metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(η5-Carb­­oxy­cyclo­penta­dien­yl)(η7-cyclo­hepta­trien­yl)manganese(I) hexa­fluorido­phosphate

crossmark logo

aUniversität Innsbruck, Institut für Allgemeine, Anorganische und Theoretische Chemie, Innrain 80-82, 6020 Innsbruck, Austria
*Correspondence e-mail: benno.bildstein@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 December 2022; accepted 4 February 2023; online 9 February 2023)

The title compound, [Mn(C7H7)(C6H5O2)]PF6 or [(Cht)Mn(Cp'CO2H)]PF6, with Cht = cyclo­hepta­trienyl and Cp' = C5H4, is an air-stable, purple, heteroleptic, cationic sandwich complex with manganese in oxidation state +I and π-coordinating cyclo­hepta­trienyl and cyclo­penta­dienyl ligands. The latter ligand carries the carb­oxy­lic acid functionality. This `tromancenium-8-carb­oxy­lic acid' with hexa­fluorido­phosphate as counter-ion represents a rare case of a cationic carb­oxy­lic acid. Structurally, this organometallic carb­oxy­lic acid displays the common motif of planar Osp2⋯H—Osp3/Osp3—H⋯Osp2 hydrogen-bonded carb­oxy­lic acid dimers with anti-oriented metallocenyl moieties, the cationic charge of which is balanced by octa­hedrally shaped hexa­fluorido­phosphate anions. Positional disorder is observed in the cyclo­hepta­trienyl ring and the PF6 anion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cobaltocenium carb­oxy­lic acid hexa­fluorido­phosphate (Vanicek et al., 2014[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Schottenberger, H. & Bildstein, B. (2014). Organometallics, 33, 1152-1156.]) is a key compound for other monofunctionalized cobaltocenium salts and was synthesized starting from cobaltocenium by nucleophilic attack using (H3C)3SiC≡CLi, followed by hydride abstraction, silicon dissociation using NaF and oxidation to the desired carb­oxy­lic acid using KMnO4. As a result of the instability against nucleophiles of the parent compound tromancenium hexa­fluorido­phosphate (Basse et al., 2021[Basse, R., Vanicek, S., Höfer, T., Kopacka, H., Wurst, K., Müller, T., Schwartz, H. A., Olthof, S., Casper, L. A., Nau, M., Winter, R. F., Podewitz, M. & Bildstein, B. (2021). Organometallics, 40, 2736-2749.]), the related title compound was synthesized by bypassing the use of carbon nucleophiles, whereby the carb­oxy­lic acid functionality was introduced as a masked methyl ester on its cymantrene precursor level. Photolysis of all three carbonyl ligands in presence of cyclo­hepta­trienyl, followed by oxidation with tritylium led to 8-carbometh­oxy tromancenium, the masked carb­oxy­lic acid (Basse et al., 2021[Basse, R., Vanicek, S., Höfer, T., Kopacka, H., Wurst, K., Müller, T., Schwartz, H. A., Olthof, S., Casper, L. A., Nau, M., Winter, R. F., Podewitz, M. & Bildstein, B. (2021). Organometallics, 40, 2736-2749.]). Approaches for hydrolysis using aqueous NaOH led to complete decomposition, but inter­estingly the weaker base Na2CO3 led to hydrolysis without decomposition of the complex.

The mol­ecular entities of the title compound are shown in Fig. 1[link]. Positional disorder of the cyclo­hepta­trienyl ligand as well as of the PF6 counter-ion was observed. The tromancenium carb­oxy­lic acid exists as a centrosymmetric dimer linked by mutual Osp2⋯H—Osp3/Osp3—H⋯Osp2 hydrogen bonds of the carb­oxy­lic acid moiety (Table 1[link]), with tromanceniumyl in an anti-conformation to each other. The average Mn—CCp bond length of 2.09 Å is slightly longer than the average Mn—CCht bond length of 2.06 Å resulting from geometric reasons. The C12—C13 bond length of 1.482 (8) Å is typical for a carbon–carbon single bond. The C13—O1 bond length of 1.205 (10) Å is shorter than the C13—O2 bond length of 1.303 (10) Å, which is coherent with the expectations.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.83 (2) 1.81 (3) 2.638 (6) 173 (15)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular entities of the title compound, with displacement ellipsoids drawn at the 50% probability level. The left cation and the anion at the bottom are related to their counterparts by inversion symmetry (symmetry operation −x + 1, −y + 1, −z + 1). For clarity, only one of the two positionally disordered parts of the cyclo­hepta­trienyl rings is shown. Likewise, for the disordered PF6 anion, only the part with the higher occupancy is displayed.

