organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­propyl 2-[(4-nitro­benzo­yl)amino]­propane­dioate

crossmark logo

aUniversity of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA, and bRice University, 7400 University Hills Blvd., Houston, TX 77030, USA
*Correspondence e-mail: muhammed.yousufuddin@untdallas.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 31 January 2023; accepted 3 February 2023; online 14 February 2023)

The title compound, C16H20N2O7, crystallizes in the space group C2 with two mol­ecules in the asymmetric unit. The crystal packing shows O⋯π inter­actions between the two mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound [alternative name: diisopropyl 2-(4-nitro­benzamido)­malonate] was made in an attempt to make a compound with an N3 cyclic ring. The starting material for this compound has been used previously to make symmetrical and unsymmetrical secondary amines (Kattamuri et al., 2017[Kattamuri, P. V., Yin, J., Siriwongsup, S., Kwon, D.-H., Ess, D. H., Li, Q., Li, G., Yousufuddin, M., Richardson, P. F., Sutton, S. C. & Kürti, L. (2017). J. Am. Chem. Soc. 139, 11184-11196.]). The title compound crystallizes in the monoclinic space group C2 with two mol­ecules in the asymmetric unit (Z = 8). Mol­ecule A contains nitro group N1—O1—O2, and mol­ecule B contains nitro group N3—O8—O9 (Fig. 1[link]). Both nitro groups are almost coplanar with their attached phenyl rings [dihedral angles = 3.7 (11)° for mol­ecule A and 3.3 (8)° for mol­ecule B]. An overlay of the two mol­ecules indicates an almost complete overlap with only slight deviations in the ester groups (r.m.s. deviation = 0.268 Å; Fig. 2[link]). The dihedral angle between the phenyl rings is 38.0 (3)°. The closest inter­actions in the packing are observed between the two mol­ecules in the asymmetric unit (Fig. 3[link]): an N3—O8⋯π inter­action [O8⋯Cg1 = 3.272 (6) Å, Cg1 is the centroid of the C1–C6 ring] and a C9=O4⋯π inter­action [O4⋯Cg2 = 3.552 (7) Å, Cg2 is the centroid of the C17–C22 ring].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Overlay plot of the two mol­ecules in the asymmetric unit. Mol­ecule A is shown in green, mol­ecule B in red.
[Figure 3]
Figure 3
Packing diagram for the title compound.

Synthesis and crystallization

In an oven-dried Schlenk reaction vessel, diisopropyl 2-[(tos­yloxy)imino]­malonate (185.7 mg, 0.5 mmol, 1.0 equiv.) was dissolved in anhydrous THF (5 ml) under Ar and cooled to 273 K on an ice bath. To the cooled solution, Et3N (1.0 mmol, 2.0 equiv.) and hydrazine (0.5 mmol, 1.0 equiv.) were added. The reaction mixture was allowed to stir at 273 K for 2 h. After full conversion as indicated by TLC, Et3N (1.0 mmol, 2.0 equiv.) and 4-nitro­benzoyl chloride (92.8 mg, 0.5 mmol, 1.0 equiv.) were added to the reaction mixture. After stirring the reaction mixture for 3 h at 273 K, a saturated NaHCO3 solution was added and the mixture was extracted with diethyl ether. The combined organic fractions were concentrated in vacuo. The crude product was purified using silica gel flash column chromatography to afford the title compound (90.0 mg, 51% yield). Crystals were obtained by dissolving the compound in a minimum amount of CH2Cl2 and layering with hexane at 295 K.

