organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-Phenyl-N-(phenyl­carbamo­yl)-3-[prop­yl(tri­methyl­sil­yl)amino]­acryl­amide chloro­form hemisolvate

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 3 January 2023; accepted 8 February 2023; online 17 February 2023)

The title compound, C22H29N3O2Si·0.5CHCl3, crystallizes in the the triclinic space group P[\overline{1}] with two host mol­ecules and one chloro­form mol­ecule in the asymmetric unit. The core of the mol­ecule consists of a urea unit bound to a 3-amino-acryloyl group. These units are almost planar in both mol­ecules [average deviation from plane of 0.05 (6) Å in mol­ecule A and 0.04 (5) Å in mol­ecule B]. The main difference between mol­ecules A and B involves the dihedral angles of the phenyl groups. One phenyl ring makes dihedral angles of 71.14 (6)° (mol­ecule A) and 82.81 (7)° (mol­ecule B) with respect to the core (C4N3O2) of the mol­ecule [14.56 (9)° (mol­ecule A) and 5.7 (1)° (mol­ecule B) for the other phenyl ring]. Another prominent feature is the intra­molecular N—H⋯O hydrogen bond present in both crystallographically independent mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

(E)-N-Phenyl-N-(phenyl­carbamo­yl)-3-[prop­yl(tri­methyl­sil­yl)amino]­acryl­amide is an insertion product from prop­yl(tri­methyl­sil­yl)[2-(tri­methyl­sil­yl)ethen­yl]amine and phenyl iso­cyanate. It was obtained in the course of our work on different types of silicon–nitro­gen compounds (Herbig et al., 2019a[Herbig, M., Böhme, U. & Kroke, E. (2019a). Z. Anorg. Allg. Chem. 645, 377-387.], 2021[Herbig, M., Scholz, H., Böhme, U., Günther, B., Gevorgyan, L., Gerlach, D., Wagler, J., Schwarzer, S. & Kroke, E. (2021). Main Group Met. Chem. 44, 51-72.], 2022[Herbig, M., Böhme, U. & Kroke, E. (2022). Z. Naturforsch. Teil B , 77, 55-67.]). Si—N bonds can be subjected to the insertion of different heteroallenes such as CO2 and iso­cyanates (Kraushaar et al., 2012[Kraushaar, K., Wiltzsch, C., Wagler, J., Böhme, U., Schwarzer, A., Roewer, G. & Kroke, E. (2012). Organometallics, 31, 4779-4785.], 2014[Kraushaar, K., Schmidt, D., Schwarzer, A. & Kroke, E. (2014). Advances in Inorganic Chemistry, vol. 66, edited by M. Aresta & R. van Eldik, ch. 4 Reactions of CO2 and CO2 analogs (CXY with X, Y = O, S, NR) with reagents Containing Si—H and Si—N units, pp. 117-162. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-420221-4.00004-4.], 2017[Kraushaar, K., Herbig, M., Schmidt, D., Wagler, J., Böhme, U. & Kroke, E. (2017). Z. Naturforsch. Teil B, 72, 909-921.]; Herbig et al., 2018[Herbig, M., Böhme, U. & Kroke, E. (2018). Inorg. Chim. Acta, 473, 20-28.], 2019b[Herbig, M., Gevorgyan, L., Pflug, M., Wagler, J., Schwarzer, S. & Kroke, E. (2019b). ChemistryOpen 9, 894-902.]). In a continuation of our research in this area, the title compound was prepared and its crystal structure is reported here.

The title compound, C22H29N3O2Si·0.5 CHCl3, Fig. 1[link], crystallizes in the triclinic space group P[\overline{1}] with two host mol­ecules (Figs. 2[link] and 3[link]) and one chloro­form mol­ecule in the asymmetric unit. The core of the mol­ecule consists of a urea unit (N2, C7, O2, N3) linked to a 3-amino-acryloyl group (N1/C4–C6/O1). 3-Benz­yl­amino-2-cyano-N-[N-(2-fluoro­phen­yl) carbamo­yl]-3-(meth­yl­sulfan­yl)acryl­amide (Zhong et al., 2011[Zhong, S., Fan, M., Liu, J. & Liu, B. (2011). Acta Cryst. E67, o3230.]) is only one closely related acyclic structure in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). If the main structural elements of the title compound are allowed to occur in cyclic structures, purine derivatives are obtained, to which belongs for example, caffeine (Sutor, 1958[Sutor, D. J. (1958). Acta Cryst. 11, 453-458.]). The formation of these cyclic structures requires a 180° rotation for the C5—C6 and C6—N2 bonds. Therefore, this structural relationship is not recognizable at first glance. There are about 1500 crystal structures of such purine derivatives.

[Figure 1]
Figure 1
Asymmetric unit of the crystal structure including a disordered mol­ecule of chloro­form. Atomic displacement parameters are at the 50% probability level.
[Figure 2]
Figure 2
Diagram of mol­ecule A showing the atom-labelling scheme. Atomic displacement parameters are at the 50% probability level.
[Figure 3]
Figure 3
Diagram of mol­ecule B showing the atom-labelling scheme. Atomic displacement parameters are at the 50% probability level.

The core of the mol­ecule formed by N1, C4–C6, O1, N2, C7, O2 and N3 is almost planar in both mol­ecules of the title compound [the average deviation from the plane is 0.05 (6) Å in mol­ecule A and 0.04 (5) Å in mol­ecule B] The planarity is presumably due to the conjugated system of double bonds. The C14–C19 phenyl rings in both mol­ecules are not coplanar to the core of the mol­ecules but adopt dihedral angles to the latter of 14.56 (9)° (mol­ecule A) and 5.7 (1)° (mol­ecule B). This small deviation from planarity still allows conjugation between the C14–C19 phenyl ring and the urea part of the mol­ecule.

