organic compounds
Meloxicam hydrochloride
aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title salt, C14H14N3O4S2+·Cl− [systematic name: 2-(4-hydroxy-2-methyl-1,1-dioxo-1,2-benzothiazine-3-amido)-5-methyl-1,3-thiazol-3-ium chloride] is the hydrochloride derivative of meloxicam, a drug used to treat pain and inflammation in rheumatic disorders and osteoarthritis. Although its molecular structure is similar to that previously reported for the hydrobromide analogue, both salts are not isomorphous. Different crystal structures originate from a conformational modification, arising from a degree of rotational freedom for the thiazolium ring in the cations. By taking as a reference the conformation of meloxicam, the thiazolium ring is twisted by 10.96 and −16.70° in the hydrochloride and hydrobromide salts, while the 1,2-benzothiazine core is a rigid scaffold. This behaviour could explain why meloxicam is a polymorphous compound.
Keywords: crystal structure; meloxicam; thiazole; benzothiazine; polymorphism.
CCDC reference: 2246003
Structure description
Meloxicam [abbreviated hereafter as MX; N-(5-methyl-1,3-thiazol-2-yl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide] is an achiral benzothiazine drug, practically insoluble in water at physiological pH (Luger et al., 1996). This molecule was patented in 1977, and is currently classified as an antipyretic and non-steroidal anti-inflammatory medication, used for the management of pain and inflammation associated with rheumatoid arthritis and osteoarthritis, in adults and children. In some countries, it has also been approved for use in veterinary medicine. The crystallization of meloxicam is a `difficult art' (Śniechowska et al., 2021), since four neat polymorphic forms are known, along with one hydrated form (Coppi et al., 2003; Freitas et al., 2017). So far, only the triclinic form I and the hydrated form were structurally characterized by X-ray diffraction (Luger et al., 1996; Fabiola et al., 1998; Fedorov et al., 2019). Actually, the formula of MX·H2O is not well defined: for the reported structure, the water molecule is disordered over two general positions, with occupancies reported as 0.53 (3) and 0.63 (3).
4-hydroxy-2-methyl-Among the many meloxicam salts characterized by X-ray diffraction, the hydrobromide was deposited as a CSD communication (Tumanov et al., 2011; CSD refcode: XATJAF). MX·HBr crystallizes in P21/c. The thiazole group is protonated, in such a way that a double-acceptor hydrogen bond is formed with the bromide ion accepting links from the thiazolium and amide NH groups, to form a common R21(6) ring motif with the thiazolium and amide NH groups as donors. The conformation for HMX+ is close to that observed for neutral MX, owing to an intramolecular hydrogen bond between the enol group in the 1,2-benzothiazine core and the carbonyl group of the amide functionality, which gives the common S(6) motif. We have now determined the structure of the hydrochloride salt, MX·HCl, which also crystallizes in P21/c, although with different unit-cell parameters. The molecular structure of MX·HCl is similar to that of MX·HBr, including the same intramolecular O—H⋯O and intermolecular N—H⋯Cl hydrogen bonds (Fig. 1; Table 1, entries 1–3). Molecules are however packed in different ways in both salts, as corroborated by their simulated powder diffraction patterns, which are clearly different (Fig. 2). If the nature of the anion, Cl− or Br−, is not taken into account, MX·HBr and MX·HCl can thus be described as polymorphic forms crystallizing in a single space group.
A close examination of the conformation of the cations, and a comparison with the neutral molecule MX (Fabiola et al., 1998; CSD refcode: SEDZOQ) rationalizes this behaviour. Assuming that the 1,2-benzothiazine core is a rigid moiety, an overlay between HMX+ in both salts and MX shows that the thiazolium ring has some degree of rotational freedom. Taking MX as reference, the HMX+ cation has its thiazolium ring twisted by 10.96° in MX·HCl and by −16.70° in MX·HBr (Fig. 3). This rotation over a range of ca 25° is sufficient to enable the formation of distinct secondary intermolecular contacts (Table 1, entries 4 and 5), which, in turn, alter the packing of the cations in the crystal. By widening this behaviour to meloxicam, for which the rotation of the thiazole group is less restrained, since no R21(6) ring motif involving an halide ion is present, one would assume that the rich observed for this drug is also associated to similar conformational modifications.