Refinement

Crystal data, data collection and structure refinement are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H20N2O7
Mr 352.34
Crystal system, space group Monoclinic, C2
Temperature (K) 296
a, b, c (Å) 38.408 (10), 5.1523 (13), 19.752 (5)
β (°) 115.341 (4)
V3) 3532.7 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.50 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.534, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18724, 8693, 3977
Rint 0.062
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.276, 1.00
No. of reflections 8693
No. of parameters 459
No. of restraints 52
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.34
Absolute structure Flack x determined using 1214 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.6 (10)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), 4SHELXL2018/43 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: 4SHELXL2018/43 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diisopropyl 2-[(4-nitrobenzoyl)amino]propanedioate top
Crystal data top
C16H20N2O7F(000) = 1488
Mr = 352.34Dx = 1.325 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 38.408 (10) ÅCell parameters from 2123 reflections
b = 5.1523 (13) Åθ = 2.3–19.0°
c = 19.752 (5) ŵ = 0.11 mm1
β = 115.341 (4)°T = 296 K
V = 3532.7 (15) Å3Needle, colourless
Z = 80.50 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3977 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.4°, θmin = 2.0°
Tmin = 0.534, Tmax = 0.745h = 5050
18724 measured reflectionsk = 66
8693 independent reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.081 w = 1/[σ2(Fo2) + (0.1417P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.276(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.49 e Å3
8693 reflectionsΔρmin = 0.34 e Å3
459 parametersAbsolute structure: Flack x determined using 1214 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
52 restraintsAbsolute structure parameter: 0.6 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88102 (19)0.2244 (16)0.6329 (5)0.118 (2)
O20.90133 (17)0.5358 (18)0.7072 (4)0.128 (3)
O30.71544 (12)0.9400 (9)0.6084 (3)0.0712 (13)
O40.67465 (15)0.5799 (14)0.6930 (3)0.0944 (19)
O50.61676 (14)0.7265 (11)0.6190 (3)0.0753 (14)
O60.63941 (14)0.2095 (10)0.4886 (3)0.0837 (16)
O70.59253 (12)0.4686 (11)0.4841 (3)0.0795 (15)
N10.87565 (19)0.4161 (17)0.6630 (4)0.0811 (18)
N20.69438 (14)0.5333 (10)0.5764 (3)0.0555 (13)
H2N20.7000030.3759150.5704950.067*
C10.83549 (19)0.4910 (16)0.6442 (4)0.0641 (18)
C20.8060 (2)0.3469 (16)0.5940 (4)0.0681 (18)
H20.8108050.2065530.5696380.082*
C30.76912 (18)0.4137 (14)0.5804 (3)0.0577 (16)
