was established from anomalous dispersion effects.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Homochiral fluorinated alcohols, which are considered to be emerging structural motifs in medicinal chemistry (Cotman, 2021[Cotman, A. E. (2021). Chem. Eur. J. 27, 39-53.]), can be obtained in high yields employing dynamic kinetic resolution (DKR) with Noyori–Ikariya asymmetric transfer hydrogenation (ATH) (Betancourt et al., 2021[Betancourt, R. M., Phansavath, P. & Ratovelomanana-Vidal, V. (2021). J. Org. Chem. 86, 12054-12063.]; Cotman et al. 2022[Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396-404.]; Molina Betancourt et al., 2022[Molina Betancourt, R., Bacheley, L., Karapetyan, A., Guillamot, G., Phansavath, P. & Ratovelomanana-Vidal, V. (2022). ChemCatChem, 14, e202200595.]). When RuII-catalyzed DKR–ATH was applied to CF3CO-substituted benzofused cyclic ketones, it was observed that single or double reduction occurs, yielding either diastereo- and enanti­o­pure monoalcohols or 1,3-diols (Cotman et al., 2016[Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294-5298.]). The crystal structure of the mono-reduced product (S)-2-[(S)-2,2,2-tri­fluoro-1-hy­droxy­eth­yl]-1-tetra­lone has been described previously (Motaln et al., 2023[Motaln, K., Cotman, A. E. & Lozinšek, M. (2023). IUCrData, 8, x221209.]) and herein the crystal structure of the corres­ponding diol is presented.

(1S,2S)-2-[(S)-2,2,2-Tri­fluoro-1-hy­droxy­eth­yl]-1-tetra­lol crystallizes in the ortho­rhom­bic P212121 space group with one mol­ecule in the asymmetric unit (Fig. 1[link]). The cyclo­hexa­nol ring adopts a half-chair conformation (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), with the C2 atom located 0.251 (3) Å below and the C3 atom 0.497 (4) Å above the plane defined by atoms C1, C4, C5, and C10 (r.m.s.d. of 0.013 Å). This plane is essentially coplanar with the aromatic ring – the angle between the plane normals is 2.79 (9)° and the r.m.s. deviation of the plane defined by all coplanar atoms C1, C4–C10 is 0.025 Å. Tetra­lol derivatives with similar half-chair conformations have been reported, for example, 2,2,2-tri­fluoro-N-(1-hy­droxy-1,2,3,4-tetra­hydro­naphthalen-2-yl)acetamide (CSD refcode ALUXUC; Miyazawa et al., 2016[Miyazawa, K., Koike, T. & Akita, M. (2016). Tetrahedron, 72, 7813-7820.]), (1S,2S)-7-meth­oxy-2-(tri­fluoro­meth­yl)-1-tetra­lol (YEDBOC; Cotman et al., 2022[Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396-404.]), and plastically flexible (1R,2S)-2-(tri­fluoro­methyl­thio)-1-tetra­lol (YEDCAP; Cot­man et al., 2022[Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396-404.]).

[Figure 1]
Figure 1
Mol­ecular structure of (1S,2S)-2-[(S)-2,2,2-tri­fluoro-1-hy­droxy­eth­yl]-1-tetra­lol showing the atom-labeling scheme. Thermal displacement ellipsoids are drawn at the 50% probability level and the hydrogen atoms are shown as spheres of arbitrary radius.

In the crystal of the title compound, intra­molecular and inter­molecular O—H⋯O hydrogen bonds with O⋯O distances of 2.854 (2) and 2.789 (2) Å, respectively, link adjacent mol­ecules related by the 21 screw axis, into chains parallel to [010] (Table 1[link] and Figs. 2[link] and 3[link]). The graph-set motifs of the hydrogen bonds are S(6) and C(6) (Etter et al., 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.83 (4) 2.23 (4) 2.854 (2) 133 (3)
O2—H2⋯O1i 0.94 (4) 1.87 (4) 2.789 (2) 168 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Helical hydrogen-bonded chain extending parallel to [010] that involves inter­molecular and intra­molecular O—H⋯O hydrogen bonds, which are indicated by blue dashed lines.
[Figure 3]
Figure 3
Mol­ecular packing of the title compound viewed along [010]. The helical hydrogen-bonded chains are shown by blue dashed lines.

