organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Meth­oxy-2-nitro­phenyl)-2-(3-methyl-2-oxo-1,2-di­hydroquinoxalin-1-yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V, University, Rabat, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 February 2023; accepted 1 March 2023; online 15 March 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The quinoxaline unit in the title mol­ecule, C18H16N4O5, is slightly puckered [dihedral angle between the rings = 2.07 (12)°] while the whole mol­ecule adopts an L-shaped conformation. Intra­molecular hydrogen bonding determines the orientation of the substituted phenyl ring and the amide nitro­gen atom is almost planar. The packing in the crystal is governed by C—H⋯O hydrogen bonds and slipped π-stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline and its derivatives have attracted significant considerations because of their pharmacological activities (e.g., Abad et al., 2021[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.]) and industrial properties (e.g., Laabaissi et al., 2020[Laabaissi, T., Benhiba, F., Missioui, M., Rouifi, Z., Rbaa, M., Oudda, H., Ramli, Y., Guenbour, A., Warad, I. & Zarrouk, A. (2020). Heliyon 6, e03939.]). As a continuation of our work on the synthesis of 3-methyl­quinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al. 2018[Ramli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]), the title compound, C18H16N4O5 was synthesized and its crystal structure is reported here.

The mol­ecule adopts an L-shaped conformation with atom C10 at the apex of the `L' (Fig. 1[link]). The orientation of the pendant 2-nitro-4-meth­oxy­phenyl ring is primarily determined by the strong intra­molecular N3—H3A⋯O1 and weaker C13—H13⋯O2 hydrogen bonds (Table 1[link]). H3A may also participate in hydrogen bonding with O1, but this is a weak inter­action at best due to the long H3A⋯O1 separation (Table 1[link]). The quinoxaline unit is not quite planar, as indicated by the dihedral angle of 2.07 (12)° between the mean planes of the constituent rings. The dihedral angle between the mean planes of the C12–C17 and the C1/C6/N1/C7/C8/N2 rings is 81.96 (5)°. The sum of the inter­bond angles about N3 is 360°, which may be inter­preted as the participation of its lone pair in π bonding: this is supported by the N3—C11 and N3—C12 bond distances of 1.358 (2) and 1.408 (2) Å, respectively, which are shorter than would be expected for sp2(C)—sp3(N) bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.85 (2) 2.55 (2) 3.245 (2) 139 (2)
N3—H3A⋯O3 0.85 (2) 1.97 (2) 2.655 (2) 137 (2)
C5—H5⋯O5i 0.95 2.43 3.331 (2) 159
C10—H10A⋯O2ii 0.99 2.37 3.306 (2) 157
C13—H13⋯O2 0.95 2.21 2.842 (2) 123
C16—H16⋯O4iii 0.95 2.49 3.401 (2) 162
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule showing 50% displacement ellipsoids. The intra­molecular hydrogen bonds are depicted by dashed lines.