H30.7486860.3138430.5476150.069*
C40.76178 (16)0.6251 (12)0.6142 (3)0.0500 (14)
C50.79215 (18)0.7752 (13)0.6635 (4)0.0599 (16)
H50.7874830.9209650.6861330.072*
C60.82960 (18)0.7034 (15)0.6783 (4)0.0682 (19)
H60.8503880.8000120.7113610.082*
C70.72186 (18)0.7100 (13)0.6000 (3)0.0551 (15)
C80.65570 (17)0.5975 (12)0.5606 (4)0.0555 (15)
H80.6499660.7644840.5342480.067*
C90.65032 (19)0.6329 (14)0.6321 (4)0.0604 (16)
C100.6067 (3)0.7816 (19)0.6811 (4)0.086 (3)
H100.6225710.6758360.7246290.103*
C110.6145 (3)1.065 (2)0.6998 (6)0.122 (4)
H11A0.6412041.1007760.7135320.182*
H11B0.6084251.1072660.7408210.182*
H11C0.5988521.1673670.6568920.182*
C120.5657 (3)0.712 (2)0.6551 (7)0.120 (4)
H12A0.5502420.8195300.6134450.181*
H12B0.5581950.7367680.6951470.181*
H12C0.5621010.5328950.6398840.181*
C130.62848 (17)0.3987 (13)0.5080 (3)0.0539 (15)
C140.5632 (2)0.3031 (18)0.4300 (5)0.089 (3)
H140.5745930.1847050.4062730.107*
C150.5350 (4)0.490 (3)0.3721 (8)0.156 (5)
H15A0.5189940.5708580.3924760.235*
H15B0.5190740.3958180.3276250.235*
H15C0.5491290.6212060.3599180.235*
C160.5450 (4)0.157 (4)0.4700 (9)0.172 (6)
H16A0.5643200.0616750.5103340.258*
H16B0.5264390.0385540.4360170.258*
H16C0.5323460.2753460.4896800.258*
O80.80326 (17)0.2861 (12)0.7820 (3)0.0891 (17)
O90.81622 (17)0.6196 (13)0.8529 (4)0.0951 (18)
O100.66470 (15)0.0673 (10)0.8979 (3)0.0747 (13)
O110.65449 (17)0.6482 (13)1.0333 (3)0.0934 (18)
O120.60149 (14)0.4539 (13)1.0243 (3)0.0924 (18)
O130.58449 (16)0.4185 (15)0.8261 (3)0.103 (2)
O140.56464 (13)0.1570 (11)0.8898 (3)0.0754 (14)
N30.79752 (15)0.4276 (13)0.8251 (3)0.0664 (15)
N40.65984 (14)0.3465 (11)0.9276 (3)0.0595 (14)
H4N40.6681150.5030860.9305820.071*
C170.76625 (18)0.3554 (13)0.8470 (4)0.0572 (16)
C180.7437 (2)0.1486 (14)0.8140 (4)0.0645 (17)
H180.7478040.0516320.7783580.077*
C190.71472 (18)0.0839 (13)0.8336 (4)0.0585 (16)
H190.6994430.0607930.8124720.070*
C200.70813 (17)0.2356 (12)0.8855 (3)0.0507 (14)
C210.73146 (18)0.4425 (14)0.9176 (4)0.0594 (16)
H210.7272530.5426960.9525430.071*
C220.76095 (19)0.5053 (15)0.8993 (4)0.0639 (17)
H220.7769690.6458260.9216400.077*
C230.67578 (17)0.1561 (13)0.9041 (3)0.0532 (15)
C240.62899 (17)0.2893 (13)0.9479 (4)0.0575 (16)
H240.6328770.1152920.9699830.069*
C250.63007 (19)0.4888 (14)1.0067 (4)0.0604 (16)
C260.5982 (3)0.642 (2)1.0786 (5)0.101 (3)
H260.6182750.7754291.0926350.121*
C270.6031 (4)0.483 (4)1.1412 (8)0.166 (5)
H27A0.5834570.3513851.1256630.249*
H27B0.6011080.5876971.1795610.249*
H27C0.6279830.4016131.1605470.249*
C280.5600 (4)0.757 (3)1.0432 (9)0.163 (5)
H28A0.5412810.6228361.0197160.245*
H28B0.5591440.8800161.0060630.245*
H28C0.5543090.8429061.0803540.245*