The C8–C13 phenyl rings in both mol­ecules subtend dihedral angles of 71.14 (6)° (mol­ecule A) and 82.81 (7)° (mol­ecule B) with the core of the mol­ecule. This almost perpendicular conformation may be explained by the presence of the oxygen atom O2 in a vicinal position to the respective phenyl group.

An intra­molecular N3—H3⋯O1 hydrogen bond is present in both crystallographically independent mol­ecules (see Table 1[link]). Another intra­molecular inter­action is present between the ortho-phenyl hydrogen atom H19 and O2 in both mol­ecules. The inter­action C9A—H9A⋯O1A represents an inter­molecular hydrogen bond.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1is the centroid of the C14A–C19A phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3E⋯O1A 0.85 (3) 1.83 (3) 2.564 (2) 144 (3)
N3B—H3F⋯O1B 0.90 (3) 1.80 (3) 2.584 (2) 144 (2)
C19A—H19A⋯O2A 0.95 2.29 2.880 (2) 120
C19B—H19B⋯O2B 0.95 2.30 2.900 (3) 120
C9A—H9A⋯O1Ai 0.95 2.46 3.378 (3) 161
C23A—H23ACg1ii 1.00 2.51 3.498 (8) 172
C23B—H23BCg1ii 1.00 2.47 3.43 (2) 161
Symmetry codes: (i) [-x, -y, -z+1]; (ii) x+1, y+1, z.

The chloro­form solvent mol­ecule is disordered in the crystal structure with site occupation factors of 72.6:27.4%. C—H⋯π inter­actions are present between the chloro­form C—H bond and the centroid of the C14A–C19A phenyl ring (see Table 1[link]).

Synthesis and crystallization

(E)-N-phenyl-N-(phenyl­carbamo­yl)-3-[prop­yl(tri­methyl­sil­yl)amino])acryl­amide was obtained from the reaction of prop­yl(tri­methyl­sil­yl)[2–(tri­methyl­sil­yl)ethen­yl]amine and phenyl iso­cyanate. As shown in Fig. 4[link], a double insertion of Ph-NCO into the Si—C bond takes place (Herbig et al., 2018[Herbig, M., Böhme, U. & Kroke, E. (2018). Inorg. Chim. Acta, 473, 20-28.]). This reaction is possible due to the lability of bonds in the β-position of the enamine (Ozaki, 1972[Ozaki, S. (1972). Chem. Rev. 72, 457-496.]). Traces of water lead to the cleavage of one Si—C bond from the inter­mediate to yield the title compound.

[Figure 4]
Figure 4
Proposed reaction scheme for the formation of the title compound.

To a solution of 0.46 g (2 mmol) prop­yl(tri­methyl­sil­yl)[2-(tri­methyl­sil­yl)ethen­yl]amine in 10 ml n-pentane were added dropwise 0.35 g (3 mmol) phenyl­iso­cyanate at 0°C. After standing for six days at room temperature, volatiles were removed under reduced pressure. Storing the product mixture for five years at −28°C yielded crystals suitable for single-crystal X-ray diffraction. No qu­anti­tative yield can be given here, since only a few crystals at the wall of the Schlenk tube were available. NMR spectroscopy showed that the batch product is a mixture of many components. Further purification of the product mixture was not successful.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C22H29N3O2Si·CHCl3
Mr 910.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 153
a, b, c (Å) 11.8904 (4), 12.5405 (4), 17.9387 (6)
α, β, γ (°) 107.849 (3), 95.849 (3), 101.372 (3)
V3) 2458.07 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.45 × 0.40 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED; Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.817, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 54315, 11291, 8839
Rint 0.069
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.123, 1.17
No. of reflections 11291