Synthesis and crystallization
Meloxicam hydrochloride was unintentionally crystallized while screening slurry co-crystallizations using derivatives of (S)-α-methylbenzylamine or L-proline as coformers. In some experiments, an amount of a 0.02 N HCl solution was added to the slurry, for the purpose of modifying the pH of the medium. Single crystals of the MX·HCl salt were recovered from these slurries.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2246003
https://doi.org/10.1107/S241431462300202X/bx4023sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462300202X/bx4023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462300202X/bx4023Isup3.cml
Data collection: X-AREA 1.88 (Stoe & Cie, 2019); cell
X-AREA 1.88 (Stoe & Cie, 2019); data reduction: X-AREA 1.88 (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C14H14N3O4S2+·Cl− | F(000) = 800 |
Mr = 387.85 | Dx = 1.543 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56083 Å |
a = 11.3380 (6) Å | Cell parameters from 19546 reflections |
b = 10.7346 (5) Å | θ = 2.2–26.5° |
c = 14.5503 (10) Å | µ = 0.26 mm−1 |
β = 109.430 (5)° | T = 295 K |
V = 1670.05 (17) Å3 | Block, yellow |
Z = 4 | 0.23 × 0.09 × 0.07 mm |
Stoe Stadivari diffractometer | 3902 independent reflections |
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source | 2285 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.088 |
Detector resolution: 5.81 pixels mm-1 | θmax = 21.5°, θmin = 2.2° |
ω scans | h = −14→14 |
Absorption correction: multi-scan X-AREA 1.88 (Stoe & Cie, 2019) | k = −14→14 |
Tmin = 0.407, Tmax = 1.000 | l = −19→19 |
40949 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.83 | w = 1/[σ2(Fo2) + (0.0329P)2] where P = (Fo2 + 2Fc2)/3 |
3902 reflections | (Δ/σ)max = 0.001 |
234 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
0 constraints |
Refinement. All H atoms bonded to heteroatoms (H1O, H1N and H2N) were refined with free coordinates, and remaining H atoms were placed in idealized positions, with C—H bond lengths constrained to 0.96 (methyl groups) or 0.93 Å (aromatic CH). All H atoms were refined with calculated isotropic displacement parameters. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.97139 (5) | 0.37304 (6) | 0.36101 (5) | 0.05872 (19) | |
S1 | 0.78018 (5) | 0.80065 (5) | 0.39329 (4) | 0.04065 (15) | |
S2 | 0.63352 (4) | 0.19526 (5) | 0.43965 (4) | 0.03731 (14) | |
