organic compounds
(1S,2S)-2-[(S)-2,2,2-Trifluoro-1-hydroxyethyl]-1-tetralol
aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerceva cesta 7, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The S,2S)-2-[(S)-2,2,2-trifluoro-1-hydroxyethyl]-1,2,3,4-tetrahydronaphthalen-1-ol}, C12H13F3O2, synthesized by asymmetric transfer hydrogenation, was elucidated by low-temperature single-crystal X-ray diffraction. The enantiopure compound crystallizes in the Sohncke P212121 with one molecule in the and features intramolecular as well as intermolecular O—H⋯O hydrogen bonding. The was established from effects.
of the title enantiopure tetralol derivative {systematic name: (1CCDC reference: 2246795
Structure description
Homochiral fluorinated ), can be obtained in high yields employing dynamic (DKR) with Noyori–Ikariya asymmetric transfer hydrogenation (ATH) (Betancourt et al., 2021; Cotman et al. 2022; Molina Betancourt et al., 2022). When RuII-catalyzed DKR–ATH was applied to CF3CO-substituted benzofused cyclic it was observed that single or double reduction occurs, yielding either diastereo- and enantiopure monoalcohols or 1,3-diols (Cotman et al., 2016). The of the mono-reduced product (S)-2-[(S)-2,2,2-trifluoro-1-hydroxyethyl]-1-tetralone has been described previously (Motaln et al., 2023) and herein the of the corresponding diol is presented.
which are considered to be emerging structural motifs in medicinal chemistry (Cotman, 2021(1S,2S)-2-[(S)-2,2,2-Trifluoro-1-hydroxyethyl]-1-tetralol crystallizes in the orthorhombic P212121 with one molecule in the (Fig. 1). The cyclohexanol ring adopts a half-chair conformation (Cremer & Pople, 1975), with the C2 atom located 0.251 (3) Å below and the C3 atom 0.497 (4) Å above the plane defined by atoms C1, C4, C5, and C10 (r.m.s.d. of 0.013 Å). This plane is essentially coplanar with the aromatic ring – the angle between the plane normals is 2.79 (9)° and the r.m.s. deviation of the plane defined by all coplanar atoms C1, C4–C10 is 0.025 Å. Tetralol derivatives with similar half-chair conformations have been reported, for example, 2,2,2-trifluoro-N-(1-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)acetamide (CSD refcode ALUXUC; Miyazawa et al., 2016), (1S,2S)-7-methoxy-2-(trifluoromethyl)-1-tetralol (YEDBOC; Cotman et al., 2022), and plastically flexible (1R,2S)-2-(trifluoromethylthio)-1-tetralol (YEDCAP; Cotman et al., 2022).
In the crystal of the title compound, intramolecular and intermolecular O—H⋯O hydrogen bonds with O⋯O distances of 2.854 (2) and 2.789 (2) Å, respectively, link adjacent molecules related by the 21 screw axis, into chains parallel to [010] (Table 1 and Figs. 2 and 3). The graph-set motifs of the hydrogen bonds are S(6) and C(6) (Etter et al., 1990).
Synthesis and crystallization
The title compound was prepared from 2-trifluoroacetyl-1-tetralone (100 mg, 0.412 mmol) added to a HCO2H/Et3N 3:2 (0.21 ml) solution containing the active (S,S)-diphenylethylenediamine-based RuII catalyst with an S/C ratio of 1000:1 (Cotman et al., 2016). Upon addition of the co-solvent chlorobenzene (0.55 ml), the mixture was warmed to 60 °C and stirred for 24 h, while being continuously flushed with N2. The resulting mixture was partitioned between EtOAc (10 ml) and H2O (5 ml), with the organic layer later washed with H2O (5 ml) and brine (5 ml), filtered through a bed of silica gel/Na2SO4, and concentrated. The crude product was recrystallized from a 5:1 mixture of petroleum ether and diethyl ether affording colorless prisms (37 mg; 36% yield; 97:3:0:0; enantiomeric excess >99.9%). A suitable crystal was selected under a polarizing microscope and attached to a MiTeGen Dual Thickness MicroLoop using Baysilone-Paste (Bayer-Silicone, mittelviskos) as the adhesive.