No. of parameters 611
No. of restraints 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.42
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

(E)-N-Phenyl-N-(phenylcarbamoyl)-3-[propyl(trimethylsilyl)amino]acrylamide chloroform hemisolvate top
Crystal data top
2C22H29N3O2Si·CHCl3Z = 2
Mr = 910.51F(000) = 964
Triclinic, P1Dx = 1.230 Mg m3
a = 11.8904 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5405 (4) ÅCell parameters from 54315 reflections
c = 17.9387 (6) Åθ = 1.8–27.5°
α = 107.849 (3)°µ = 0.28 mm1
β = 95.849 (3)°T = 153 K
γ = 101.372 (3)°Prism, pale yellow
V = 2458.07 (15) Å30.45 × 0.40 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
11291 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus8839 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.069
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 1.8°
rotation method scansh = 1415
Absorption correction: integration
(X-RED; Stoe, 2009)
k = 1616
Tmin = 0.817, Tmax = 0.982l = 2323
54315 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0328P)2 + 2.1873P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.001
S = 1.17Δρmax = 0.42 e Å3
11291 reflectionsΔρmin = 0.42 e Å3
611 parametersExtinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
36 restraintsExtinction coefficient: 0.0038 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bonded to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for H(phenyl), 0.99 Å for CH2, 0.98 Å for CH3 and 1.0 Å for H(chloroform). Uiso(H) = xUeq(C), where x = 1.2 for H(phenyl), CH2, and H(chloroform) and 1.5 for CH3. Hydrogen atoms at nitrogen atoms N3A and N3B and at olefinic carbon atoms (C4A, C4B, C5A, and C5B) were localized from residual electron density maps and were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si1A0.53631 (4)0.23095 (5)0.59880 (3)0.01628 (12)
N1A0.39528 (14)0.25836 (14)0.58740 (10)0.0165 (3)
C1A0.3406 (3)0.5463 (2)0.58109 (17)0.0417 (6)
H1A0.4072770.5677740.5562400.063*
H1B0.3318230.6147740.6224880.063*
H1C0.2697350.5144570.5407190.063*
C2A0.36093 (19)0.45635 (17)0.61797 (13)0.0224 (4)
H2A0.2932210.4339380.6425210.027*
H2B0.4307030.4895570.6603160.027*
C3A0.37822 (17)0.35008 (17)0.55549 (12)0.0174 (4)
H3A0.3093050.3191350.5124530.021*
H3B0.4468770.3730690.5319500.021*
C4A0.30031 (17)0.19110 (17)0.59944 (11)0.0164 (4)
H4A0.3146 (18)0.1329 (18)0.6216 (12)0.011 (5)*
C5A0.18748 (16)0.19702 (17)0.58591 (12)0.0164 (4)
H5A0.1675 (19)0.2521 (19)0.5644 (13)0.017 (5)*
C6A0.10055 (16)0.11577 (16)0.60454 (12)0.0164 (4)
O1A0.12410 (12)0.03836 (12)0.62846 (9)0.0226 (3)
N2A0.01519 (13)0.12775 (14)0.59446 (10)0.0165 (3)
C7A0.11611 (16)0.04834 (16)0.59948 (11)0.0162 (4)
O2A0.21194 (12)0.06611 (13)0.58615 (9)0.0228 (3)
N3A0.09445 (14)0.04211 (14)0.61935 (11)0.0185 (3)
H3E0.023 (3)0.042 (2)0.6274 (17)0.042 (8)*
C8A0.03738 (16)0.23085 (17)0.58167 (12)0.0174 (4)
C9A0.09394 (17)0.22435 (19)0.50850 (13)0.0222 (4)
H9A0.1207080.1521110.4668890.027*
C10A0.1111 (2)0.3249 (2)0.49667 (15)0.0300 (5)
H10A0.1500590.3214550.4467580.036*
C11A0.0715 (2)0.4300 (2)0.55748 (16)0.0314 (5)
H11A0.0828370.4985460.5489860.038*
C12A0.0155 (2)0.43556 (19)0.63054 (15)0.0302 (5)
H12A0.0115500.5078360.6720860.036*
C13A0.00126 (18)0.33547 (18)0.64313 (13)0.0229 (4)
H13A0.0388330.3387110.6933960.027*
C14A0.17583 (17)0.13019 (17)0.63154 (11)0.0171 (4)