Synthesis and crystallization

The title compound was prepared from 2-tri­fluoro­acetyl-1-tetra­lone (100 mg, 0.412 mmol) added to a HCO2H/Et3N 3:2 (0.21 ml) solution containing the active (S,S)-di­phenyl­ethyl­enedi­amine-based RuII catalyst with an S/C ratio of 1000:1 (Cotman et al., 2016[Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294-5298.]). Upon addition of the co-solvent chloro­benzene (0.55 ml), the mixture was warmed to 60 °C and stirred for 24 h, while being continuously flushed with N2. The resulting mixture was partitioned between EtOAc (10 ml) and H2O (5 ml), with the organic layer later washed with H2O (5 ml) and brine (5 ml), filtered through a bed of silica gel/Na2SO4, and concentrated. The crude product was recrystallized from a 5:1 mixture of petroleum ether and diethyl ether affording colorless prisms (37 mg; 36% yield; diastereomeric ratio 97:3:0:0; enanti­omeric excess >99.9%). A suitable crystal was selected under a polarizing microscope and attached to a MiTeGen Dual Thickness MicroLoop using Baysilone-Paste (Bayer-Silicone, mittelviskos) as the adhesive.

Refinement

The crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The positions of the hydrogen atoms and their isotropic displacement parameter U were freely refined (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). The absolute configuration was established as S,S,S for C1, C2, and C11, respectively, based on anomalous dispersion effects [Flack x = 0.06 (5); Hooft y = 0.07 (3)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]; Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

Table 2
Experimental details

Crystal data
Chemical formula C12H13F3O2
Mr 246.22
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.75558 (10), 9.02843 (10), 15.5656 (2)
V3) 1089.92 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.17
Crystal size (mm) 0.08 × 0.07 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.886, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38720, 2273, 2255
Rint 0.053
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.06
No. of reflections 2273
No. of parameters 207
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.35, −0.17
Absolute structure Flack x determined using 929 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), OLEX2.solve (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: olex2.solve (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