In the crystal, C5—H5⋯O5 hydrogen bonds (Table 1[link]) form zigzag chains of mol­ecules extending along the c-axis direction (Fig. 2[link]). The chains are stacked along the b-axis direction through slipped π-stacking inter­actions between the C1–C6 and C1/C6/N1/C7/C8/N2 rings [centroid–centroid separation = 3.6684 (12) Å, dihedral angle = 2.07 (10)°, slippage alternates between 1.40 and 1.28 Å along the stack]. The π-stacking is reinforced by C8=O1⋯Cg1 inter­actions, where Cg1 is the centroid of the C1/C6/N1/C7/C8/N2 ring: O1⋯Cg1 = 3.3333 (16) Å, C8⋯Cg1 = 3.689 (2) Å, C8=O1⋯Cg1 = 96.89 (2)°. The stacks are linked by C10—H10A⋯O2 and C16—H16⋯O4 hydrogen bonds (Table 1[link]), generating a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A portion of an [001] chain viewed along the a-axis direction with C—H⋯O hydrogen bonds depicted by dashed lines Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯O hydrogen bonds depicted by black dashed lines. Slipped π-stacking and C=O⋯π(ring) inter­actions are depicted, respectively, by orange and light-blue dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

Synthesis and crystallization

A mass of 1.00 g (6.24 mmol) of 3-methyl­quinoxalin-2(1H)-one was dissolved in 25 ml of di­methyl­formamide, then 1.53 g (6.24 mmol) of 2-chloro-N-(4-meth­oxy-2-nitro­phen­yl)acetamide were added followed by 1.0 g (7.5 mmol) of potassium bicarbonate, and a spatula tip of BTBA [2-benzyl­sulfanyl-5-(tri­fluoro­meth­yl)benzoic acid] was used for the phase-transfer catalysis. The reaction was stirred for 2 h under reflux at 80°C. When the starting reagents had completely reacted, 500 ml of distilled water were added and a few minutes later the product precipitated. This was filtered, dried and recrystallized from hot ethanol solution to yield light-yellow plate-like crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H16N4O5
Mr 368.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 15.8241 (3), 4.4930 (1), 23.6480 (5)
β (°) 103.018 (1)
V3) 1638.11 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.94
Crystal size (mm) 0.12 × 0.08 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 22301, 3119, 2270
Rint 0.074
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.02
No. of reflections 3119
No. of parameters 250
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-(4-Methoxy-2-nitrophenyl)-2-(3-methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetamide top
Crystal data top
C18H16N4O5F(000) = 768
Mr = 368.35Dx = 1.494 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 15.8241 (3) ÅCell parameters from 7216 reflections
b = 4.4930 (1) Åθ = 2.9–70.2°
c = 23.6480 (5) ŵ = 0.94 mm1
β = 103.018 (1)°T = 150 K
V = 1638.11 (6) Å3Plate, light yellow