C15A0.13700 (18)0.22580 (18)0.63712 (13)0.0222 (4)
H15A0.0596690.2302920.6303210.027*
C16A0.2103 (2)0.31462 (19)0.65252 (14)0.0266 (5)
H16A0.1828040.3791020.6566460.032*
C17A0.32377 (19)0.30915 (19)0.66187 (14)0.0265 (5)
H17A0.3740550.3692450.6728950.032*
C18A0.36262 (19)0.21519 (19)0.65493 (13)0.0252 (5)
H18A0.4405760.2118110.6604710.030*
C19A0.28983 (17)0.12550 (18)0.64000 (12)0.0204 (4)
H19A0.3178620.0614070.6356030.024*
C20A0.64473 (18)0.37213 (19)0.64477 (14)0.0264 (5)
H20A0.6456500.4161660.6080670.040*
H20B0.7222120.3588240.6559510.040*
H20C0.6234010.4157280.6944790.040*
C21A0.5652 (2)0.1556 (2)0.49887 (13)0.0276 (5)
H21A0.5003900.0883260.4711750.041*
H21B0.6374770.1301510.5044580.041*
H21C0.5729660.2083720.4681610.041*
C22A0.53612 (18)0.14171 (18)0.66408 (13)0.0223 (4)
H22A0.5126160.1809350.7141150.033*
H22B0.6144910.1303520.6751950.033*
H22C0.4811360.0665930.6374820.033*
Si1B0.84710 (5)0.32972 (6)0.86670 (4)0.02534 (15)
N1B0.69589 (15)0.31525 (15)0.86978 (10)0.0202 (4)
C1B0.5352 (3)0.1396 (3)0.98522 (18)0.0513 (8)
H1D0.4623110.1087300.9466810.077*
H1E0.5175770.1608871.0392830.077*
H1F0.5802790.0807080.9779800.077*
C2B0.6055 (2)0.2454 (2)0.97240 (14)0.0305 (5)
H2C0.6797190.2758751.0107750.037*
H2D0.5615130.3062190.9821180.037*
C3B0.63127 (19)0.21576 (18)0.88774 (13)0.0239 (4)
H3C0.6769160.1563220.8791650.029*
H3D0.5566400.1819010.8499210.029*
C4B0.63751 (17)0.39084 (18)0.85520 (11)0.0182 (4)
H4B0.684 (2)0.456 (2)0.8446 (14)0.024 (6)*
C5B0.52209 (17)0.38597 (18)0.85359 (12)0.0193 (4)
H5B0.471 (2)0.327 (2)0.8650 (14)0.022 (6)*
C6B0.47745 (17)0.47721 (18)0.83768 (12)0.0191 (4)
O1B0.53795 (13)0.55653 (13)0.82116 (10)0.0271 (3)
N2B0.35896 (14)0.47275 (15)0.84306 (10)0.0199 (4)
C7B0.29421 (18)0.55001 (19)0.82724 (13)0.0232 (4)
O2B0.19006 (14)0.53001 (16)0.82805 (12)0.0378 (4)
N3B0.35794 (16)0.64190 (16)0.81410 (11)0.0243 (4)
H3F0.433 (2)0.639 (2)0.8122 (15)0.029 (7)*
C8B0.29571 (17)0.38468 (18)0.86997 (13)0.0204 (4)
C9B0.23157 (18)0.28060 (19)0.81549 (13)0.0258 (5)
H9B0.2215220.2691700.7601360.031*
C10B0.1821 (2)0.1931 (2)0.84293 (15)0.0323 (5)
H10B0.1374610.1213780.8061890.039*
C11B0.1977 (2)0.2100 (2)0.92381 (16)0.0351 (6)
H11B0.1649410.1494120.9422400.042*
C12B0.2608 (2)0.3151 (2)0.97764 (15)0.0349 (6)
H12B0.2708860.3269551.0330520.042*
C13B0.3092 (2)0.4027 (2)0.95046 (13)0.0274 (5)
H13B0.3517290.4753520.9872590.033*
C14B0.3177 (2)0.7284 (2)0.79240 (13)0.0266 (5)
C15B0.4012 (2)0.8081 (2)0.77542 (16)0.0367 (6)
H15B0.4801850.8032870.7808830.044*
C16B0.3704 (3)0.8943 (3)0.75063 (18)0.0486 (7)
H16B0.4279970.9477670.7385930.058*
C17B0.2558 (3)0.9025 (3)0.74344 (19)0.0558 (9)
H17B0.2337860.9602410.7252530.067*
C18B0.1740 (3)0.8260 (3)0.7629 (2)0.0550 (8)
H18B0.0957370.8331360.7593780.066*
C19B0.2029 (2)0.7385 (2)0.78768 (17)0.0409 (6)
H19B0.1454200.6866040.8011030.049*
C20B0.8620 (2)0.2053 (2)0.78358 (15)0.0356 (6)
H20D0.8203540.1334070.7893500.053*
H20E0.9445850.2057390.7843640.053*
H20F0.8288260.2109240.7330080.053*
C21B0.9185 (2)0.3294 (3)0.96314 (16)0.0446 (7)
H21D0.9049450.3931951.0062730.067*
H21E1.0023740.3389440.9636880.067*
H21F0.8858620.2560440.9705800.067*
C22B0.9033 (2)0.4663 (2)0.84800 (16)0.0373 (6)
H22D0.8614690.4634690.7971990.056*
H22E0.9866450.4762210.8459620.056*
H22F0.8914930.5312750.8909690.056*
C23A0.8351 (6)0.8733 (6)0.8529 (5)0.041 (3)0.726 (13)
H23A0.8033770.8486950.7948250.049*0.726 (13)