C290.5902 (2)0.2985 (14)0.8801 (4)0.0601 (16)
C300.5250 (2)0.1611 (18)0.8325 (4)0.080 (2)
H300.5223700.3000770.7968140.096*
C310.5161 (5)0.083 (4)0.7929 (10)0.184 (6)
H31A0.5153140.2181170.8257340.277*
H31B0.5356560.1226630.7763230.277*
H31C0.4915640.0712940.7503780.277*
C320.5000 (3)0.216 (5)0.8673 (8)0.185 (8)
H32A0.4737060.2108290.8303790.277*
H32B0.5056650.3860420.8894700.277*
H32C0.5038060.0895320.9054270.277*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.083 (4)0.128 (6)0.150 (6)0.017 (4)0.058 (4)0.019 (5)
O20.050 (3)0.177 (8)0.134 (6)0.000 (4)0.019 (4)0.021 (6)
O30.059 (3)0.056 (3)0.094 (3)0.000 (2)0.029 (2)0.010 (3)
O40.073 (3)0.142 (6)0.064 (3)0.034 (4)0.025 (3)0.015 (3)
O50.063 (3)0.101 (4)0.063 (3)0.023 (3)0.028 (2)0.000 (3)
O60.063 (3)0.064 (3)0.103 (4)0.005 (2)0.015 (3)0.014 (3)
O70.041 (2)0.100 (4)0.090 (3)0.005 (3)0.021 (2)0.031 (3)
N10.058 (4)0.105 (6)0.087 (4)0.008 (4)0.038 (4)0.009 (4)
N20.045 (3)0.047 (3)0.074 (3)0.002 (2)0.024 (3)0.001 (2)
C10.054 (4)0.084 (5)0.065 (4)0.007 (4)0.036 (3)0.011 (4)
C20.064 (4)0.075 (4)0.072 (4)0.001 (4)0.036 (4)0.008 (4)
C30.051 (3)0.067 (4)0.054 (3)0.007 (3)0.021 (3)0.009 (3)
C40.050 (3)0.053 (3)0.047 (3)0.001 (3)0.021 (3)0.006 (3)
C50.056 (4)0.056 (4)0.065 (4)0.005 (3)0.023 (3)0.012 (3)
C60.044 (4)0.080 (5)0.073 (4)0.014 (3)0.018 (3)0.011 (4)
C70.055 (4)0.057 (4)0.049 (3)0.003 (3)0.019 (3)0.000 (3)
C80.053 (4)0.051 (4)0.063 (4)0.004 (3)0.025 (3)0.002 (3)
C90.054 (4)0.066 (4)0.057 (4)0.004 (3)0.020 (3)0.000 (3)
C100.083 (6)0.116 (7)0.067 (5)0.034 (5)0.039 (4)0.001 (5)
C110.136 (9)0.121 (9)0.097 (7)0.020 (7)0.039 (7)0.030 (7)
C120.096 (7)0.151 (10)0.145 (9)0.020 (7)0.081 (7)0.011 (8)
C130.050 (4)0.053 (4)0.053 (3)0.002 (3)0.017 (3)0.002 (3)
C140.047 (4)0.104 (6)0.107 (6)0.010 (4)0.023 (4)0.036 (5)
C150.154 (5)0.156 (5)0.153 (5)0.004 (3)0.060 (3)0.004 (3)
C160.171 (6)0.172 (6)0.171 (6)0.009 (3)0.071 (3)0.002 (3)
O80.101 (4)0.101 (4)0.094 (4)0.011 (3)0.070 (3)0.013 (3)
O90.094 (4)0.094 (4)0.120 (5)0.019 (4)0.068 (4)0.005 (4)
O100.088 (3)0.056 (3)0.095 (3)0.010 (3)0.054 (3)0.003 (3)
O110.102 (4)0.113 (4)0.090 (4)0.045 (4)0.064 (3)0.032 (3)
O120.076 (3)0.124 (5)0.098 (4)0.021 (3)0.057 (3)0.046 (4)
O130.082 (4)0.141 (6)0.083 (4)0.008 (4)0.034 (3)0.038 (4)
O140.060 (3)0.092 (4)0.072 (3)0.013 (3)0.026 (3)0.006 (3)
N30.057 (3)0.071 (4)0.077 (4)0.004 (3)0.034 (3)0.007 (3)
N40.055 (3)0.052 (3)0.081 (4)0.000 (2)0.038 (3)0.003 (3)
C170.051 (3)0.064 (4)0.059 (4)0.003 (3)0.026 (3)0.012 (3)
C180.072 (4)0.064 (4)0.065 (4)0.001 (4)0.036 (3)0.009 (3)
C190.058 (4)0.056 (4)0.066 (4)0.000 (3)0.031 (3)0.010 (3)