The comparable organometallic compound cobaltocenium carb­oxy­lic acid hexa­fluorido­phosphate (Vanicek et al., 2014[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Schottenberger, H. & Bildstein, B. (2014). Organometallics, 33, 1152-1156.]) shows an average Co—C(unsubstituted Cp) bond length of 2.02 Å and an average Co—C(substituted Cp) average bond length of 2.04 Å, which are slightly shorter than the average Mn—CCht/Cp bond lengths in the title compound. The C=O bond in cobaltocenium carb­oxy­lic acid is of the same length as the C—O bond, due to disorder.

We find typical bond lengths within the carb­oxy­lic acid moiety in the tromancenium system comparable to common organic carb­oxy­lic acids, but because of the cationic charge there are two counter-ions (PF6), which fill the space within the packing of the dimers (Fig. 1[link]). The packing along the crystallographic b axis displays alternating layers of tromancenium carb­oxy­lic acid dimers and hexa­fluorido­phosphate counter-ions. (Fig. 2[link]).

[Figure 2]
Figure 2
The packing along the crystallographic b axis, displaying alternating layers of tromancenium carb­oxy­lic acid dimers and hexa­fluorido­phosphate counter-ions.

Synthesis and crystallization

A round-bottom flask was charged with 0.0563 g of 8-carbo­meth­oxy­tromancenium hexa­fluorido­phosphate (Basse et al., 2021[Basse, R., Vanicek, S., Höfer, T., Kopacka, H., Wurst, K., Müller, T., Schwartz, H. A., Olthof, S., Casper, L. A., Nau, M., Winter, R. F., Podewitz, M. & Bildstein, B. (2021). Organometallics, 40, 2736-2749.]) (0.1359 mmol, 1 equiv) and dissolved in 10 ml of THF/water (1:1) before 0.266 ml of a saturated sodium carbonate solution were added. The mixture was stirred for 4 h and cooled to 273 K before 0.090 ml of an aqueous solution of HCl (37%wt) were added. The solvents were removed on a rotary evaporator and the crude material dried in vacuo. The product was dissolved in aceto­nitrile and filtered through a folded paper filter. Aceto­nitrile was removed on a rotary evaporator and the product was dried in vacuo giving pure 8-tromancenium carb­oxy­lic acid hexa­fluorido­phosphate in 92% yield (0.050 g, 0.1249 mmol). Single crystals were obtained by diffusion crystallization in aceto­nitrile out of diethyl ether at room temperature.