O1 | 0.39766 (12) | 0.51274 (13) | 0.39149 (12) | 0.0416 (4) | |
H1O | 0.441 (2) | 0.576 (2) | 0.3941 (18) | 0.062* | |
O2 | 0.59216 (11) | 0.64257 (12) | 0.39574 (11) | 0.0402 (4) | |
O3 | 0.67314 (12) | 0.23387 (14) | 0.53969 (11) | 0.0463 (4) | |
O4 | 0.68678 (13) | 0.08624 (14) | 0.41315 (13) | 0.0544 (5) | |
N1 | 0.94397 (15) | 0.64715 (18) | 0.38545 (14) | 0.0421 (5) | |
H1N | 0.9763 (19) | 0.572 (2) | 0.3827 (16) | 0.050* | |
N2 | 0.76883 (14) | 0.54411 (16) | 0.39712 (14) | 0.0355 (4) | |
H2N | 0.8075 (18) | 0.4746 (19) | 0.3955 (16) | 0.043* | |
N3 | 0.65464 (13) | 0.31354 (15) | 0.37489 (13) | 0.0338 (4) | |
C1 | 0.9370 (2) | 0.9923 (2) | 0.3668 (2) | 0.0715 (9) | |
H1B | 0.886168 | 1.017468 | 0.302491 | 0.107* | |
H1C | 1.023451 | 1.007147 | 0.375131 | 0.107* | |
H1D | 0.913849 | 1.039311 | 0.414236 | 0.107* | |
C2 | 0.91763 (19) | 0.8566 (2) | 0.37994 (18) | 0.0474 (6) | |
C3 | 0.9929 (2) | 0.7626 (2) | 0.37786 (18) | 0.0503 (6) | |
H3 | 1.071320 | 0.773685 | 0.371823 | 0.060* | |
C4 | 0.83125 (16) | 0.65175 (18) | 0.39320 (15) | 0.0336 (5) | |
C5 | 0.64622 (16) | 0.54299 (19) | 0.39282 (15) | 0.0329 (5) | |
C6 | 0.58544 (16) | 0.42257 (18) | 0.38367 (15) | 0.0314 (5) | |
C7 | 0.46600 (16) | 0.41332 (18) | 0.38478 (15) | 0.0315 (5) | |
C8 | 0.40231 (15) | 0.29411 (18) | 0.38082 (14) | 0.0304 (4) | |
C9 | 0.27306 (16) | 0.28810 (19) | 0.35974 (15) | 0.0362 (5) | |
H9 | 0.226126 | 0.360935 | 0.350480 | 0.043* | |
C10 | 0.21526 (17) | 0.1742 (2) | 0.35270 (16) | 0.0399 (5) | |
H10 | 0.129213 | 0.170995 | 0.339433 | 0.048* | |
C11 | 0.28195 (18) | 0.0647 (2) | 0.36485 (17) | 0.0420 (5) | |
H11 | 0.240667 | −0.011404 | 0.357289 | 0.050* | |
C12 | 0.41100 (18) | 0.06833 (19) | 0.38842 (16) | 0.0384 (5) | |
H12 | 0.457202 | −0.004976 | 0.397669 | 0.046* | |
C13 | 0.46958 (16) | 0.18279 (18) | 0.39791 (15) | 0.0314 (4) | |
C14 | 0.6498 (2) | 0.2839 (2) | 0.27407 (17) | 0.0482 (6) | |
H14A | 0.699323 | 0.211130 | 0.274864 | 0.072* | |
H14B | 0.682318 | 0.352942 | 0.247956 | 0.072* | |
H14C | 0.564780 | 0.268629 | 0.234186 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0481 (3) | 0.0530 (4) | 0.0799 (5) | 0.0108 (3) | 0.0278 (3) | −0.0043 (4) |
S1 | 0.0437 (3) | 0.0326 (3) | 0.0513 (4) | −0.0087 (2) | 0.0233 (3) | −0.0037 (3) |
S2 | 0.0316 (2) | 0.0271 (3) | 0.0530 (4) | 0.0024 (2) | 0.0138 (2) | 0.0052 (3) |