Refinement
The crystal data, data collection, and structure . The positions of the hydrogen atoms and their isotropic displacement parameter U were freely refined (Cooper et al., 2010). The was established as S,S,S for C1, C2, and C11, respectively, based on effects [Flack x = 0.06 (5); Hooft y = 0.07 (3)] (Parsons et al., 2013; Hooft et al., 2008).
details are summarized in Table 2Structural data
CCDC reference: 2246795
https://doi.org/10.1107/S2414314623002171/tk4089sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623002171/tk4089Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623002171/tk4089Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: olex2.solve (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).C12H13F3O2 | Dx = 1.501 Mg m−3 |
Mr = 246.22 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 29238 reflections |
a = 7.75558 (10) Å | θ = 2.9–75.7° |
b = 9.02843 (10) Å | µ = 1.17 mm−1 |
c = 15.5656 (2) Å | T = 100 K |
V = 1089.92 (2) Å3 | Cube, colourless |
Z = 4 | 0.08 × 0.07 × 0.06 mm |
F(000) = 512 |
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M diffractometer | 2273 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2255 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 76.1°, θmin = 5.7° |
ω scans | h = −9→8 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −11→11 |
Tmin = 0.886, Tmax = 1.000 | l = −19→19 |
38720 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0325P)2 + 0.4546P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.029 | (Δ/σ)max < 0.001 |
wR(F2) = 0.073 | Δρmax = 0.35 e Å−3 |
S = 1.06 | Δρmin = −0.17 e Å−3 |
2273 reflections | Extinction correction: SHELXL-2019/2 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
207 parameters | Extinction coefficient: 0.0016 (4) |
0 restraints | Absolute structure: Flack x determined using 929 quotients [(I+)–(I–)]/[(I+)+(I–)] (Parsons et al., 2013) |
Primary atom site location: iterative | Absolute structure parameter: 0.06 (5) |
Hydrogen site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F3 | 0.80337 (19) | 0.85568 (15) | 0.60230 (9) | 0.0345 (3) | |
F1 | 0.69235 (19) | 0.72956 (16) | 0.49867 (9) | 0.0322 (3) | |
O2 | 0.49295 (19) | 0.76829 (16) | 0.65842 (10) | 0.0237 (3) | |
F2 | 0.89287 (17) | 0.63500 (16) | 0.57649 (10) | 0.0355 (4) | |
O1 | 0.38269 (19) | 0.51110 (16) | 0.74976 (9) | 0.0198 (3) | |