Z = 40.12 × 0.08 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
3119 independent reflections
Radiation source: INCOATEC IµS micro—-focus source2270 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.074
Detector resolution: 7.3910 pixels mm-1θmax = 70.1°, θmin = 2.9°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.89, Tmax = 0.98l = 2828
22301 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2 + 0.6927P]
where P = (Fo2 + 2Fc2)/3
3119 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 10 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 10 to 30 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29763 (9)0.0001 (3)0.34072 (6)0.0396 (4)
O20.06996 (9)0.4993 (4)0.21704 (6)0.0420 (4)
O30.38691 (9)0.5131 (3)0.29319 (6)0.0344 (3)
O40.45916 (8)0.9029 (3)0.27884 (6)0.0341 (3)
O50.30452 (9)1.3237 (3)0.09025 (5)0.0374 (4)
N10.30123 (10)0.4946 (4)0.45836 (6)0.0334 (4)
N20.18929 (10)0.3026 (4)0.35555 (6)0.0270 (3)
N30.21772 (10)0.5104 (4)0.24679 (7)0.0292 (4)
H3A0.2615 (15)0.437 (5)0.2704 (10)0.042 (7)*
N40.39485 (10)0.7433 (4)0.26623 (6)0.0278 (4)
C10.15864 (12)0.5072 (4)0.39079 (7)0.0278 (4)
C20.07504 (13)0.6245 (5)0.37620 (8)0.0323 (4)
H20.0367600.5701600.3406920.039*
C30.04812 (14)0.8202 (5)0.41361 (9)0.0381 (5)
H30.0090400.8988600.4037260.046*
C40.10365 (15)0.9037 (5)0.46563 (9)0.0420 (5)
H40.0842661.0368620.4912510.050*
C50.18659 (14)0.7926 (5)0.47968 (8)0.0367 (5)
H50.2246000.8515680.5149750.044*
C60.21584 (12)0.5946 (5)0.44297 (8)0.0304 (4)
C70.32731 (12)0.3047 (5)0.42509 (8)0.0312 (4)
C80.27135 (12)0.1856 (5)0.37100 (8)0.0300 (4)
C90.41867 (13)0.1955 (6)0.43809 (9)0.0436 (5)
H9A0.4193260.0202080.4443010.065*
H9B0.4516850.2938230.4731520.065*
H9C0.4450090.2411730.4053580.065*
C100.13459 (12)0.2067 (5)0.29953 (7)0.0298 (4)
H10A0.0739650.1862740.3036280.036*
H10B0.1543430.0085740.2894980.036*
C110.13691 (12)0.4224 (4)0.25020 (8)0.0287 (4)
C120.24079 (12)0.7179 (4)0.20827 (7)0.0269 (4)
C130.18016 (12)0.8268 (5)0.16010 (8)0.0305 (4)
H130.1217030.7608450.1533280.037*
C140.20368 (12)1.0275 (5)0.12241 (8)0.0318 (4)
H140.1610971.0982980.0902550.038*
C150.28865 (12)1.1285 (5)0.13054 (8)0.0299 (4)
C160.34992 (12)1.0312 (4)0.17832 (7)0.0279 (4)
H160.4079761.1013310.1850460.033*
C170.32553 (12)0.8291 (4)0.21649 (7)0.0263 (4)
C180.39238 (13)1.4007 (5)0.09209 (9)0.0391 (5)
H18A0.4255191.2199240.0886680.059*
H18B0.4173971.4996760.1289950.059*
H18C0.3946871.5354250.0598890.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (8)0.0464 (9)0.0348 (7)0.0053 (7)0.0106 (6)0.0050 (7)
O20.0261 (7)0.0629 (11)0.0347 (7)0.0013 (7)0.0018 (6)0.0116 (7)
O30.0320 (7)0.0373 (8)0.0321 (7)0.0016 (6)0.0035 (6)0.0065 (6)
O40.0247 (7)0.0410 (8)0.0341 (7)0.0036 (6)0.0015 (5)0.0004 (6)
O50.0317 (7)0.0511 (9)0.0287 (7)0.0024 (7)0.0054 (6)0.0115 (6)