Cl1A0.8931 (3)0.7619 (2)0.86680 (15)0.0594 (7)0.726 (13)
Cl2A0.9415 (2)0.9989 (2)0.8746 (3)0.0912 (11)0.726 (13)
Cl3A0.7188 (3)0.8881 (3)0.9013 (2)0.0756 (9)0.726 (13)
C23B0.8402 (11)0.8686 (11)0.8482 (12)0.030 (7)0.274 (13)
H23B0.8311730.8562020.7898970.036*0.274 (13)
Cl1B0.9176 (14)0.7799 (13)0.8780 (9)0.138 (5)0.274 (13)
Cl2B0.9224 (13)1.0053 (8)0.9078 (10)0.154 (5)0.274 (13)
Cl3B0.7109 (8)0.8654 (13)0.8849 (8)0.123 (4)0.274 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si1A0.0115 (2)0.0170 (3)0.0201 (3)0.0027 (2)0.0024 (2)0.0063 (2)
N1A0.0131 (7)0.0162 (8)0.0216 (8)0.0025 (6)0.0036 (6)0.0087 (7)
C1A0.0563 (17)0.0250 (12)0.0428 (15)0.0159 (12)0.0049 (13)0.0104 (11)
C2A0.0225 (10)0.0176 (10)0.0257 (11)0.0038 (8)0.0019 (8)0.0068 (8)
C3A0.0163 (9)0.0190 (10)0.0195 (10)0.0036 (7)0.0046 (8)0.0100 (8)
C4A0.0161 (9)0.0153 (9)0.0176 (9)0.0033 (7)0.0026 (7)0.0056 (8)
C5A0.0148 (9)0.0160 (9)0.0195 (10)0.0027 (7)0.0032 (7)0.0082 (8)
C6A0.0132 (9)0.0157 (9)0.0186 (9)0.0023 (7)0.0016 (7)0.0044 (7)
O1A0.0139 (7)0.0202 (7)0.0379 (9)0.0036 (6)0.0030 (6)0.0168 (7)
N2A0.0113 (7)0.0148 (8)0.0251 (9)0.0023 (6)0.0032 (6)0.0098 (7)
C7A0.0142 (9)0.0155 (9)0.0179 (9)0.0017 (7)0.0029 (7)0.0054 (7)
O2A0.0130 (7)0.0254 (8)0.0340 (8)0.0053 (6)0.0045 (6)0.0152 (7)
N3A0.0111 (8)0.0170 (8)0.0291 (9)0.0019 (6)0.0037 (7)0.0110 (7)
C8A0.0130 (9)0.0160 (9)0.0274 (10)0.0053 (7)0.0081 (8)0.0106 (8)
C9A0.0178 (10)0.0253 (11)0.0274 (11)0.0071 (8)0.0064 (8)0.0122 (9)
C10A0.0296 (12)0.0371 (13)0.0365 (13)0.0172 (10)0.0105 (10)0.0235 (11)
C11A0.0334 (12)0.0248 (11)0.0511 (15)0.0158 (10)0.0216 (11)0.0241 (11)
C12A0.0302 (12)0.0193 (11)0.0428 (14)0.0068 (9)0.0150 (10)0.0097 (10)
C13A0.0183 (10)0.0208 (10)0.0305 (11)0.0046 (8)0.0075 (8)0.0090 (9)
C14A0.0164 (9)0.0174 (9)0.0161 (9)0.0008 (7)0.0028 (7)0.0056 (8)
C15A0.0188 (10)0.0212 (10)0.0278 (11)0.0051 (8)0.0051 (8)0.0093 (9)
C16A0.0290 (11)0.0195 (10)0.0336 (12)0.0051 (9)0.0072 (9)0.0121 (9)
C17A0.0263 (11)0.0205 (10)0.0309 (12)0.0030 (8)0.0083 (9)0.0102 (9)
C18A0.0197 (10)0.0265 (11)0.0281 (11)0.0008 (8)0.0074 (9)0.0092 (9)
C19A0.0176 (9)0.0193 (10)0.0241 (10)0.0035 (8)0.0048 (8)0.0073 (8)
C20A0.0175 (10)0.0249 (11)0.0327 (12)0.0018 (8)0.0010 (9)0.0092 (9)
C21A0.0248 (11)0.0355 (13)0.0260 (11)0.0139 (10)0.0080 (9)0.0098 (10)
C22A0.0214 (10)0.0213 (10)0.0243 (11)0.0063 (8)0.0001 (8)0.0083 (9)
Si1B0.0169 (3)0.0309 (3)0.0231 (3)0.0092 (2)0.0008 (2)0.0010 (3)
N1B0.0185 (8)0.0220 (9)0.0203 (9)0.0074 (7)0.0031 (7)0.0058 (7)
C1B0.074 (2)0.0396 (16)0.0452 (17)0.0053 (15)0.0231 (16)0.0218 (13)
C2B0.0401 (13)0.0290 (12)0.0249 (11)0.0083 (10)0.0080 (10)0.0118 (10)
C3B0.0278 (11)0.0218 (10)0.0241 (11)0.0078 (9)0.0049 (9)0.0090 (9)
C4B0.0189 (9)0.0197 (10)0.0146 (9)0.0052 (8)0.0024 (7)0.0036 (8)
C5B0.0160 (9)0.0213 (10)0.0206 (10)0.0033 (8)0.0035 (8)0.0075 (8)
C6B0.0148 (9)0.0238 (10)0.0188 (9)0.0055 (8)0.0042 (7)0.0066 (8)
O1B0.0196 (7)0.0297 (8)0.0401 (9)0.0077 (6)0.0108 (7)0.0203 (7)
N2B0.0152 (8)0.0230 (9)0.0241 (9)0.0059 (7)0.0060 (7)0.0098 (7)
C7B0.0183 (10)0.0303 (11)0.0230 (10)0.0105 (8)0.0045 (8)0.0085 (9)
O2B0.0182 (8)0.0448 (10)0.0601 (12)0.0131 (7)0.0119 (8)0.0260 (9)
N3B0.0199 (9)0.0298 (10)0.0305 (10)0.0128 (8)0.0085 (8)0.0150 (8)
C8B0.0142 (9)0.0236 (10)0.0251 (10)0.0054 (8)0.0067 (8)0.0092 (8)
C9B0.0201 (10)0.0291 (12)0.0243 (11)0.0051 (9)0.0017 (8)0.0047 (9)