C5 | 0.3786 (3) | 0.2240 (2) | 0.61093 (12) | 0.0179 (4) | |
C1 | 0.3588 (2) | 0.4939 (2) | 0.65812 (12) | 0.0171 (4) | |
C10 | 0.2838 (3) | 0.3406 (2) | 0.64639 (12) | 0.0178 (4) | |
C12 | 0.7506 (3) | 0.7194 (2) | 0.57933 (14) | 0.0248 (5) | |
C4 | 0.5590 (3) | 0.2478 (2) | 0.57692 (13) | 0.0203 (4) | |
C11 | 0.6192 (3) | 0.6587 (2) | 0.64276 (13) | 0.0201 (4) | |
C9 | 0.1166 (3) | 0.3148 (2) | 0.67633 (14) | 0.0211 (4) | |
C8 | 0.0440 (3) | 0.1739 (3) | 0.67329 (14) | 0.0243 (4) | |
C3 | 0.6458 (3) | 0.3820 (2) | 0.61755 (13) | 0.0196 (4) | |
C7 | 0.1391 (3) | 0.0578 (2) | 0.63868 (14) | 0.0239 (4) | |
C2 | 0.5296 (2) | 0.5175 (2) | 0.60927 (13) | 0.0178 (4) | |
C6 | 0.3043 (3) | 0.0827 (2) | 0.60742 (13) | 0.0212 (4) | |
H11 | 0.680 (4) | 0.646 (3) | 0.6961 (16) | 0.025 (7)* | |
H6 | 0.369 (3) | −0.005 (3) | 0.5850 (16) | 0.024 (6)* | |
H9 | 0.055 (4) | 0.395 (3) | 0.6995 (17) | 0.028 (7)* | |
H8 | −0.071 (4) | 0.156 (3) | 0.6950 (17) | 0.031 (7)* | |
H3A | 0.666 (3) | 0.359 (3) | 0.6794 (16) | 0.023 (6)* | |
H1A | 0.277 (3) | 0.570 (3) | 0.6402 (15) | 0.015 (5)* | |
H4A | 0.553 (4) | 0.266 (3) | 0.5136 (17) | 0.029 (7)* | |
H2A | 0.498 (3) | 0.534 (3) | 0.5494 (16) | 0.022 (6)* | |
H4B | 0.623 (3) | 0.155 (3) | 0.5878 (17) | 0.029 (7)* | |
H7 | 0.094 (4) | −0.037 (3) | 0.6371 (18) | 0.031 (7)* | |
H3B | 0.757 (3) | 0.401 (3) | 0.5896 (17) | 0.024 (6)* | |
H1 | 0.415 (4) | 0.598 (4) | 0.755 (2) | 0.053 (10)* | |
H2 | 0.549 (5) | 0.848 (4) | 0.685 (2) | 0.059 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F3 | 0.0359 (7) | 0.0259 (7) | 0.0418 (7) | −0.0144 (6) | 0.0096 (6) | −0.0073 (6) |
F1 | 0.0371 (7) | 0.0326 (7) | 0.0271 (6) | −0.0095 (6) | 0.0025 (6) | 0.0059 (5) |
O2 | 0.0221 (7) | 0.0175 (7) | 0.0314 (8) | 0.0003 (6) | 0.0003 (6) | −0.0025 (6) |
F2 | 0.0200 (6) | 0.0358 (8) | 0.0507 (8) | −0.0024 (6) | 0.0095 (6) | 0.0009 (6) |
O1 | 0.0238 (7) | 0.0168 (7) | 0.0189 (7) | −0.0023 (6) | 0.0006 (6) | −0.0005 (6) |
C5 | 0.0196 (9) | 0.0172 (9) | 0.0170 (8) | 0.0007 (8) | −0.0039 (8) | 0.0016 (7) |
C1 | 0.0167 (9) | 0.0158 (8) | 0.0187 (9) | 0.0013 (8) | −0.0009 (7) | −0.0002 (7) |
C10 | 0.0180 (9) | 0.0169 (9) | 0.0184 (8) | 0.0001 (8) | −0.0029 (7) | 0.0025 (7) |
C12 | 0.0261 (11) | 0.0212 (10) | 0.0273 (10) | −0.0053 (8) | 0.0028 (8) | −0.0042 (8) |
C4 | 0.0203 (10) | 0.0178 (9) | 0.0230 (10) | 0.0025 (7) | 0.0034 (8) | −0.0008 (8) |