N10.0328 (9)0.0399 (10)0.0261 (8)0.0030 (8)0.0036 (7)0.0027 (7)
N20.0266 (8)0.0320 (9)0.0216 (7)0.0024 (7)0.0041 (6)0.0005 (6)
N30.0256 (8)0.0338 (9)0.0264 (8)0.0010 (7)0.0025 (7)0.0025 (7)
N40.0255 (8)0.0332 (9)0.0248 (7)0.0027 (7)0.0058 (6)0.0008 (7)
C10.0316 (10)0.0296 (10)0.0233 (8)0.0026 (8)0.0087 (7)0.0008 (8)
C20.0328 (10)0.0359 (11)0.0283 (9)0.0004 (9)0.0070 (8)0.0038 (8)
C30.0369 (11)0.0408 (12)0.0388 (11)0.0078 (9)0.0131 (9)0.0040 (9)
C40.0505 (13)0.0428 (13)0.0362 (11)0.0038 (11)0.0170 (10)0.0041 (10)
C50.0440 (12)0.0387 (12)0.0273 (10)0.0031 (10)0.0082 (9)0.0019 (9)
C60.0328 (10)0.0332 (11)0.0252 (9)0.0028 (8)0.0068 (8)0.0015 (8)
C70.0300 (10)0.0371 (11)0.0265 (9)0.0014 (9)0.0061 (8)0.0041 (8)
C80.0292 (10)0.0351 (11)0.0262 (9)0.0008 (8)0.0076 (8)0.0029 (8)
C90.0316 (11)0.0577 (15)0.0388 (11)0.0026 (10)0.0024 (9)0.0035 (10)
C100.0290 (10)0.0347 (11)0.0250 (9)0.0052 (8)0.0045 (7)0.0028 (8)
C110.0276 (10)0.0339 (11)0.0240 (9)0.0010 (8)0.0048 (8)0.0043 (8)
C120.0290 (9)0.0288 (10)0.0228 (8)0.0021 (8)0.0057 (7)0.0024 (7)
C130.0256 (9)0.0384 (12)0.0256 (9)0.0013 (8)0.0019 (8)0.0016 (8)
C140.0284 (10)0.0407 (12)0.0237 (9)0.0012 (9)0.0005 (7)0.0010 (8)
C150.0331 (10)0.0333 (11)0.0233 (9)0.0002 (8)0.0067 (8)0.0007 (8)
C160.0259 (9)0.0334 (11)0.0243 (9)0.0009 (8)0.0054 (7)0.0032 (8)
C170.0268 (9)0.0302 (10)0.0212 (8)0.0042 (8)0.0039 (7)0.0019 (7)
C180.0346 (11)0.0513 (14)0.0332 (10)0.0022 (10)0.0113 (9)0.0064 (10)
Geometric parameters (Å, º) top
O1—C81.231 (2)C5—C61.393 (3)
O2—C111.218 (2)C5—H50.9500
O3—N41.236 (2)C7—C81.482 (3)
O4—N41.226 (2)C7—C91.492 (3)
O5—C151.360 (2)C9—H9A0.9800
O5—C181.424 (2)C9—H9B0.9800
N1—C71.290 (3)C9—H9C0.9800
N1—C61.392 (3)C10—C111.523 (3)
N2—C81.372 (2)C10—H10A0.9900
N2—C11.399 (2)C10—H10B0.9900
N2—C101.474 (2)C12—C131.402 (3)
N3—C111.358 (2)C12—C171.403 (3)
N3—C121.408 (2)C13—C141.377 (3)
N3—H3A0.85 (2)C13—H130.9500
N4—C171.468 (2)C14—C151.391 (3)
C1—C21.393 (3)C14—H140.9500
C1—C61.412 (3)C15—C161.383 (3)
C2—C31.381 (3)C16—C171.395 (3)
C2—H20.9500C16—H160.9500
C3—C41.393 (3)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.373 (3)C18—H18C0.9800
C4—H40.9500
C15—O5—C18117.94 (15)H9A—C9—H9B109.5
C7—N1—C6118.63 (16)C7—C9—H9C109.5
C8—N2—C1121.83 (15)H9A—C9—H9C109.5
C8—N2—C10117.15 (15)H9B—C9—H9C109.5
C1—N2—C10121.01 (15)N2—C10—C11113.08 (15)
C11—N3—C12128.05 (16)N2—C10—H10A109.0
C11—N3—H3A119.0 (16)C11—C10—H10A109.0
C12—N3—H3A113.0 (16)N2—C10—H10B109.0
O4—N4—O3122.64 (15)C11—C10—H10B109.0
O4—N4—C17118.10 (16)H10A—C10—H10B107.8
O3—N4—C17119.25 (15)O2—C11—N3124.97 (18)
C2—C1—N2122.56 (17)O2—C11—C10120.42 (17)
C2—C1—C6119.82 (18)N3—C11—C10114.60 (16)
N2—C1—C6117.62 (17)C13—C12—C17116.49 (17)
C3—C2—C1119.66 (18)C13—C12—N3121.81 (17)