C10B0.0238 (11)0.0232 (11)0.0419 (14)0.0014 (9)0.0011 (10)0.0055 (10)
C11B0.0311 (13)0.0322 (13)0.0451 (15)0.0027 (10)0.0123 (11)0.0186 (11)
C12B0.0376 (13)0.0410 (14)0.0276 (12)0.0034 (11)0.0111 (10)0.0157 (11)
C13B0.0299 (12)0.0269 (11)0.0223 (11)0.0020 (9)0.0073 (9)0.0060 (9)
C14B0.0331 (12)0.0293 (12)0.0206 (10)0.0166 (10)0.0038 (9)0.0072 (9)
C15B0.0431 (14)0.0407 (14)0.0422 (14)0.0221 (12)0.0183 (12)0.0252 (12)
C16B0.071 (2)0.0455 (16)0.0507 (17)0.0310 (15)0.0246 (15)0.0307 (14)
C17B0.080 (2)0.0543 (19)0.0565 (19)0.0459 (18)0.0158 (17)0.0323 (16)
C18B0.0489 (18)0.0583 (19)0.069 (2)0.0346 (16)0.0026 (16)0.0257 (17)
C19B0.0315 (13)0.0446 (15)0.0537 (17)0.0200 (12)0.0046 (12)0.0204 (13)
C20B0.0276 (12)0.0426 (14)0.0321 (13)0.0156 (11)0.0061 (10)0.0014 (11)
C21B0.0331 (14)0.0607 (18)0.0323 (14)0.0209 (13)0.0098 (11)0.0036 (13)
C22B0.0191 (11)0.0428 (15)0.0422 (15)0.0002 (10)0.0059 (10)0.0075 (12)
C23A0.050 (5)0.043 (5)0.038 (4)0.007 (4)0.008 (4)0.028 (4)
Cl1A0.0840 (13)0.0599 (11)0.0711 (12)0.0407 (9)0.0421 (9)0.0503 (8)
Cl2A0.0638 (11)0.0482 (10)0.156 (3)0.0127 (8)0.0034 (13)0.0478 (13)
Cl3A0.0710 (16)0.1108 (16)0.0802 (18)0.0586 (14)0.0431 (13)0.0494 (13)
C23B0.010 (7)0.019 (9)0.046 (12)0.001 (6)0.006 (7)0.010 (7)
Cl1B0.115 (7)0.169 (9)0.192 (10)0.101 (7)0.059 (6)0.097 (7)
Cl2B0.160 (8)0.101 (5)0.133 (8)0.081 (5)0.054 (6)0.039 (5)
Cl3B0.046 (3)0.248 (10)0.062 (4)0.002 (4)0.015 (2)0.056 (5)
Geometric parameters (Å, º) top
Si1A—N1A1.7811 (17)N1B—C4B1.350 (3)
Si1A—C22A1.851 (2)N1B—C3B1.473 (3)
Si1A—C21A1.855 (2)C1B—C2B1.518 (3)
Si1A—C20A1.861 (2)C1B—H1D0.9800
N1A—C4A1.349 (2)C1B—H1E0.9800
N1A—C3A1.471 (2)C1B—H1F0.9800
C1A—C2A1.517 (3)C2B—C3B1.527 (3)
C1A—H1A0.9800C2B—H2C0.9900
C1A—H1B0.9800C2B—H2D0.9900
C1A—H1C0.9800C3B—H3C0.9900
C2A—C3A1.521 (3)C3B—H3D0.9900
C2A—H2A0.9900C4B—C5B1.359 (3)
C2A—H2B0.9900C4B—H4B0.97 (2)
C3A—H3A0.9900C5B—C6B1.443 (3)
C3A—H3B0.9900C5B—H5B0.95 (2)
C4A—C5A1.360 (3)C6B—O1B1.240 (2)
C4A—H4A0.97 (2)C6B—N2B1.413 (2)
C5A—C6A1.443 (3)N2B—C7B1.425 (3)
C5A—H5A0.94 (2)N2B—C8B1.446 (3)
C6A—O1A1.242 (2)C7B—O2B1.217 (3)
C6A—N2A1.413 (2)C7B—N3B1.348 (3)
N2A—C7A1.430 (2)N3B—C14B1.409 (3)
N2A—C8A1.448 (2)N3B—H3F0.90 (3)
C7A—O2A1.218 (2)C8B—C13B1.378 (3)
C7A—N3A1.351 (2)C8B—C9B1.383 (3)
N3A—C14A1.405 (2)C9B—C10B1.388 (3)
N3A—H3E0.85 (3)C9B—H9B0.9500
C8A—C9A1.384 (3)C10B—C11B1.388 (4)
C8A—C13A1.386 (3)C10B—H10B0.9500
C9A—C10A1.390 (3)C11B—C12B1.383 (4)
C9A—H9A0.9500C11B—H11B0.9500
C10A—C11A1.385 (4)C12B—C13B1.383 (3)
C10A—H10A0.9500C12B—H12B0.9500
C11A—C12A1.383 (4)C13B—H13B0.9500
C11A—H11A0.9500C14B—C15B1.390 (3)
C12A—C13A1.389 (3)C14B—C19B1.391 (3)
C12A—H12A0.9500C15B—C16B1.385 (3)
C13A—H13A0.9500C15B—H15B0.9500
C14A—C19A1.390 (3)C16B—C17B1.382 (4)
C14A—C15A1.394 (3)C16B—H16B0.9500
C15A—C16A1.390 (3)C17B—C18B1.377 (5)
C15A—H15A0.9500C17B—H17B0.9500
C16A—C17A1.389 (3)C18B—C19B1.391 (4)
C16A—H16A0.9500C18B—H18B0.9500
C17A—C18A1.382 (3)C19B—H19B0.9500
C17A—H17A0.9500C20B—H20D0.9800
C18A—C19A1.391 (3)C20B—H20E0.9800
C18A—H18A0.9500C20B—H20F0.9800
C19A—H19A0.9500C21B—H21D0.9800
C20A—H20A0.9800C21B—H21E0.9800
C20A—H20B0.9800C21B—H21F0.9800
C20A—H20C0.9800C22B—H22D0.9800
C21A—H21A0.9800C22B—H22E0.9800
C21A—H21B0.9800C22B—H22F0.9800
C21A—H21C0.9800C23A—Cl3A1.717 (7)
C22A—H22A0.9800C23A—Cl2A1.724 (6)
C22A—H22B0.9800C23A—Cl1A1.745 (6)
C22A—H22C0.9800C23A—H23A1.0000
Si1B—N1B1.7794 (18)C23B—Cl3B1.731 (13)