C11 | 0.0192 (9) | 0.0181 (9) | 0.0230 (9) | −0.0007 (8) | 0.0010 (8) | −0.0015 (8) |
C9 | 0.0178 (9) | 0.0218 (10) | 0.0236 (9) | 0.0006 (8) | −0.0016 (8) | 0.0010 (8) |
C8 | 0.0186 (10) | 0.0270 (10) | 0.0273 (10) | −0.0064 (8) | −0.0037 (8) | 0.0050 (9) |
C3 | 0.0155 (8) | 0.0211 (9) | 0.0222 (9) | 0.0006 (7) | 0.0017 (8) | −0.0002 (8) |
C7 | 0.0262 (11) | 0.0189 (10) | 0.0267 (10) | −0.0067 (8) | −0.0090 (9) | 0.0023 (8) |
C2 | 0.0180 (9) | 0.0163 (8) | 0.0192 (9) | −0.0014 (7) | 0.0001 (8) | −0.0005 (7) |
C6 | 0.0258 (10) | 0.0169 (9) | 0.0207 (9) | −0.0003 (8) | −0.0053 (8) | 0.0010 (8) |
F3—C12 | 1.345 (2) | C4—H4A | 1.00 (3) |
F1—C12 | 1.338 (3) | C4—H4B | 0.99 (3) |
O2—C11 | 1.413 (2) | C11—C2 | 1.542 (3) |
O2—H2 | 0.94 (4) | C11—H11 | 0.96 (3) |
F2—C12 | 1.342 (3) | C9—C8 | 1.392 (3) |
O1—C1 | 1.447 (2) | C9—H9 | 0.94 (3) |
O1—H1 | 0.83 (4) | C8—C7 | 1.390 (3) |
C5—C10 | 1.398 (3) | C8—H8 | 0.96 (3) |
C5—C4 | 1.511 (3) | C3—C2 | 1.525 (3) |
C5—C6 | 1.401 (3) | C3—H3A | 1.00 (3) |
C1—C10 | 1.512 (3) | C3—H3B | 0.98 (3) |
C1—C2 | 1.542 (3) | C7—C6 | 1.389 (3) |
C1—H1A | 0.98 (2) | C7—H7 | 0.93 (3) |
C10—C9 | 1.397 (3) | C2—H2A | 0.98 (3) |
C12—C11 | 1.522 (3) | C6—H6 | 1.00 (3) |
C4—C3 | 1.524 (3) | ||
C11—O2—H2 | 107 (2) | O2—C11—H11 | 106.0 (16) |
C1—O1—H1 | 103 (2) | C12—C11—C2 | 112.35 (17) |
C10—C5—C4 | 121.21 (17) | C12—C11—H11 | 105.9 (16) |
C10—C5—C6 | 119.02 (18) | C2—C11—H11 | 114.5 (17) |
C6—C5—C4 | 119.76 (18) | C10—C9—H9 | 117.8 (17) |
O1—C1—C10 | 105.47 (15) | C8—C9—C10 | 121.10 (19) |
O1—C1—C2 | 111.18 (15) | C8—C9—H9 | 121.1 (17) |
O1—C1—H1A | 106.8 (14) | C9—C8—H8 | 120.9 (17) |
C10—C1—C2 | 113.45 (16) | C7—C8—C9 | 119.2 (2) |
C10—C1—H1A | 111.3 (14) | C7—C8—H8 | 119.9 (17) |
C2—C1—H1A | 108.5 (14) | C4—C3—C2 | 110.02 (16) |
C5—C10—C1 | 122.30 (17) | C4—C3—H3A | 107.8 (16) |
C9—C10—C5 | 119.60 (18) | C4—C3—H3B | 110.2 (15) |
C9—C10—C1 | 118.03 (17) | C2—C3—H3A | 110.1 (15) |
F3—C12—C11 | 111.16 (18) | C2—C3—H3B | 109.8 (15) |
F1—C12—F3 | 106.85 (18) | H3A—C3—H3B | 109 (2) |
F1—C12—F2 | 106.60 (18) | C8—C7—H7 | 120.7 (17) |
F1—C12—C11 | 114.03 (18) | C6—C7—C8 | 120.20 (19) |
F2—C12—F3 | 106.17 (17) | C6—C7—H7 | 119.1 (17) |
F2—C12—C11 | 111.57 (18) | C1—C2—C11 | 109.55 (16) |
C5—C4—C3 | 112.12 (16) | C1—C2—H2A | 105.9 (15) |
C5—C4—H4A | 109.0 (16) | C11—C2—H2A | 108.1 (15) |
C5—C4—H4B | 106.6 (16) | C3—C2—C1 | 110.76 (16) |