O1 | 0.0363 (7) | 0.0272 (8) | 0.0634 (11) | 0.0046 (6) | 0.0194 (7) | 0.0013 (8) |
O2 | 0.0383 (7) | 0.0267 (8) | 0.0571 (11) | −0.0007 (6) | 0.0179 (7) | 0.0027 (7) |
O3 | 0.0430 (7) | 0.0456 (9) | 0.0426 (10) | −0.0028 (7) | 0.0039 (7) | 0.0088 (8) |
O4 | 0.0467 (8) | 0.0310 (8) | 0.0918 (14) | 0.0089 (7) | 0.0316 (9) | 0.0046 (9) |
N1 | 0.0338 (9) | 0.0423 (11) | 0.0521 (13) | −0.0032 (8) | 0.0169 (8) | −0.0026 (10) |
N2 | 0.0326 (8) | 0.0290 (9) | 0.0457 (12) | −0.0017 (7) | 0.0141 (8) | 0.0003 (9) |
N3 | 0.0342 (8) | 0.0279 (9) | 0.0428 (11) | 0.0000 (7) | 0.0173 (8) | 0.0012 (8) |
C1 | 0.0752 (17) | 0.0440 (16) | 0.110 (3) | −0.0216 (13) | 0.0501 (18) | −0.0070 (16) |
C2 | 0.0467 (11) | 0.0437 (14) | 0.0579 (17) | −0.0157 (11) | 0.0254 (12) | −0.0081 (12) |
C3 | 0.0397 (11) | 0.0536 (15) | 0.0611 (17) | −0.0186 (11) | 0.0215 (11) | −0.0060 (13) |
C4 | 0.0311 (9) | 0.0348 (12) | 0.0344 (13) | −0.0046 (8) | 0.0101 (9) | −0.0015 (10) |
C5 | 0.0323 (9) | 0.0318 (11) | 0.0341 (13) | −0.0008 (9) | 0.0104 (9) | 0.0034 (10) |
C6 | 0.0315 (9) | 0.0251 (10) | 0.0378 (13) | 0.0008 (8) | 0.0116 (9) | 0.0023 (9) |
C7 | 0.0341 (9) | 0.0270 (10) | 0.0333 (13) | 0.0031 (8) | 0.0111 (9) | 0.0021 (9) |
C8 | 0.0316 (9) | 0.0291 (11) | 0.0320 (12) | −0.0015 (8) | 0.0125 (8) | 0.0000 (9) |
C9 | 0.0330 (9) | 0.0365 (12) | 0.0414 (13) | 0.0008 (9) | 0.0156 (9) | 0.0027 (10) |
C10 | 0.0321 (9) | 0.0445 (13) | 0.0448 (14) | −0.0055 (9) | 0.0152 (10) | −0.0001 (11) |
C11 | 0.0443 (11) | 0.0367 (13) | 0.0475 (15) | −0.0123 (10) | 0.0186 (11) | −0.0026 (11) |
C12 | 0.0431 (10) | 0.0294 (12) | 0.0437 (14) | −0.0011 (9) | 0.0156 (10) | 0.0015 (10) |
C13 | 0.0305 (8) | 0.0298 (11) | 0.0350 (12) | −0.0012 (8) | 0.0123 (8) | 0.0013 (9) |
C14 | 0.0536 (12) | 0.0463 (14) | 0.0492 (15) | −0.0053 (11) | 0.0232 (11) | −0.0096 (12) |
S1—C4 | 1.700 (2) | C1—H1D | 0.9600 |
S1—C2 | 1.740 (2) | C2—C3 | 1.328 (3) |
S2—O4 | 1.4275 (15) | C3—H3 | 0.9300 |
S2—O3 | 1.4343 (16) | C5—C6 | 1.450 (3) |
S2—N3 | 1.6455 (17) | C6—C7 | 1.363 (2) |
S2—C13 | 1.7580 (17) | C7—C8 | 1.461 (3) |
O1—C7 | 1.341 (2) | C8—C13 | 1.395 (3) |
O1—H1O | 0.84 (2) | C8—C9 | 1.395 (2) |
O2—C5 | 1.240 (2) | C9—C10 | 1.375 (3) |
N1—C4 | 1.321 (2) | C9—H9 | 0.9300 |
N1—C3 | 1.377 (3) | C10—C11 | 1.376 (3) |
N1—H1N | 0.89 (2) | C10—H10 | 0.9300 |
N2—C4 | 1.366 (2) | C11—C12 | 1.388 (3) |
