metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2-(thio­phen-2-yl)quinoxaline-κN4]silver(I) perchlorate

crossmark logo

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 8 March 2023; accepted 13 March 2023; online 21 March 2023)

The crystal of the title salt, [Ag(C12H8N2S)2]ClO4, has C2/c symmetry whereby the silver(I) atom sits on a twofold rotation axis, as does the perchlorate anion, which is disordered about this axis. The thienylquinoxaline ligand is nearly planar with the thienyl ring making a dihedral angle of 10.88 (8)° with respect to the quinoxaline moiety.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The silver(I) metal center sits on a twofold symmetry axis (Fig. 1[link]). As a result of the position of the twofold axis, the two thienylquinoxaline ligands, which are bonding via their quinoxaline N atoms, adopt a configuration whereby both of the quinoxaline units are pointing to the same side of the molecule, as opposed to the tetra­fluorido­borate complex with the same cation, which crystallizes with the two ligands pointing in opposite directions (Crundwell, 2013[Crundwell, G. (2013). Acta Cryst. E69, m164.]). The thienylquinoxaline ligand is nearly planar, with the thienyl ring making a dihedral angle of 10.88 (8)° with respect to the quinoxaline moiety. This is similar to the nearly planar ligand configuration in the tetra­fluorido­borate salt (Crundwell, 2013[Crundwell, G. (2013). Acta Cryst. E69, m164.]).

[Figure 1]
Figure 1
A view of the title compound (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Crystals were grown by combining warmed methano­lic solutions of AgClO4 and 2-thienylquinoxaline in a 1:2 molar ratio. The combined solution was pipetted into test tubes, which were then placed into amber vials and loosely sealed until small colorless crystals were observed. Crystals were harvested and used immediately since the silver salts deteriorate in light over days. When measuring of melting points was attempted, the crystals decomposed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The perchlorate disorder was treated by suppressing the generation of additional solvent atoms due to the anion's position on the symmetry axis. The perchlorate bond distances and oxygen-to-oxygen distances were restrained to 1.41 (1) and 2.30 (2) Å, respectively.

Table 1
Experimental details

Crystal data
Chemical formula [Ag(C12H8N2S)2]ClO4
Mr 631.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 29.8739 (8), 10.6344 (4), 7.6425 (4)
β (°) 99.930 (4)
V3) 2391.58 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.17
Crystal size (mm) 0.31 × 0.30 × 0.22
 