(1S,2S)-2-[(S)-2,2,2-Trifluoro-1-hydroxyethyl]-1,2,3,4-tetrahydronaphthalen-1-ol top
Crystal data top
C12H13F3O2Dx = 1.501 Mg m3
Mr = 246.22Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 29238 reflections
a = 7.75558 (10) Åθ = 2.9–75.7°
b = 9.02843 (10) ŵ = 1.17 mm1
c = 15.5656 (2) ÅT = 100 K
V = 1089.92 (2) Å3Cube, colourless
Z = 40.08 × 0.07 × 0.06 mm
F(000) = 512
Data collection top
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
diffractometer
2273 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2255 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 13.3333 pixels mm-1θmax = 76.1°, θmin = 5.7°
ω scansh = 98
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1111
Tmin = 0.886, Tmax = 1.000l = 1919
38720 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0325P)2 + 0.4546P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.073Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.17 e Å3
2273 reflectionsExtinction correction: SHELXL-2019/2 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 parametersExtinction coefficient: 0.0016 (4)
0 restraintsAbsolute structure: Flack x determined using 929 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons et al., 2013)
Primary atom site location: iterativeAbsolute structure parameter: 0.06 (5)
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F30.80337 (19)0.85568 (15)0.60230 (9)0.0345 (3)
F10.69235 (19)0.72956 (16)0.49867 (9)0.0322 (3)
O20.49295 (19)0.76829 (16)0.65842 (10)0.0237 (3)
F20.89287 (17)0.63500 (16)0.57649 (10)0.0355 (4)
O10.38269 (19)0.51110 (16)0.74976 (9)0.0198 (3)
C50.3786 (3)0.2240 (2)0.61093 (12)0.0179 (4)
C10.3588 (2)0.4939 (2)0.65812 (12)0.0171 (4)
C100.2838 (3)0.3406 (2)0.64639 (12)0.0178 (4)
C120.7506 (3)0.7194 (2)0.57933 (14)0.0248 (5)
C40.5590 (3)0.2478 (2)0.57692 (13)0.0203 (4)
C110.6192 (3)0.6587 (2)0.64276 (13)0.0201 (4)
C90.1166 (3)0.3148 (2)0.67633 (14)0.0211 (4)
C80.0440 (3)0.1739 (3)0.67329 (14)0.0243 (4)
C30.6458 (3)0.3820 (2)0.61755 (13)0.0196 (4)
C70.1391 (3)0.0578 (2)0.63868 (14)0.0239 (4)
C20.5296 (2)0.5175 (2)0.60927 (13)0.0178 (4)
C60.3043 (3)0.0827 (2)0.60742 (13)0.0212 (4)
H110.680 (4)0.646 (3)0.6961 (16)0.025 (7)*
H60.369 (3)0.005 (3)0.5850 (16)0.024 (6)*
H90.055 (4)0.395 (3)0.6995 (17)0.028 (7)*
H80.071 (4)0.156 (3)0.6950 (17)0.031 (7)*
H3A0.666 (3)0.359 (3)0.6794 (16)0.023 (6)*
H1A0.277 (3)0.570 (3)0.6402 (15)0.015 (5)*
H4A0.553 (4)0.266 (3)0.5136 (17)0.029 (7)*
H2A0.498 (3)0.534 (3)0.5494 (16)0.022 (6)*
H4B0.623 (3)0.155 (3)0.5878 (17)0.029 (7)*
H70.094 (4)0.037 (3)0.6371 (18)0.031 (7)*
H3B0.757 (3)0.401 (3)0.5896 (17)0.024 (6)*
H10.415 (4)0.598 (4)0.755 (2)0.053 (10)*
H20.549 (5)0.848 (4)0.685 (2)0.059 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F30.0359 (7)0.0259 (7)0.0418 (7)0.0144 (6)0.0096 (6)0.0073 (6)
F10.0371 (7)0.0326 (7)0.0271 (6)0.0095 (6)0.0025 (6)0.0059 (5)
O20.0221 (7)0.0175 (7)0.0314 (8)0.0003 (6)0.0003 (6)0.0025 (6)
F20.0200 (6)0.0358 (8)0.0507 (8)0.0024 (6)0.0095 (6)0.0009 (6)
O10.0238 (7)0.0168 (7)0.0189 (7)0.0023 (6)0.0006 (6)0.0005 (6)
C50.0196 (9)0.0172 (9)0.0170 (8)0.0007 (8)0.0039 (8)0.0016 (7)
C10.0167 (9)0.0158 (8)0.0187 (9)0.0013 (8)0.0009 (7)0.0002 (7)
C100.0180 (9)0.0169 (9)0.0184 (8)0.0001 (8)0.0029 (7)0.0025 (7)
C120.0261 (11)0.0212 (10)0.0273 (10)0.0053 (8)0.0028 (8)0.0042 (8)
C40.0203 (10)0.0178 (9)0.0230 (10)0.0025 (7)0.0034 (8)0.0008 (8)
C110.0192 (9)0.0181 (9)0.0230 (9)0.0007 (8)0.0010 (8)0.0015 (8)
C90.0178 (9)0.0218 (10)0.0236 (9)0.0006 (8)0.0016 (8)0.0010 (8)
C80.0186 (10)0.0270 (10)0.0273 (10)0.0064 (8)0.0037 (8)0.0050 (9)