C3—C4—H4A | 107.5 (16) | C3—C2—C11 | 111.62 (16) |
C3—C4—H4B | 112.4 (16) | C3—C2—H2A | 110.7 (15) |
H4A—C4—H4B | 109 (2) | C5—C6—H6 | 121.9 (14) |
O2—C11—C12 | 108.89 (16) | C7—C6—C5 | 120.86 (19) |
O2—C11—C2 | 108.96 (16) | C7—C6—H6 | 117.2 (14) |
F3—C12—C11—O2 | 47.8 (2) | C10—C1—C2—C11 | −165.55 (16) |
F3—C12—C11—C2 | 168.61 (17) | C10—C1—C2—C3 | −42.0 (2) |
F1—C12—C11—O2 | −73.1 (2) | C10—C9—C8—C7 | −0.9 (3) |
F1—C12—C11—C2 | 47.8 (2) | C12—C11—C2—C1 | −159.85 (17) |
O2—C11—C2—C1 | −39.1 (2) | C12—C11—C2—C3 | 77.1 (2) |
O2—C11—C2—C3 | −162.14 (16) | C4—C5—C10—C1 | −4.0 (3) |
F2—C12—C11—O2 | 166.11 (16) | C4—C5—C10—C9 | 179.31 (17) |
F2—C12—C11—C2 | −73.1 (2) | C4—C5—C6—C7 | 179.64 (17) |
O1—C1—C10—C5 | −108.6 (2) | C4—C3—C2—C1 | 62.5 (2) |
O1—C1—C10—C9 | 68.1 (2) | C4—C3—C2—C11 | −175.18 (16) |
O1—C1—C2—C11 | −46.9 (2) | C9—C8—C7—C6 | −0.1 (3) |
O1—C1—C2—C3 | 76.7 (2) | C8—C7—C6—C5 | 0.7 (3) |
C5—C10—C9—C8 | 1.5 (3) | C2—C1—C10—C5 | 13.3 (3) |
C5—C4—C3—C2 | −52.3 (2) | C2—C1—C10—C9 | −169.99 (17) |
C1—C10—C9—C8 | −175.33 (19) | C6—C5—C10—C1 | 175.72 (17) |
C10—C5—C4—C3 | 23.6 (3) | C6—C5—C10—C9 | −1.0 (3) |
C10—C5—C6—C7 | −0.1 (3) | C6—C5—C4—C3 | −156.10 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.83 (4) | 2.23 (4) | 2.854 (2) | 133 (3) |
O2—H2···O1i | 0.94 (4) | 1.87 (4) | 2.789 (2) | 168 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Funding information
Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant No. P1-0208).
References
Betancourt, R. M., Phansavath, P. & Ratovelomanana-Vidal, V. (2021). J. Org. Chem. 86, 12054–12063. CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cotman, A. E. (2021). Chem. Eur. J. 27, 39–53. Web of Science CrossRef CAS PubMed Google Scholar
Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294–5298. Web of Science CSD CrossRef CAS Google Scholar
Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396–404. CSD CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyazawa, K., Koike, T. & Akita, M. (2016). Tetrahedron, 72, 7813–7820. CSD CrossRef CAS Google Scholar
Molina Betancourt, R., Bacheley, L., Karapetyan, A., Guillamot, G., Phansavath, P. & Ratovelomanana–Vidal, V. (2022). ChemCatChem, 14, e202200595. CSD CrossRef Google Scholar
Motaln, K., Cotman, A. E. & Lozinšek, M. (2023). IUCrData, 8, x221209. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.