Properties: m.p.: 395.8 K dec. 1H NMR (400 MHz, CD3CN, p.p.m.) δ = 4.89 (pseudo-t, 2H, C10/C11 of Cp, J1 = 1.6 Hz, J2 = 2.0 Hz), 5.21 (pseudo-t, 2H, C9/C12 of Cp, J = 1.6 Hz), 6.93 (s, 7H, C1–7 of Cht); signal of CO2H not observed due to rapid exchange. 13C NMR (75 MHz, CD3CN, p.p.m.) δ = 78.6 (ipso-carbon of Cp), 79.4 (C10/C11 of Cp), 80.3 (C9/C12 of Cp), 99.0 (C1–7 of Cht), 156.4 (CO2H). 55Mn NMR (74 MHz, CD3CN, p.p.m.) δ = 529. IR (ATR, cm−1): 3000 (νO—H + νC—H), 1696 (νC=O), 1489, 1448, 1413, 1375 (νC—OH + νC=C), 815 (νP—F), 749 (δoop,C—H (Cp+Cht)), 600, 554 (δoop,O—H), 467, 437 (νMn). HRMS (ESI pos, m/z) 255.0211 ([M − PF6]+), calculated for C13H12O2Mn: 255.0212. UV–vis (CH3CN, [nm]) λmax1 = 283, λmax2 = 559. Cyclic voltammetry (CV): ΔE1/2 (Mn+/Mn2+) = 1.00 V versus ferrocene/ferrocenium+ (irreversible).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All probed crystals showed twinning by non-merohedry by rotation of 180° around the real axis [1[\overline{1}]0]. The hydrogen atom attached to O2 was found from a difference-Fourier map and was refined isotropically with a distance restraint (d = 0.83 Å). A positional disorder in a ratio of 1:1 for the carbon atoms and attached hydrogen atoms of the seven-membered ring: C1–C7: C1A–C7A was considered; the corresponding carbon atoms were refined with isotropic displacement parameters. A further positional disorder of all fluorine atoms of the PF6 anion was refined in ratio 45:55 for F1–F6:F1A—F6A with anisotropic displacement parameters. In an alternative model, the crystal structure was also refined in the non-centrosymmetric space group P1 with a new data set, for which TWINABS (Bruker, 2013[Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) was used for absorption correction without merging Friedel pairs. This led to an ordered arrangement of two cyclo­hepta­trienyl rings and two PF6 anions but unrealistic inter­actomic distances. The resulting Flack x parameter of 0.37 (8) in the P1 model and several remaining electron-density peaks between the carbon atoms of the two seven-membered rings clearly show that the disorder will be retained in the non-centrosymmetric space group. Hence, the latter was discarded and the centrosymmetric model used for final processing.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C7H7)(C6H5O2)]PF6
Mr 400.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 183
a, b, c (Å) 8.243 (8), 8.313 (7), 11.154 (12)
α, β, γ (°) 75.25 (3), 70.89 (2), 78.19 (4)
V3) 692.2 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.14