Data collection
Diffractometer Xcalibur CCD, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13270, 3957, 2441
Rint 0.027
(sin θ/λ)max−1) 0.753
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 0.82
No. of reflections 3957
No. of parameters 187
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.29
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis[2-(thiophen-2-yl)quinoxaline-κN4]silver(I) perchlorate top
Crystal data top
[Ag(C12H8N2S)2]ClO4F(000) = 1264
Mr = 631.85Dx = 1.755 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.8739 (8) ÅCell parameters from 5344 reflections
b = 10.6344 (4) Åθ = 4.1–32.4°
c = 7.6425 (4) ŵ = 1.17 mm1
β = 99.930 (4)°T = 293 K
V = 2391.58 (17) Å3Block, colorless
Z = 40.31 × 0.30 × 0.22 mm
Data collection top
Xcalibur CCD, Sapphire3
diffractometer
3957 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 32.4°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlisPRO; Agilent, 2014)
h = 4444
Tmin = 0.770, Tmax = 1.000k = 1515
13270 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
3957 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.36 e Å3
10 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. Hydrogen atoms were included in calculated positions with a C-H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom. Anion disorder treated with PART -1 and DFIX restraints.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were placed in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in a riding model approximation with Uiso = 1.2 Ueq(C). Difference maps and oblong thermal parameters indicated that the perchlorate anion was disordered about a twofold axis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag11.00000.15837 (2)0.25000.05278 (10)
S10.774221 (15)0.02088 (5)0.17950 (8)0.04958 (14)
N10.92717 (5)0.18494 (14)0.1583 (2)0.0404 (4)
N20.83748 (4)0.22291 (14)0.0167 (2)0.0382 (4)
C10.90225 (6)0.09241 (18)0.0828 (3)0.0413 (4)
H10.91480.01230.08540.050*
C20.85637 (5)0.11036 (17)0.0035 (3)0.0353 (4)
C30.86277 (6)0.32029 (16)0.0635 (3)0.0372 (4)
C40.84337 (7)0.44149 (18)0.0619 (3)0.0458 (5)
H40.81370.45480.00430.055*
C50.86803 (8)0.53904 (19)0.1447 (3)0.0503 (5)
H50.85500.61860.14240.060*
C60.91271 (8)0.52096 (19)0.2333 (3)0.0514 (5)
H60.92920.58870.28810.062*
C70.93217 (6)0.40506 (19)0.2397 (3)0.0472 (5)
H70.96170.39350.30000.057*
C80.90762 (5)0.30265 (17)0.1553 (3)0.0366 (4)
C90.82923 (6)0.00112 (16)0.0714 (3)0.0373 (4)
C100.83990 (6)0.12423 (17)0.0520 (3)0.0436 (5)
H100.86810.15420.00310.052*
C110.80301 (7)0.2030 (2)0.1258 (3)0.0509 (5)
H110.80430.29040.12340.061*
C120.76607 (7)0.1374 (2)0.1993 (3)0.0514 (5)
H120.73910.17420.25470.062*
Cl10.9978 (2)0.17969 (10)0.2283 (8)0.0577 (9)0.50
O11.00756 (19)0.0707 (4)0.1315 (7)0.1067 (16)0.50
O21.00003 (13)0.2842 (3)0.1151 (5)0.0727 (10)0.50
O30.95369 (19)0.1661 (5)0.2619 (11)0.124 (2)0.50
O41.0300 (3)0.1931 (7)0.3832 (9)0.163 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02387 (9)0.05375 (14)0.07518 (19)0.0000.00703 (9)0.000
S10.0328 (2)0.0521 (3)0.0581 (4)0.00168 (19)0.0080 (2)0.0023 (2)
N10.0255 (6)0.0442 (9)0.0494 (10)0.0015 (5)0.0002 (6)0.0004 (7)
N20.0285 (6)0.0427 (8)0.0410 (10)0.0017 (6)0.0006 (6)0.0004 (7)
C10.0281 (7)0.0404 (10)0.0531 (13)0.0023 (7)0.0007 (8)0.0003 (9)
C20.0274 (7)0.0420 (9)0.0355 (10)0.0003 (7)0.0023 (7)0.0003 (8)