N2—C5 | 1.371 (2) | C11—H11 | 0.9300 |
N2—H2N | 0.87 (2) | C12—C13 | 1.382 (3) |
N3—C6 | 1.438 (2) | C12—H12 | 0.9300 |
N3—C14 | 1.484 (3) | C14—H14A | 0.9600 |
C1—C2 | 1.495 (3) | C14—H14B | 0.9600 |
C1—H1B | 0.9600 | C14—H14C | 0.9600 |
C1—H1C | 0.9600 | ||
C4—S1—C2 | 90.37 (10) | O2—C5—C6 | 123.12 (16) |
O4—S2—O3 | 119.55 (10) | N2—C5—C6 | 117.12 (17) |
O4—S2—N3 | 108.82 (10) | C7—C6—N3 | 121.01 (17) |
O3—S2—N3 | 107.58 (9) | C7—C6—C5 | 120.50 (17) |
O4—S2—C13 | 109.75 (9) | N3—C6—C5 | 118.49 (15) |
O3—S2—C13 | 108.11 (9) | O1—C7—C6 | 122.89 (18) |
N3—S2—C13 | 101.50 (9) | O1—C7—C8 | 114.19 (16) |
C7—O1—H1O | 107.9 (16) | C6—C7—C8 | 122.91 (17) |
C4—N1—C3 | 113.59 (19) | C13—C8—C9 | 118.14 (18) |
C4—N1—H1N | 117.6 (14) | C13—C8—C7 | 120.63 (15) |
C3—N1—H1N | 128.8 (14) | C9—C8—C7 | 121.23 (17) |
C4—N2—C5 | 122.49 (17) | C10—C9—C8 | 119.81 (19) |
C4—N2—H2N | 116.9 (13) | C10—C9—H9 | 120.1 |
C5—N2—H2N | 120.3 (13) | C8—C9—H9 | 120.1 |
C6—N3—C14 | 114.85 (17) | C9—C10—C11 | 121.45 (17) |
C6—N3—S2 | 112.92 (13) | C9—C10—H10 | 119.3 |
C14—N3—S2 | 115.87 (14) | C11—C10—H10 | 119.3 |
C2—C1—H1B | 109.5 | C10—C11—C12 | 119.80 (19) |
C2—C1—H1C | 109.5 | C10—C11—H11 | 120.1 |
H1B—C1—H1C | 109.5 | C12—C11—H11 | 120.1 |
C2—C1—H1D | 109.5 | C13—C12—C11 | 118.80 (19) |
H1B—C1—H1D | 109.5 | C13—C12—H12 | 120.6 |
H1C—C1—H1D | 109.5 | C11—C12—H12 | 120.6 |
C3—C2—C1 | 127.9 (2) | C12—C13—C8 | 121.86 (16) |
C3—C2—S1 | 110.25 (17) | C12—C13—S2 | 121.34 (15) |
C1—C2—S1 | 121.73 (18) | C8—C13—S2 | 116.68 (14) |
C2—C3—N1 | 113.77 (19) | N3—C14—H14A | 109.5 |
C2—C3—H3 | 123.1 | N3—C14—H14B | 109.5 |
N1—C3—H3 | 123.1 | H14A—C14—H14B | 109.5 |
N1—C4—N2 | 120.09 (18) | N3—C14—H14C | 109.5 |
N1—C4—S1 | 112.01 (15) | H14A—C14—H14C | 109.5 |
N2—C4—S1 | 127.88 (14) | H14B—C14—H14C | 109.5 |
O2—C5—N2 | 119.75 (18) | ||
O4—S2—N3—C6 | 169.71 (13) | N2—C5—C6—N3 | −3.0 (3) |
O3—S2—N3—C6 | −59.40 (14) | N3—C6—C7—O1 | −179.05 (19) |
C13—S2—N3—C6 | 54.01 (15) | C5—C6—C7—O1 | 1.9 (3) |
O4—S2—N3—C14 | 34.30 (16) | N3—C6—C7—C8 | 2.3 (3) |
O3—S2—N3—C14 | 165.18 (13) | C5—C6—C7—C8 | −176.80 (19) |
C13—S2—N3—C14 | −81.41 (15) | O1—C7—C8—C13 | −164.08 (19) |
C4—S1—C2—C3 | −1.0 (2) | C6—C7—C8—C13 | 14.7 (3) |
C4—S1—C2—C1 | 175.5 (2) | O1—C7—C8—C9 | 16.1 (3) |
C1—C2—C3—N1 | −175.5 (2) | C6—C7—C8—C9 | −165.1 (2) |
S1—C2—C3—N1 | 0.7 (3) | C13—C8—C9—C10 | −2.5 (3) |