Crystal size (mm) 0.12 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (TWINABS; Bruker, 2013[Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.779, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 2349, 2349, 2066
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.17
No. of reflections 2349
No. of parameters 261
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.63
Computer programs: APEX3 and SAINT (Bruker, 2013[Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: Olex2 (Dolomanov et al., 2009); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(η5-Carboxycyclopentadienyl)(η7-cycloheptatrienyl)manganese(I) hexafluoridophosphate top
Crystal data top
[Mn(C7H7)(C6H5O2)]PF6Z = 2
Mr = 400.14F(000) = 400
Triclinic, P1Dx = 1.920 Mg m3
a = 8.243 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.313 (7) ÅCell parameters from 2453 reflections
c = 11.154 (12) Åθ = 2.8–25.0°
α = 75.25 (3)°µ = 1.14 mm1
β = 70.89 (2)°T = 183 K
γ = 78.19 (4)°Plate, pink
V = 692.2 (11) Å30.12 × 0.11 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2349 measured reflections
Radiation source: Incoatec Microfocus2349 independent reflections
Multi layered optics monochromator2066 reflections with I > 2σ(I)
Detector resolution: 10.4 pixels mm-1θmax = 25.0°, θmin = 2.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Bruker, 2013)
k = 99
Tmin = 0.779, Tmax = 0.928l = 013
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + 3.4169P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.52 e Å3
2349 reflectionsΔρmin = 0.63 e Å3
261 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0124 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin by rotation of 180 degrees around [1-10]. Hydrogen at O2 was found and refined isotropically with bond restraint (d = 83pm). A positional disorder in ratio of 1:1 for the carbon atoms of the 7-mebered ring: C1-C7 : C1A-C7A were refined with isotropic displacement parameters for the carbon atoms. A further positional disorder of all flourine atoms of the PF6-anion was refined in ratio 45:55 F1-6:F1A-6A) with anisotropic displacement parameters. The structure was also refined in the non-centrosymmetric space group P1 with a new data set, using for absorption correction TWINABS without merging Friedel pairs. This led for the ordered structure to a Flack x parameter of 0.37 (8) and several rest-electron density peaks between the carbon atoms of the two 7-membered rings, clearly showing that the disorder will be retained in the non-centrosymmetric space group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.22529 (16)0.26263 (16)0.26587 (9)0.0216 (3)
O10.3477 (7)0.5719 (7)0.4112 (6)0.0307 (14)