C3—C2—H2120.2C17—C12—N3121.70 (16)
C1—C2—H2120.2C14—C13—C12121.29 (17)
C2—C3—C4120.9 (2)C14—C13—H13119.4
C2—C3—H3119.6C12—C13—H13119.4
C4—C3—H3119.6C13—C14—C15121.20 (17)
C5—C4—C3119.6 (2)C13—C14—H14119.4
C5—C4—H4120.2C15—C14—H14119.4
C3—C4—H4120.2O5—C15—C16124.75 (17)
C4—C5—C6121.01 (19)O5—C15—C14116.04 (16)
C4—C5—H5119.5C16—C15—C14119.20 (18)
C6—C5—H5119.5C15—C16—C17119.27 (17)
N1—C6—C5118.84 (17)C15—C16—H16120.4
N1—C6—C1122.14 (17)C17—C16—H16120.4
C5—C6—C1119.01 (18)C16—C17—C12122.51 (16)
N1—C7—C8123.66 (17)C16—C17—N4115.08 (16)
N1—C7—C9121.36 (18)C12—C17—N4122.41 (16)
C8—C7—C9114.95 (18)O5—C18—H18A109.5
O1—C8—N2121.88 (17)O5—C18—H18B109.5
O1—C8—C7122.16 (17)H18A—C18—H18B109.5
N2—C8—C7115.91 (17)O5—C18—H18C109.5
C7—C9—H9A109.5H18A—C18—H18C109.5
C7—C9—H9B109.5H18B—C18—H18C109.5
C8—N2—C1—C2178.95 (18)C8—N2—C10—C1195.9 (2)
C10—N2—C1—C21.9 (3)C1—N2—C10—C1183.3 (2)
C8—N2—C1—C61.0 (3)C12—N3—C11—O24.7 (3)
C10—N2—C1—C6178.14 (16)C12—N3—C11—C10176.44 (17)
N2—C1—C2—C3178.42 (18)N2—C10—C11—O2133.59 (19)
C6—C1—C2—C31.5 (3)N2—C10—C11—N347.5 (2)
C1—C2—C3—C40.5 (3)C11—N3—C12—C1311.4 (3)
C2—C3—C4—C50.7 (3)C11—N3—C12—C17167.84 (18)
C3—C4—C5—C60.7 (3)C17—C12—C13—C141.4 (3)
C7—N1—C6—C5178.03 (18)N3—C12—C13—C14179.36 (18)
C7—N1—C6—C13.4 (3)C12—C13—C14—C150.4 (3)
C4—C5—C6—N1178.24 (19)C18—O5—C15—C169.8 (3)
C4—C5—C6—C10.4 (3)C18—O5—C15—C14171.35 (18)
C2—C1—C6—N1177.06 (18)C13—C14—C15—O5179.29 (18)
N2—C1—C6—N13.0 (3)C13—C14—C15—C161.8 (3)
C2—C1—C6—C51.5 (3)O5—C15—C16—C17179.77 (18)
N2—C1—C6—C5178.47 (17)C14—C15—C16—C171.4 (3)
C6—N1—C7—C80.0 (3)C15—C16—C17—C120.4 (3)
C6—N1—C7—C9178.12 (18)C15—C16—C17—N4179.10 (16)
C1—N2—C8—O1178.15 (18)C13—C12—C17—C161.7 (3)
C10—N2—C8—O12.7 (3)N3—C12—C17—C16178.99 (17)
C1—N2—C8—C74.1 (3)C13—C12—C17—N4177.70 (16)
C10—N2—C8—C7175.10 (16)N3—C12—C17—N41.6 (3)
N1—C7—C8—O1178.52 (19)O4—N4—C17—C1618.3 (2)
C9—C7—C8—O13.2 (3)O3—N4—C17—C16160.85 (16)
N1—C7—C8—N23.7 (3)O4—N4—C17—C12161.20 (17)
C9—C7—C8—N2174.54 (17)O3—N4—C17—C1219.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.85 (2)2.55 (2)3.245 (2)139 (2)
N3—H3A···O30.85 (2)1.97 (2)2.655 (2)137 (2)
C5—H5···O5i0.952.433.331 (2)159
C10—H10A···O2ii0.992.373.306 (2)157
C13—H13···O20.952.212.842 (2)123
C16—H16···O4iii0.952.493.401 (2)162
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, YR; methodology, MM and AS; investigation, MA, MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, EME and YR; supervision, YR; crystal-structure determination and validation, JTM.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaabaissi, T., Benhiba, F., Missioui, M., Rouifi, Z., Rbaa, M., Oudda, H., Ramli, Y., Guenbour, A., Warad, I. & Zarrouk, A. (2020). Heliyon 6, e03939.  Web of Science CrossRef PubMed Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146