C200.046 (3)0.050 (3)0.057 (3)0.005 (3)0.023 (3)0.006 (3)
C210.058 (4)0.064 (4)0.062 (4)0.004 (3)0.031 (3)0.008 (3)
C220.059 (4)0.069 (4)0.064 (4)0.008 (3)0.026 (3)0.008 (3)
C230.055 (4)0.052 (4)0.057 (4)0.000 (3)0.029 (3)0.002 (3)
C240.055 (4)0.062 (4)0.071 (4)0.004 (3)0.041 (3)0.006 (3)
C250.057 (4)0.068 (4)0.061 (4)0.008 (4)0.029 (3)0.002 (3)
C260.101 (3)0.104 (3)0.101 (3)0.0013 (14)0.0461 (17)0.0033 (14)
C270.169 (5)0.166 (5)0.162 (5)0.011 (3)0.070 (3)0.003 (3)
C280.164 (5)0.164 (5)0.162 (5)0.009 (3)0.071 (3)0.002 (3)
C290.067 (4)0.067 (4)0.058 (4)0.006 (3)0.038 (3)0.007 (3)
C300.066 (5)0.088 (5)0.074 (5)0.007 (4)0.020 (4)0.009 (4)
C310.182 (6)0.182 (7)0.185 (7)0.003 (3)0.075 (4)0.005 (3)
C320.087 (7)0.32 (2)0.153 (11)0.015 (11)0.056 (8)0.026 (15)
Geometric parameters (Å, º) top
O1—N11.216 (10)O8—N31.210 (7)
O2—N11.174 (9)O9—N31.207 (8)
O3—C71.236 (8)O10—C231.215 (8)
O4—C91.197 (7)O11—C251.186 (8)
O5—C91.294 (8)O12—C251.297 (8)
O5—C101.463 (9)O12—C261.491 (11)
O6—C131.188 (8)O13—C291.170 (8)
O7—C131.304 (8)O14—C291.299 (8)
O7—C141.452 (9)O14—C301.459 (9)
N1—C11.475 (9)N3—C171.488 (8)
N2—C71.318 (8)N4—C231.340 (8)
N2—C81.420 (7)N4—C241.434 (7)
N2—H2N20.8600N4—H4N40.8600
C1—C61.354 (10)C17—C181.353 (10)
C1—C21.363 (10)C17—C221.373 (9)
C2—C31.368 (9)C18—C191.367 (9)
C2—H20.9300C18—H180.9300
C3—C41.368 (9)C19—C201.395 (8)
C3—H30.9300C19—H190.9300
C4—C51.391 (8)C20—C211.362 (9)
C4—C71.501 (9)C20—C231.496 (8)
C5—C61.389 (9)C21—C221.367 (9)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
C8—C131.514 (9)C24—C291.520 (9)
C8—C91.525 (9)C24—C251.538 (10)
C8—H80.9800C24—H240.9800
C10—C121.475 (13)C26—C271.430 (17)
C10—C111.504 (15)C26—C281.454 (16)
C10—H100.9800C26—H260.9800
C11—H11A0.9600C27—H27A0.9600
C11—H11B0.9600C27—H27B0.9600
C11—H11C0.9600C27—H27C0.9600
C12—H12A0.9600C28—H28A0.9600
C12—H12B0.9600C28—H28B0.9600
C12—H12C0.9600C28—H28C0.9600
C14—C161.465 (16)C30—C321.427 (13)
C14—C151.534 (17)C30—C311.44 (2)
C14—H140.9800C30—H300.9800
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
C9—O5—C10120.1 (5)C25—O12—C26116.4 (7)
C13—O7—C14118.2 (6)C29—O14—C30118.8 (6)
O2—N1—O1121.8 (8)O9—N3—O8124.2 (6)
O2—N1—C1120.3 (8)O9—N3—C17118.0 (6)
O1—N1—C1117.9 (8)O8—N3—C17117.8 (6)
C7—N2—C8121.4 (5)C23—N4—C24120.1 (6)
C7—N2—H2N2119.3C23—N4—H4N4120.0
C8—N2—H2N2119.3C24—N4—H4N4120.0
C6—C1—C2122.6 (6)C18—C17—C22122.4 (6)
C6—C1—N1117.7 (7)C18—C17—N3119.1 (6)
C2—C1—N1119.6 (7)C22—C17—N3118.5 (6)
C1—C2—C3118.3 (7)C17—C18—C19119.1 (6)
C1—C2—H2120.8C17—C18—H18120.5
C3—C2—H2120.8C19—C18—H18120.5
C2—C3—C4121.1 (6)C18—C19—C20119.8 (6)
C2—C3—H3119.4C18—C19—H19120.1
C4—C3—H3119.4C20—C19—H19120.1