O20.5540 (7)0.3531 (7)0.4093 (6)0.0301 (14)
H20.586 (19)0.384 (17)0.462 (12)0.14 (6)*
C80.2600 (11)0.5254 (10)0.1903 (8)0.028 (2)
H80.1815720.6189240.2177090.034*
C90.2654 (12)0.4613 (12)0.0877 (7)0.033 (2)
H90.1959830.5007050.0302500.040*
C100.3957 (13)0.3253 (13)0.0864 (6)0.0316 (18)
H100.4276120.2531260.0263440.038*
C110.4775 (10)0.3062 (10)0.1876 (8)0.027 (2)
H110.5707790.2246570.2045140.033*
C120.3915 (10)0.4303 (10)0.2523 (5)0.0228 (13)
C130.4334 (10)0.4542 (11)0.3656 (5)0.0237 (13)
P10.7659 (3)0.8148 (3)0.18491 (17)0.0334 (5)
C10.226 (3)0.093 (3)0.456 (2)0.029 (6)*0.5
H10.2819260.0653310.5224560.035*0.5
C20.094 (3)0.233 (3)0.4608 (17)0.022 (4)*0.5
H2A0.0787040.2901910.5282830.026*0.5
C30.019 (3)0.303 (2)0.382 (2)0.027 (5)*0.5
H30.0966160.4004810.4020220.032*0.5
C40.027 (3)0.243 (3)0.276 (2)0.026 (5)*0.5
H40.1127050.2997140.2344570.032*0.5
C50.077 (3)0.110 (3)0.2296 (16)0.031 (4)*0.5
H50.0545430.0859370.1581370.037*0.5
C60.208 (3)0.006 (2)0.268 (2)0.026 (5)*0.5
H60.2612980.0768840.2167450.031*0.5
C70.279 (2)0.005 (3)0.367 (2)0.025 (5)*0.5
H70.3751750.0888040.3720330.030*0.5
F10.709 (5)0.665 (6)0.294 (3)0.21 (2)0.45
F20.830 (6)0.963 (6)0.080 (3)0.21 (2)0.45
F30.832 (4)0.675 (4)0.116 (3)0.133 (15)0.45
F40.711 (5)0.957 (4)0.256 (4)0.118 (15)0.45
F50.599 (3)0.877 (3)0.130 (2)0.086 (8)0.45
F60.935 (4)0.782 (5)0.233 (3)0.108 (12)0.45
C1A0.143 (3)0.180 (3)0.4718 (12)0.019 (4)*0.5
H1A0.1479450.2115720.5465710.022*0.5
C2A0.015 (3)0.279 (2)0.414 (2)0.027 (5)*0.5
H2AA0.0507500.3623360.4617020.033*0.5
C3A0.043 (3)0.287 (3)0.302 (2)0.032 (5)*0.5
H3A0.1294220.3746790.2816770.039*0.5
C4A0.028 (2)0.167 (2)0.2234 (15)0.014 (4)*0.5
H4A0.0184420.1726770.1547670.017*0.5
C5A0.164 (3)0.039 (3)0.2408 (16)0.022 (4)*0.5
H5A0.2013050.0274360.1763620.026*0.5
C6A0.257 (3)0.013 (2)0.333 (2)0.026 (5)*0.5
H6A0.3364150.1116310.3219950.031*0.5
C7A0.256 (3)0.051 (3)0.435 (2)0.031 (6)*0.5
H7A0.3382310.0001340.4812430.037*0.5
F1A0.763 (3)0.6505 (18)0.3111 (12)0.059 (4)0.55
F2A0.763 (2)0.974 (2)0.0597 (15)0.081 (6)0.55
F3A0.848 (2)0.705 (3)0.0906 (16)0.077 (8)0.55
F4A0.680 (3)0.917 (3)0.2822 (17)0.062 (6)0.55
F5A0.590 (2)0.775 (3)0.1809 (16)0.077 (6)0.55
F6A0.939 (3)0.835 (3)0.195 (2)0.090 (9)0.55
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0178 (6)0.0261 (7)0.0210 (5)0.0091 (3)0.0015 (5)0.0093 (5)
O10.024 (3)0.034 (3)0.036 (3)0.001 (3)0.003 (2)0.020 (3)
O20.021 (3)0.032 (3)0.041 (4)0.002 (3)0.009 (3)0.018 (3)
C80.033 (5)0.021 (4)0.031 (4)0.014 (4)0.005 (4)0.004 (4)
C90.036 (5)0.042 (6)0.022 (4)0.022 (4)0.009 (4)0.004 (4)
C100.033 (5)0.040 (6)0.024 (3)0.023 (4)0.005 (4)0.012 (4)