Si1B—C21B1.849 (3)C23B—Cl2B1.743 (13)
Si1B—C20B1.851 (2)C23B—Cl1B1.744 (13)
Si1B—C22B1.854 (3)C23B—H23B1.0000
N1A—Si1A—C22A107.35 (9)C4B—N1B—C3B118.60 (17)
N1A—Si1A—C21A108.35 (9)C4B—N1B—Si1B122.71 (15)
C22A—Si1A—C21A111.95 (10)C3B—N1B—Si1B118.69 (14)
N1A—Si1A—C20A108.14 (9)C2B—C1B—H1D109.5
C22A—Si1A—C20A111.09 (10)C2B—C1B—H1E109.5
C21A—Si1A—C20A109.82 (11)H1D—C1B—H1E109.5
C4A—N1A—C3A117.89 (16)C2B—C1B—H1F109.5
C4A—N1A—Si1A122.62 (13)H1D—C1B—H1F109.5
C3A—N1A—Si1A119.17 (12)H1E—C1B—H1F109.5
C2A—C1A—H1A109.5C1B—C2B—C3B110.7 (2)
C2A—C1A—H1B109.5C1B—C2B—H2C109.5
H1A—C1A—H1B109.5C3B—C2B—H2C109.5
C2A—C1A—H1C109.5C1B—C2B—H2D109.5
H1A—C1A—H1C109.5C3B—C2B—H2D109.5
H1B—C1A—H1C109.5H2C—C2B—H2D108.1
C1A—C2A—C3A110.74 (19)N1B—C3B—C2B113.99 (18)
C1A—C2A—H2A109.5N1B—C3B—H3C108.8
C3A—C2A—H2A109.5C2B—C3B—H3C108.8
C1A—C2A—H2B109.5N1B—C3B—H3D108.8
C3A—C2A—H2B109.5C2B—C3B—H3D108.8
H2A—C2A—H2B108.1H3C—C3B—H3D107.6
N1A—C3A—C2A113.24 (16)N1B—C4B—C5B127.4 (2)
N1A—C3A—H3A108.9N1B—C4B—H4B115.3 (14)
C2A—C3A—H3A108.9C5B—C4B—H4B117.3 (14)
N1A—C3A—H3B108.9C4B—C5B—C6B118.43 (19)
C2A—C3A—H3B108.9C4B—C5B—H5B122.5 (14)
H3A—C3A—H3B107.7C6B—C5B—H5B119.0 (14)
N1A—C4A—C5A127.93 (18)O1B—C6B—N2B120.82 (18)
N1A—C4A—H4A115.9 (13)O1B—C6B—C5B123.17 (18)
C5A—C4A—H4A116.2 (13)N2B—C6B—C5B116.00 (17)
C4A—C5A—C6A117.71 (18)C6B—N2B—C7B126.47 (17)
C4A—C5A—H5A120.5 (14)C6B—N2B—C8B118.35 (16)
C6A—C5A—H5A121.8 (14)C7B—N2B—C8B115.13 (16)
O1A—C6A—N2A120.42 (17)O2B—C7B—N3B126.1 (2)
O1A—C6A—C5A122.79 (17)O2B—C7B—N2B119.1 (2)
N2A—C6A—C5A116.79 (17)N3B—C7B—N2B114.74 (18)
C6A—N2A—C7A125.79 (16)C7B—N3B—C14B127.68 (19)
C6A—N2A—C8A119.34 (15)C7B—N3B—H3F113.3 (16)
C7A—N2A—C8A114.80 (15)C14B—N3B—H3F118.3 (16)
O2A—C7A—N3A125.61 (18)C13B—C8B—C9B120.9 (2)
O2A—C7A—N2A119.39 (17)C13B—C8B—N2B118.55 (19)
N3A—C7A—N2A114.99 (16)C9B—C8B—N2B120.27 (19)
C7A—N3A—C14A127.20 (17)C8B—C9B—C10B119.0 (2)
C7A—N3A—H3E114.3 (19)C8B—C9B—H9B120.5
C14A—N3A—H3E118.4 (19)C10B—C9B—H9B120.5
C9A—C8A—C13A121.06 (19)C11B—C10B—C9B120.3 (2)
C9A—C8A—N2A120.05 (18)C11B—C10B—H10B119.9
C13A—C8A—N2A118.87 (18)C9B—C10B—H10B119.9
C8A—C9A—C10A119.1 (2)C12B—C11B—C10B120.1 (2)
C8A—C9A—H9A120.4C12B—C11B—H11B120.0
C10A—C9A—H9A120.4C10B—C11B—H11B120.0
C11A—C10A—C9A120.2 (2)C11B—C12B—C13B119.7 (2)
C11A—C10A—H10A119.9C11B—C12B—H12B120.1
C9A—C10A—H10A119.9C13B—C12B—H12B120.1
C12A—C11A—C10A120.3 (2)C8B—C13B—C12B120.0 (2)
C12A—C11A—H11A119.9C8B—C13B—H13B120.0
C10A—C11A—H11A119.9C12B—C13B—H13B120.0
C11A—C12A—C13A120.0 (2)C15B—C14B—C19B119.6 (2)
C11A—C12A—H12A120.0C15B—C14B—N3B115.8 (2)
C13A—C12A—H12A120.0C19B—C14B—N3B124.6 (2)
C8A—C13A—C12A119.4 (2)C16B—C15B—C14B120.7 (3)
C8A—C13A—H13A120.3C16B—C15B—H15B119.7
C12A—C13A—H13A120.3C14B—C15B—H15B119.7
C19A—C14A—C15A119.24 (18)C17B—C16B—C15B119.9 (3)
C19A—C14A—N3A123.88 (18)C17B—C16B—H16B120.1
C15A—C14A—N3A116.86 (17)C15B—C16B—H16B120.1
C16A—C15A—C14A120.64 (19)C18B—C17B—C16B119.3 (3)
C16A—C15A—H15A119.7C18B—C17B—H17B120.4
C14A—C15A—H15A119.7C16B—C17B—H17B120.4
C17A—C16A—C15A120.0 (2)C17B—C18B—C19B121.7 (3)
C17A—C16A—H16A120.0C17B—C18B—H18B119.1
C15A—C16A—H16A120.0C19B—C18B—H18B119.1
C18A—C17A—C16A119.18 (19)C18B—C19B—C14B118.7 (3)
C18A—C17A—H17A120.4C18B—C19B—H19B120.7
C16A—C17A—H17A120.4C14B—C19B—H19B120.7
C17A—C18A—C19A121.3 (2)Si1B—C20B—H20D109.5
C17A—C18A—H18A119.4Si1B—C20B—H20E109.5
C19A—C18A—H18A119.4H20D—C20B—H20E109.5