C3—C4—C5119.9 (6)C21—C20—C19119.3 (6)
C3—C4—C7123.2 (6)C21—C20—C23123.4 (5)
C5—C4—C7116.9 (6)C19—C20—C23117.3 (6)
C6—C5—C4118.8 (6)C20—C21—C22121.1 (6)
C6—C5—H5120.6C20—C21—H21119.4
C4—C5—H5120.6C22—C21—H21119.4
C1—C6—C5119.2 (6)C21—C22—C17118.2 (6)
C1—C6—H6120.4C21—C22—H22120.9
C5—C6—H6120.4C17—C22—H22120.9
O3—C7—N2122.3 (6)O10—C23—N4122.4 (6)
O3—C7—C4120.0 (6)O10—C23—C20121.8 (6)
N2—C7—C4117.7 (6)N4—C23—C20115.8 (6)
N2—C8—C13110.1 (5)N4—C24—C29111.4 (5)
N2—C8—C9111.6 (5)N4—C24—C25108.4 (5)
C13—C8—C9112.9 (5)C29—C24—C25110.1 (5)
N2—C8—H8107.3N4—C24—H24109.0
C13—C8—H8107.3C29—C24—H24109.0
C9—C8—H8107.3C25—C24—H24109.0
O4—C9—O5124.7 (6)O11—C25—O12125.2 (7)
O4—C9—C8123.2 (6)O11—C25—C24123.9 (6)
O5—C9—C8112.1 (5)O12—C25—C24110.9 (6)
O5—C10—C12106.7 (7)C27—C26—C28112.4 (11)
O5—C10—C11107.3 (8)C27—C26—O12103.2 (10)
C12—C10—C11113.2 (9)C28—C26—O12107.3 (9)
O5—C10—H10109.9C27—C26—H26111.2
C12—C10—H10109.9C28—C26—H26111.2
C11—C10—H10109.9O12—C26—H26111.2
C10—C11—H11A109.5C26—C27—H27A109.5
C10—C11—H11B109.5C26—C27—H27B109.5
H11A—C11—H11B109.5H27A—C27—H27B109.5
C10—C11—H11C109.5C26—C27—H27C109.5
H11A—C11—H11C109.5H27A—C27—H27C109.5
H11B—C11—H11C109.5H27B—C27—H27C109.5
C10—C12—H12A109.5C26—C28—H28A109.5
C10—C12—H12B109.5C26—C28—H28B109.5
H12A—C12—H12B109.5H28A—C28—H28B109.5
C10—C12—H12C109.5C26—C28—H28C109.5
H12A—C12—H12C109.5H28A—C28—H28C109.5
H12B—C12—H12C109.5H28B—C28—H28C109.5
O6—C13—O7125.1 (6)O13—C29—O14124.9 (7)
O6—C13—C8122.7 (6)O13—C29—C24123.3 (7)
O7—C13—C8112.0 (6)O14—C29—C24111.8 (5)
O7—C14—C16107.7 (9)C32—C30—C31112.6 (13)
O7—C14—C15104.9 (9)C32—C30—O14108.9 (8)
C16—C14—C15112.2 (9)C31—C30—O14109.4 (9)
O7—C14—H14110.6C32—C30—H30108.6
C16—C14—H14110.6C31—C30—H30108.6
C15—C14—H14110.6O14—C30—H30108.6
C14—C15—H15A109.5C30—C31—H31A109.5
C14—C15—H15B109.5C30—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C14—C15—H15C109.5C30—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C14—C16—H16A109.5C30—C32—H32A109.5
C14—C16—H16B109.5C30—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C14—C16—H16C109.5C30—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
 

Acknowledgements

The authors thank the Center for Nanostructured Materials at the University of Texas at Arlington for the use of their diffractometer. Support for this work was provided by the University of North Texas at Dallas.

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKattamuri, P. V., Yin, J., Siriwongsup, S., Kwon, D.-H., Ess, D. H., Li, Q., Li, G., Yousufuddin, M., Richardson, P. F., Sutton, S. C. & Kürti, L. (2017). J. Am. Chem. Soc. 139, 11184–11196.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146