C110.023 (4)0.025 (4)0.027 (4)0.008 (4)0.008 (3)0.009 (3)
C120.023 (4)0.020 (4)0.024 (3)0.009 (2)0.000 (3)0.006 (3)
C130.019 (4)0.023 (5)0.030 (3)0.010 (2)0.004 (4)0.005 (4)
P10.0304 (13)0.0398 (15)0.0312 (9)0.0038 (7)0.0056 (10)0.0145 (11)
F10.13 (2)0.27 (4)0.18 (3)0.16 (3)0.03 (2)0.13 (3)
F20.20 (4)0.27 (4)0.13 (2)0.12 (3)0.07 (2)0.12 (2)
F30.21 (3)0.065 (15)0.18 (3)0.085 (16)0.15 (3)0.091 (18)
F40.18 (4)0.035 (11)0.19 (3)0.044 (15)0.13 (3)0.051 (15)
F50.056 (13)0.15 (2)0.084 (18)0.031 (15)0.039 (13)0.081 (16)
F60.081 (17)0.17 (3)0.112 (17)0.081 (17)0.065 (14)0.13 (2)
F1A0.101 (13)0.037 (7)0.032 (5)0.000 (6)0.011 (7)0.009 (5)
F2A0.095 (13)0.068 (9)0.034 (7)0.046 (9)0.008 (7)0.012 (6)
F3A0.035 (8)0.16 (2)0.045 (7)0.010 (10)0.016 (6)0.078 (10)
F4A0.048 (8)0.101 (19)0.041 (7)0.035 (9)0.012 (6)0.060 (10)
F5A0.035 (7)0.149 (17)0.060 (10)0.033 (11)0.000 (7)0.048 (10)
F6A0.028 (8)0.093 (14)0.17 (2)0.024 (8)0.015 (10)0.074 (14)
Geometric parameters (Å, º) top
Mn1—C102.044 (7)P1—F3A1.471 (16)
Mn1—C112.044 (8)P1—F4A1.459 (14)
Mn1—C122.093 (5)P1—F5A1.567 (17)
Mn1—C22.062 (16)P1—F6A1.511 (17)
Mn1—C32.02 (2)C1—H10.9500
Mn1—C42.085 (19)C1—C21.42 (2)
Mn1—C52.119 (15)C1—C71.35 (3)
Mn1—C62.164 (19)C2—H2A0.9500
Mn1—C1A2.139 (13)C2—C31.43 (3)
Mn1—C2A1.974 (19)C3—H30.9500
Mn1—C3A2.09 (2)C3—C41.42 (3)
Mn1—C5A2.130 (15)C4—H40.9500
O1—C131.205 (10)C4—C51.36 (3)
O2—H20.83 (2)C5—H50.9500
O2—C131.303 (10)C5—C61.35 (3)
C8—H80.9500C6—H60.9500
C8—C91.365 (11)C6—C71.39 (3)
C8—C121.463 (12)C7—H70.9500
C9—H90.9500C1A—H1A0.9500
C9—C101.390 (11)C1A—C2A1.42 (3)
C10—H100.9500C1A—C7A1.33 (3)
C10—C111.456 (12)C2A—H2AA0.9500
C11—H110.9500C2A—C3A1.46 (3)
C11—C121.354 (10)C3A—H3A0.9500
C12—C131.482 (8)C3A—C4A1.41 (3)
P1—F11.53 (3)C4A—H4A0.9500
P1—F21.52 (4)C4A—C5A1.40 (3)
P1—F31.47 (2)C5A—H5A0.9500
P1—F41.50 (3)C5A—C6A1.41 (3)
P1—F51.62 (2)C6A—H6A0.9500
P1—F61.60 (3)C6A—C7A1.37 (3)
P1—F1A1.691 (15)C7A—H7A0.9500
P1—F2A1.665 (16)
C10—Mn1—C1265.1 (2)F3A—P1—F2A87.6 (10)
C10—Mn1—C2164.5 (5)F3A—P1—F5A85.5 (10)
C10—Mn1—C4117.8 (6)F3A—P1—F6A92.2 (12)
C10—Mn1—C5101.4 (5)F4A—P1—F1A86.2 (11)
C10—Mn1—C6100.3 (6)F4A—P1—F2A94.4 (11)
C10—Mn1—C1A157.0 (6)F4A—P1—F3A177.3 (13)
C10—Mn1—C3A124.2 (7)F4A—P1—F5A92.8 (12)
C10—Mn1—C5A97.9 (5)F4A—P1—F6A89.3 (13)
C11—Mn1—C1041.7 (3)F5A—P1—F1A88.6 (9)
C11—Mn1—C1238.2 (3)F5A—P1—F2A89.4 (10)
C11—Mn1—C2124.2 (6)F6A—P1—F1A86.1 (12)
C11—Mn1—C4159.5 (6)F6A—P1—F2A95.9 (13)
C11—Mn1—C5133.1 (7)F6A—P1—F5A174.1 (13)
C11—Mn1—C6109.6 (6)Mn1—C1—H1143.0
C11—Mn1—C1A115.6 (5)C2—C1—Mn164.4 (11)
C11—Mn1—C3A161.7 (6)C2—C1—H1117.0
C11—Mn1—C5A116.9 (6)C7—C1—Mn173.0 (12)
C12—Mn1—C5166.0 (5)C7—C1—H1117.0
C12—Mn1—C6145.1 (7)C7—C1—C2126 (2)