C30.0155 (8)0.0211 (9)0.0222 (9)0.0006 (7)0.0017 (8)0.0002 (8)
C70.0262 (11)0.0189 (10)0.0267 (10)0.0067 (8)0.0090 (9)0.0023 (8)
C20.0180 (9)0.0163 (8)0.0192 (9)0.0014 (7)0.0001 (8)0.0005 (7)
C60.0258 (10)0.0169 (9)0.0207 (9)0.0003 (8)0.0053 (8)0.0010 (8)
Geometric parameters (Å, º) top
F3—C121.345 (2)C4—H4A1.00 (3)
F1—C121.338 (3)C4—H4B0.99 (3)
O2—C111.413 (2)C11—C21.542 (3)
O2—H20.94 (4)C11—H110.96 (3)
F2—C121.342 (3)C9—C81.392 (3)
O1—C11.447 (2)C9—H90.94 (3)
O1—H10.83 (4)C8—C71.390 (3)
C5—C101.398 (3)C8—H80.96 (3)
C5—C41.511 (3)C3—C21.525 (3)
C5—C61.401 (3)C3—H3A1.00 (3)
C1—C101.512 (3)C3—H3B0.98 (3)
C1—C21.542 (3)C7—C61.389 (3)
C1—H1A0.98 (2)C7—H70.93 (3)
C10—C91.397 (3)C2—H2A0.98 (3)
C12—C111.522 (3)C6—H61.00 (3)
C4—C31.524 (3)
C11—O2—H2107 (2)O2—C11—H11106.0 (16)
C1—O1—H1103 (2)C12—C11—C2112.35 (17)
C10—C5—C4121.21 (17)C12—C11—H11105.9 (16)
C10—C5—C6119.02 (18)C2—C11—H11114.5 (17)
C6—C5—C4119.76 (18)C10—C9—H9117.8 (17)
O1—C1—C10105.47 (15)C8—C9—C10121.10 (19)
O1—C1—C2111.18 (15)C8—C9—H9121.1 (17)
O1—C1—H1A106.8 (14)C9—C8—H8120.9 (17)
C10—C1—C2113.45 (16)C7—C8—C9119.2 (2)
C10—C1—H1A111.3 (14)C7—C8—H8119.9 (17)
C2—C1—H1A108.5 (14)C4—C3—C2110.02 (16)
C5—C10—C1122.30 (17)C4—C3—H3A107.8 (16)
C9—C10—C5119.60 (18)C4—C3—H3B110.2 (15)
C9—C10—C1118.03 (17)C2—C3—H3A110.1 (15)
F3—C12—C11111.16 (18)C2—C3—H3B109.8 (15)
F1—C12—F3106.85 (18)H3A—C3—H3B109 (2)
F1—C12—F2106.60 (18)C8—C7—H7120.7 (17)
F1—C12—C11114.03 (18)C6—C7—C8120.20 (19)
F2—C12—F3106.17 (17)C6—C7—H7119.1 (17)
F2—C12—C11111.57 (18)C1—C2—C11109.55 (16)
C5—C4—C3112.12 (16)C1—C2—H2A105.9 (15)
C5—C4—H4A109.0 (16)C11—C2—H2A108.1 (15)
C5—C4—H4B106.6 (16)C3—C2—C1110.76 (16)
C3—C4—H4A107.5 (16)C3—C2—C11111.62 (16)
C3—C4—H4B112.4 (16)C3—C2—H2A110.7 (15)
H4A—C4—H4B109 (2)C5—C6—H6121.9 (14)
O2—C11—C12108.89 (16)C7—C6—C5120.86 (19)
O2—C11—C2108.96 (16)C7—C6—H6117.2 (14)
F3—C12—C11—O247.8 (2)C10—C1—C2—C11165.55 (16)
F3—C12—C11—C2168.61 (17)C10—C1—C2—C342.0 (2)
F1—C12—C11—O273.1 (2)C10—C9—C8—C70.9 (3)
F1—C12—C11—C247.8 (2)C12—C11—C2—C1159.85 (17)
O2—C11—C2—C139.1 (2)C12—C11—C2—C377.1 (2)
O2—C11—C2—C3162.14 (16)C4—C5—C10—C14.0 (3)
F2—C12—C11—O2166.11 (16)C4—C5—C10—C9179.31 (17)
F2—C12—C11—C273.1 (2)C4—C5—C6—C7179.64 (17)
O1—C1—C10—C5108.6 (2)C4—C3—C2—C162.5 (2)
O1—C1—C10—C968.1 (2)C4—C3—C2—C11175.18 (16)
O1—C1—C2—C1146.9 (2)C9—C8—C7—C60.1 (3)
O1—C1—C2—C376.7 (2)C8—C7—C6—C50.7 (3)
C5—C10—C9—C81.5 (3)C2—C1—C10—C513.3 (3)
C5—C4—C3—C252.3 (2)C2—C1—C10—C9169.99 (17)
C1—C10—C9—C8175.33 (19)C6—C5—C10—C1175.72 (17)
C10—C5—C4—C323.6 (3)C6—C5—C10—C91.0 (3)
C10—C5—C6—C70.1 (3)C6—C5—C4—C3156.10 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.83 (4)2.23 (4)2.854 (2)133 (3)
O2—H2···O1i0.94 (4)1.87 (4)2.789 (2)168 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant No. P1-0208).

References

First citationBetancourt, R. M., Phansavath, P. & Ratovelomanana-Vidal, V. (2021). J. Org. Chem. 86, 12054–12063.  CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCotman, A. E. (2021). Chem. Eur. J. 27, 39–53.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294–5298.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396–404.  CSD CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyazawa, K., Koike, T. & Akita, M. (2016). Tetrahedron, 72, 7813–7820.  CSD CrossRef CAS Google Scholar
First citationMolina Betancourt, R., Bacheley, L., Karapetyan, A., Guillamot, G., Phansavath, P. & Ratovelomanana–Vidal, V. (2022). ChemCatChem, 14, e202200595.  CSD CrossRef Google Scholar
First citationMotaln, K., Cotman, A. E. & Lozinšek, M. (2023). IUCrData, 8, x221209.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146