C30.0325 (8)0.0417 (10)0.0366 (11)0.0030 (7)0.0036 (7)0.0020 (8)
C40.0430 (10)0.0450 (10)0.0468 (13)0.0074 (8)0.0007 (9)0.0023 (9)
C50.0588 (12)0.0395 (10)0.0521 (14)0.0082 (9)0.0080 (10)0.0001 (9)
C60.0549 (12)0.0460 (11)0.0529 (14)0.0096 (9)0.0077 (10)0.0094 (10)
C70.0353 (9)0.0502 (11)0.0535 (14)0.0054 (8)0.0003 (9)0.0055 (10)
C80.0283 (7)0.0421 (9)0.0389 (11)0.0002 (6)0.0043 (7)0.0004 (8)
C90.0273 (7)0.0459 (10)0.0374 (11)0.0007 (7)0.0016 (7)0.0006 (8)
C100.0342 (8)0.0433 (10)0.0510 (13)0.0003 (7)0.0012 (8)0.0034 (9)
C110.0516 (11)0.0433 (10)0.0545 (14)0.0052 (9)0.0002 (10)0.0024 (10)
C120.0429 (9)0.0547 (12)0.0527 (14)0.0124 (9)0.0030 (9)0.0010 (10)
Cl10.0621 (12)0.0518 (5)0.053 (3)0.0063 (9)0.0079 (17)0.0050 (8)
O10.152 (4)0.055 (2)0.132 (4)0.002 (3)0.078 (4)0.005 (2)
O20.088 (2)0.0528 (19)0.074 (3)0.0035 (19)0.006 (2)0.0154 (18)
O30.116 (4)0.105 (4)0.172 (7)0.036 (3)0.082 (4)0.035 (4)
O40.206 (8)0.177 (7)0.081 (4)0.003 (6)0.045 (5)0.009 (4)
Geometric parameters (Å, º) top
Ag1—N12.1860 (13)C5—C61.402 (3)
Ag1—N1i2.1861 (13)C6—H60.9300
S1—C91.7202 (17)C6—C71.360 (3)
S1—C121.704 (2)C7—H70.9300
N1—C11.307 (2)C7—C81.406 (3)
N1—C81.380 (2)C9—C101.373 (3)
N2—C21.320 (2)C10—H100.9300
N2—C31.364 (2)C10—C111.421 (3)
C1—H10.9300C11—H110.9300
C1—C21.427 (2)C11—C121.344 (3)
C2—C91.460 (2)C12—H120.9300
C3—C41.412 (2)Cl1—O11.432 (5)
C3—C81.414 (2)Cl1—O21.417 (5)
C4—H40.9300Cl1—O31.392 (7)
C4—C51.363 (3)Cl1—O41.399 (6)
C5—H50.9300
N1—Ag1—N1i165.14 (8)C6—C7—H7120.0
C12—S1—C991.83 (9)C6—C7—C8119.98 (18)
C1—N1—Ag1120.27 (12)C8—C7—H7120.0
C1—N1—C8117.94 (14)N1—C8—C3119.39 (15)
C8—N1—Ag1121.17 (11)N1—C8—C7120.63 (15)
C2—N2—C3117.24 (13)C7—C8—C3119.98 (17)
N1—C1—H1118.9C2—C9—S1119.97 (13)
N1—C1—C2122.13 (16)C10—C9—S1110.81 (13)
C2—C1—H1118.9C10—C9—C2129.05 (16)
N2—C2—C1121.37 (16)C9—C10—H10123.8
N2—C2—C9119.37 (14)C9—C10—C11112.34 (17)
C1—C2—C9119.20 (16)C11—C10—H10123.8
N2—C3—C4119.64 (15)C10—C11—H11123.7
N2—C3—C8121.78 (15)C12—C11—C10112.58 (18)
C4—C3—C8118.53 (16)C12—C11—H11123.7
C3—C4—H4119.9S1—C12—H12123.8
C5—C4—C3120.16 (17)C11—C12—S1112.43 (15)
C5—C4—H4119.9C11—C12—H12123.8
C4—C5—H5119.6O2—Cl1—O1106.5 (5)
C4—C5—C6120.87 (19)O3—Cl1—O1107.2 (4)
C6—C5—H5119.6O3—Cl1—O2109.9 (5)
C5—C6—H6119.8O3—Cl1—O4112.9 (6)
C7—C6—C5120.47 (18)O4—Cl1—O1110.4 (6)
C7—C6—H6119.8O4—Cl1—O2109.8 (4)
Ag1—N1—C1—C2170.09 (15)C2—N2—C3—C80.8 (3)
Ag1—N1—C8—C3167.57 (14)C2—C9—C10—C11175.2 (2)
Ag1—N1—C8—C711.3 (3)C3—N2—C2—C13.4 (3)
S1—C9—C10—C110.0 (3)C3—N2—C2—C9173.90 (18)
N1i—Ag1—N1—C1162.84 (16)C3—C4—C5—C60.4 (3)
N1i—Ag1—N1—C87.97 (15)C4—C3—C8—N1179.96 (19)
N1—C1—C2—N22.6 (3)C4—C3—C8—C71.1 (3)
N1—C1—C2—C9174.71 (19)C4—C5—C6—C70.6 (4)
N2—C2—C9—S13.9 (3)C5—C6—C7—C80.8 (4)
N2—C2—C9—C10170.9 (2)C6—C7—C8—N1179.0 (2)
N2—C3—C4—C5178.7 (2)C6—C7—C8—C30.1 (3)
N2—C3—C8—N12.6 (3)C8—N1—C1—C21.0 (3)
N2—C3—C8—C7178.51 (19)C8—C3—C4—C51.2 (3)
C1—N1—C8—C33.5 (3)C9—S1—C12—C110.7 (2)
C1—N1—C8—C7177.7 (2)C9—C10—C11—C120.5 (3)
C1—C2—C9—S1178.79 (16)C10—C11—C12—S10.8 (3)
C1—C2—C9—C106.4 (4)C12—S1—C9—C2176.09 (18)
C2—N2—C3—C4176.53 (19)C12—S1—C9—C100.42 (18)
Symmetry code: (i) x+2, y, z+1/2.
 

Funding information

Funding for this research was provided by: CSU-AAUP Research Grant .

References

First citationAgilent (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationCrundwell, G. (2013). Acta Cryst. E69, m164.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146