C12—Mn1—C1A99.2 (3)Mn1—C2—H2A136.4
C12—Mn1—C5A154.9 (7)C1—C2—Mn177.3 (12)
C2—Mn1—C1299.6 (5)C1—C2—H2A114.3
C2—Mn1—C475.8 (9)C1—C2—C3131.4 (18)
C2—Mn1—C594.1 (6)C3—C2—Mn167.9 (10)
C2—Mn1—C691.1 (8)C3—C2—H2A114.3
C3—Mn1—C10146.6 (8)Mn1—C3—H3134.5
C3—Mn1—C11153.7 (7)C2—C3—Mn171.1 (11)
C3—Mn1—C12115.8 (6)C2—C3—H3116.6
C3—Mn1—C241.0 (9)C4—C3—Mn172.3 (11)
C3—Mn1—C440.5 (9)C4—C3—C2126.8 (18)
C3—Mn1—C573.1 (9)C4—C3—H3116.6
C3—Mn1—C694.0 (7)Mn1—C4—H4138.4
C4—Mn1—C12144.2 (7)C3—C4—Mn167.2 (11)
C4—Mn1—C537.6 (9)C3—C4—H4117.4
C4—Mn1—C670.6 (7)C5—C4—Mn172.5 (10)
C5—Mn1—C636.6 (8)C5—C4—C3125.2 (19)
C2A—Mn1—C10159.3 (8)C5—C4—H4117.4
C2A—Mn1—C11145.5 (7)Mn1—C5—H5139.1
C2A—Mn1—C12111.0 (6)C4—C5—Mn169.9 (10)
C2A—Mn1—C1A40.0 (8)C4—C5—H5114.6
C2A—Mn1—C3A42.1 (9)C6—C5—Mn173.5 (11)
C2A—Mn1—C5A91.4 (7)C6—C5—C4130.9 (15)
C3A—Mn1—C12132.5 (7)C6—C5—H5114.6
C3A—Mn1—C1A78.8 (8)Mn1—C6—H6139.1
C3A—Mn1—C5A71.9 (9)C5—C6—Mn169.9 (10)
C5A—Mn1—C1A90.7 (6)C5—C6—H6113.6
C13—O2—H2116 (10)C5—C6—C7132.9 (17)
Mn1—C8—H8126.3C7—C6—Mn174.9 (12)
C9—C8—Mn173.6 (5)C7—C6—H6113.6
C9—C8—H8124.6Mn1—C7—H7139.2
C9—C8—C12110.8 (8)C1—C7—Mn171.8 (12)
C12—C8—Mn167.0 (4)C1—C7—C6127 (2)
C12—C8—H8124.6C1—C7—H7116.7
Mn1—C9—H9128.9C6—C7—Mn168.4 (11)
C8—C9—Mn170.2 (5)C6—C7—H7116.7
C8—C9—H9127.9Mn1—C1A—H1A138.4
C8—C9—C10104.3 (8)C2A—C1A—Mn163.7 (9)
C10—C9—Mn164.4 (5)C2A—C1A—H1A115.7
C10—C9—H9127.9C7A—C1A—Mn178.2 (10)
Mn1—C10—H10120.6C7A—C1A—H1A115.7
C9—C10—Mn177.8 (6)C7A—C1A—C2A128.7 (13)
C9—C10—H10123.9Mn1—C2A—H2AA136.7
C9—C10—C11112.2 (8)C1A—C2A—Mn176.2 (10)
C11—C10—Mn169.1 (4)C1A—C2A—H2AA111.3
C11—C10—H10123.9C1A—C2A—C3A137.5 (18)
Mn1—C11—H11122.2C3A—C2A—Mn173.1 (11)
C10—C11—Mn169.2 (4)C3A—C2A—H2AA111.3
C10—C11—H11127.6Mn1—C3A—H3A135.3
C12—C11—Mn172.9 (4)C2A—C3A—Mn164.8 (10)
C12—C11—C10104.8 (8)C2A—C3A—H3A119.5
C12—C11—H11127.6C4A—C3A—Mn174.1 (11)
C8—C12—Mn172.9 (4)C4A—C3A—C2A120.9 (18)
C8—C12—C13129.8 (8)C4A—C3A—H3A119.5
C11—C12—Mn168.9 (4)Mn1—C4A—H4A141.3
C11—C12—C8107.9 (5)C3A—C4A—Mn167.5 (10)
C11—C12—C13122.3 (9)C3A—C4A—H4A118.2
C13—C12—Mn1123.3 (4)C5A—C4A—Mn169.3 (10)
O1—C13—O2124.5 (5)C5A—C4A—C3A123.7 (17)
O1—C13—C12114.5 (8)C5A—C4A—H4A118.2
O2—C13—C12121.0 (8)Mn1—C5A—H5A137.0
F1—P1—F5102.7 (18)C4A—C5A—Mn172.6 (10)
F1—P1—F684.7 (19)C4A—C5A—H5A113.1
F2—P1—F1177 (2)C4A—C5A—C6A133.9 (17)
F2—P1—F580.2 (17)C6A—C5A—Mn174.1 (10)
F2—P1—F692 (2)C6A—C5A—H5A113.1
F3—P1—F179 (2)Mn1—C6A—H6A143.0
F3—P1—F2102 (2)C5A—C6A—Mn168.1 (10)
F3—P1—F4176 (2)C5A—C6A—H6A113.3
F3—P1—F594.4 (15)C7A—C6A—Mn174.9 (12)
F3—P1—F691.3 (16)C7A—C6A—C5A133.3 (19)
F4—P1—F1102 (2)C7A—C6A—H6A113.3
F4—P1—F277 (2)Mn1—C7A—H7A139.5
F4—P1—F589.5 (17)C1A—C7A—Mn167.0 (10)