C4—N1—C3—C2 | 0.1 (3) | C7—C8—C9—C10 | 177.4 (2) |
C3—N1—C4—N2 | 177.2 (2) | C8—C9—C10—C11 | −0.8 (3) |
C3—N1—C4—S1 | −0.9 (2) | C9—C10—C11—C12 | 2.5 (4) |
C5—N2—C4—N1 | −171.6 (2) | C10—C11—C12—C13 | −0.9 (3) |
C5—N2—C4—S1 | 6.2 (3) | C11—C12—C13—C8 | −2.5 (3) |
C2—S1—C4—N1 | 1.08 (18) | C11—C12—C13—S2 | 173.43 (17) |
C2—S1—C4—N2 | −176.9 (2) | C9—C8—C13—C12 | 4.2 (3) |
C4—N2—C5—O2 | −7.8 (3) | C7—C8—C13—C12 | −175.7 (2) |
C4—N2—C5—C6 | 171.4 (2) | C9—C8—C13—S2 | −171.96 (16) |
C14—N3—C6—C7 | 95.1 (2) | C7—C8—C13—S2 | 8.2 (3) |
S2—N3—C6—C7 | −40.8 (2) | O4—S2—C13—C12 | 29.6 (2) |
C14—N3—C6—C5 | −85.8 (2) | O3—S2—C13—C12 | −102.42 (19) |
S2—N3—C6—C5 | 138.34 (16) | N3—S2—C13—C12 | 144.58 (18) |
O2—C5—C6—C7 | −4.7 (3) | O4—S2—C13—C8 | −154.31 (16) |
N2—C5—C6—C7 | 176.1 (2) | O3—S2—C13—C8 | 73.71 (18) |
O2—C5—C6—N3 | 176.19 (19) | N3—S2—C13—C8 | −39.29 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2 | 0.84 (2) | 1.85 (2) | 2.5921 (18) | 148 (2) |
N1—H1N···Cl1 | 0.89 (2) | 2.16 (2) | 2.992 (2) | 155.5 (19) |
N2—H2N···Cl1 | 0.87 (2) | 2.35 (2) | 3.1185 (18) | 147.8 (18) |
C1—H1D···O4i | 0.96 | 2.62 | 3.286 (3) | 127 |
C14—H14C···O2ii | 0.96 | 2.52 | 3.380 (3) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+1/2. |
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).
References
Coppi, L., Bartra Sanmartí, M. & Closa Clavo, M. (2003). US patent 2003/0109701 A1. Google Scholar
Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fedorov, A. Y., Drebushchak, T. N. & Tantardini, C. (2019). Comput. Theor. Chem. 1157, 47–53. Web of Science CSD CrossRef CAS Google Scholar
Jacon Freitas, J. T., Santos Viana, O. M. M., Bonfilio, R., Doriguetto, A. C. & de Araújo, M. B. (2017). Eur. J. Pharm. Sci. 109, 347–358. Web of Science CrossRef CAS PubMed Google Scholar
Luger, P., Daneck, K., Engel, W., Trummlitz, G. & Wagner, K. (1996). Eur. J. Pharm. Sci. 4, 175–187. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Śniechowska, J., Paluch, P. & Dudek, M. K. (2021). Acta Cryst. A77, C897. CrossRef IUCr Journals Google Scholar
Stoe & Cie (2019). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany. Google Scholar
Tumanov, N., Dyakonova, M., Pankrushina, N. & Shahtshneider, T. P. (2011). CSD Communication (refcode XATJAF, CCDC 832082). CCDC, Cambridge, England. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.