F4—P1—F684.7 (18)C1A—C7A—C6A121.7 (19)
F6—P1—F5171.4 (17)C1A—C7A—H7A119.2
F2A—P1—F1A178.0 (10)C6A—C7A—Mn169.6 (12)
F3A—P1—F1A91.8 (10)C6A—C7A—H7A119.2
Mn1—C8—C9—C1055.6 (5)C10—C11—C12—C13179.1 (5)
Mn1—C8—C12—C1160.3 (4)C11—C12—C13—O1178.7 (6)
Mn1—C8—C12—C13119.5 (6)C11—C12—C13—O21.5 (9)
Mn1—C9—C10—C1161.1 (5)C12—C8—C9—Mn156.9 (5)
Mn1—C10—C11—C1264.8 (5)C12—C8—C9—C101.3 (9)
Mn1—C11—C12—C862.9 (4)C1—C2—C3—Mn147.6 (19)
Mn1—C11—C12—C13116.9 (5)C1—C2—C3—C41 (3)
Mn1—C12—C13—O196.7 (8)C2—C1—C7—Mn138.6 (18)
Mn1—C12—C13—O283.2 (8)C2—C1—C7—C65 (3)
Mn1—C1—C2—C344.5 (18)C2—C3—C4—Mn148.5 (17)
Mn1—C1—C7—C643.4 (18)C2—C3—C4—C53 (3)
Mn1—C2—C3—C449.0 (17)C3—C4—C5—Mn144.0 (17)
Mn1—C3—C4—C545.9 (17)C3—C4—C5—C60 (3)
Mn1—C4—C5—C644.1 (16)C4—C5—C6—Mn143.0 (15)
Mn1—C5—C6—C744 (2)C4—C5—C6—C71 (3)
Mn1—C6—C7—C144.6 (19)C5—C6—C7—Mn143 (2)
Mn1—C1A—C2A—C3A45 (2)C5—C6—C7—C12 (4)
Mn1—C1A—C7A—C6A44.9 (17)C7—C1—C2—Mn141.4 (19)
Mn1—C2A—C3A—C4A50.5 (16)C7—C1—C2—C33 (4)
Mn1—C3A—C4A—C5A42.6 (15)C1A—C2A—C3A—Mn146 (2)
Mn1—C4A—C5A—C6A45.6 (18)C1A—C2A—C3A—C4A5 (3)
Mn1—C5A—C6A—C7A40 (2)C2A—C1A—C7A—Mn141.6 (12)
Mn1—C6A—C7A—C1A43.9 (16)C2A—C1A—C7A—C6A3 (2)
C8—C9—C10—Mn159.4 (5)C2A—C3A—C4A—Mn146.6 (15)
C8—C9—C10—C111.8 (10)C2A—C3A—C4A—C5A4 (3)
C8—C12—C13—O11.5 (9)C3A—C4A—C5A—Mn141.9 (15)
C8—C12—C13—O2178.3 (6)C3A—C4A—C5A—C6A4 (3)
C9—C8—C12—Mn160.7 (6)C4A—C5A—C6A—Mn145.1 (18)
C9—C8—C12—C110.4 (7)C4A—C5A—C6A—C7A5 (4)
C9—C8—C12—C13179.8 (6)C5A—C6A—C7A—Mn138 (2)
C9—C10—C11—Mn166.4 (6)C5A—C6A—C7A—C1A6 (3)
C9—C10—C11—C121.6 (8)C7A—C1A—C2A—Mn146.5 (14)
C10—C11—C12—Mn162.2 (4)C7A—C1A—C2A—C3A2 (3)
C10—C11—C12—C80.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.83 (2)1.81 (3)2.638 (6)173 (15)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr Holger Kopacka (University of Innsbruck, Department of Inorganic Chemistry) for NMR, Dr. Thomas Müller (University of Innsbruck, Department of Organic Chemistry) for MS, and Florian R. Neururer (University of Innsbruck, Department of Inorganic Chemistry) for cyclic voltammetry (CV) measurements.

Funding information

Funding for this research was provided by: Austrian Science Fund FWF (grant No. P338580).

References

First citationBasse, R., Vanicek, S., Höfer, T., Kopacka, H., Wurst, K., Müller, T., Schwartz, H. A., Olthof, S., Casper, L. A., Nau, M., Winter, R. F., Podewitz, M. & Bildstein, B. (2021). Organometallics, 40, 2736–2749.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVanicek, S., Kopacka, H., Wurst, K., Müller, T., Schottenberger, H. & Bildstein, B. (2014). Organometallics, 33, 1152–1156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146