C14A—C19A—C18A119.61 (19)Si1B—C20B—H20F109.5
C14A—C19A—H19A120.2H20D—C20B—H20F109.5
C18A—C19A—H19A120.2H20E—C20B—H20F109.5
Si1A—C20A—H20A109.5Si1B—C21B—H21D109.5
Si1A—C20A—H20B109.5Si1B—C21B—H21E109.5
H20A—C20A—H20B109.5H21D—C21B—H21E109.5
Si1A—C20A—H20C109.5Si1B—C21B—H21F109.5
H20A—C20A—H20C109.5H21D—C21B—H21F109.5
H20B—C20A—H20C109.5H21E—C21B—H21F109.5
Si1A—C21A—H21A109.5Si1B—C22B—H22D109.5
Si1A—C21A—H21B109.5Si1B—C22B—H22E109.5
H21A—C21A—H21B109.5H22D—C22B—H22E109.5
Si1A—C21A—H21C109.5Si1B—C22B—H22F109.5
H21A—C21A—H21C109.5H22D—C22B—H22F109.5
H21B—C21A—H21C109.5H22E—C22B—H22F109.5
Si1A—C22A—H22A109.5Cl3A—C23A—Cl2A114.7 (4)
Si1A—C22A—H22B109.5Cl3A—C23A—Cl1A111.0 (3)
H22A—C22A—H22B109.5Cl2A—C23A—Cl1A111.6 (4)
Si1A—C22A—H22C109.5Cl3A—C23A—H23A106.3
H22A—C22A—H22C109.5Cl2A—C23A—H23A106.3
H22B—C22A—H22C109.5Cl1A—C23A—H23A106.3
N1B—Si1B—C21B107.54 (11)Cl3B—C23B—Cl2B100.9 (10)
N1B—Si1B—C20B107.58 (10)Cl3B—C23B—Cl1B111.2 (11)
C21B—Si1B—C20B111.25 (13)Cl2B—C23B—Cl1B101.4 (10)
N1B—Si1B—C22B107.87 (10)Cl3B—C23B—H23B113.9
C21B—Si1B—C22B112.33 (13)Cl2B—C23B—H23B113.9
C20B—Si1B—C22B110.07 (13)Cl1B—C23B—H23B113.9
C22A—Si1A—N1A—C4A21.84 (18)C21B—Si1B—N1B—C4B125.21 (18)
C21A—Si1A—N1A—C4A99.24 (17)C20B—Si1B—N1B—C4B114.87 (18)
C20A—Si1A—N1A—C4A141.78 (16)C22B—Si1B—N1B—C4B3.8 (2)
C22A—Si1A—N1A—C3A164.85 (14)C21B—Si1B—N1B—C3B55.77 (19)
C21A—Si1A—N1A—C3A74.06 (17)C20B—Si1B—N1B—C3B64.16 (18)
C20A—Si1A—N1A—C3A44.92 (17)C22B—Si1B—N1B—C3B177.14 (16)
C4A—N1A—C3A—C2A78.7 (2)C4B—N1B—C3B—C2B77.2 (2)
Si1A—N1A—C3A—C2A107.67 (17)Si1B—N1B—C3B—C2B103.69 (19)
C1A—C2A—C3A—N1A178.50 (18)C1B—C2B—C3B—N1B178.0 (2)
C3A—N1A—C4A—C5A0.2 (3)C3B—N1B—C4B—C5B1.2 (3)
Si1A—N1A—C4A—C5A173.63 (17)Si1B—N1B—C4B—C5B177.81 (17)
N1A—C4A—C5A—C6A179.24 (19)N1B—C4B—C5B—C6B179.22 (19)
C4A—C5A—C6A—O1A3.5 (3)C4B—C5B—C6B—O1B4.0 (3)
C4A—C5A—C6A—N2A176.38 (18)C4B—C5B—C6B—N2B175.07 (18)
O1A—C6A—N2A—C7A8.7 (3)O1B—C6B—N2B—C7B3.4 (3)
C5A—C6A—N2A—C7A171.41 (18)C5B—C6B—N2B—C7B177.51 (19)
O1A—C6A—N2A—C8A168.05 (18)O1B—C6B—N2B—C8B174.14 (19)
C5A—C6A—N2A—C8A11.9 (3)C5B—C6B—N2B—C8B5.0 (3)
C6A—N2A—C7A—O2A176.81 (19)C6B—N2B—C7B—O2B174.0 (2)
C8A—N2A—C7A—O2A6.3 (3)C8B—N2B—C7B—O2B8.4 (3)
C6A—N2A—C7A—N3A3.2 (3)C6B—N2B—C7B—N3B7.3 (3)
C8A—N2A—C7A—N3A173.61 (17)C8B—N2B—C7B—N3B170.29 (18)
O2A—C7A—N3A—C14A2.6 (3)O2B—C7B—N3B—C14B5.6 (4)
N2A—C7A—N3A—C14A177.31 (18)N2B—C7B—N3B—C14B175.8 (2)
C6A—N2A—C8A—C9A111.0 (2)C6B—N2B—C8B—C13B80.3 (2)
C7A—N2A—C8A—C9A72.0 (2)C7B—N2B—C8B—C13B97.5 (2)
C6A—N2A—C8A—C13A67.6 (2)C6B—N2B—C8B—C9B94.0 (2)
C7A—N2A—C8A—C13A109.5 (2)C7B—N2B—C8B—C9B88.2 (2)
C13A—C8A—C9A—C10A0.6 (3)C13B—C8B—C9B—C10B1.1 (3)
N2A—C8A—C9A—C10A177.96 (18)N2B—C8B—C9B—C10B173.11 (19)
C8A—C9A—C10A—C11A0.2 (3)C8B—C9B—C10B—C11B0.4 (3)
C9A—C10A—C11A—C12A0.5 (3)C9B—C10B—C11B—C12B1.2 (4)
C10A—C11A—C12A—C13A0.0 (3)C10B—C11B—C12B—C13B0.6 (4)
C9A—C8A—C13A—C12A1.1 (3)C9B—C8B—C13B—C12B1.7 (3)
N2A—C8A—C13A—C12A177.48 (18)N2B—C8B—C13B—C12B172.6 (2)
C11A—C12A—C13A—C8A0.8 (3)C11B—C12B—C13B—C8B0.9 (4)
C7A—N3A—C14A—C19A13.1 (3)C7B—N3B—C14B—C15B174.3 (2)
C7A—N3A—C14A—C15A168.4 (2)C7B—N3B—C14B—C19B6.1 (4)
C19A—C14A—C15A—C16A1.3 (3)C19B—C14B—C15B—C16B2.7 (4)
N3A—C14A—C15A—C16A177.3 (2)N3B—C14B—C15B—C16B177.6 (2)
C14A—C15A—C16A—C17A0.5 (3)C14B—C15B—C16B—C17B0.7 (4)
C15A—C16A—C17A—C18A0.6 (3)C15B—C16B—C17B—C18B1.5 (5)
C16A—C17A—C18A—C19A1.0 (3)C16B—C17B—C18B—C19B1.8 (5)
C15A—C14A—C19A—C18A0.9 (3)C17B—C18B—C19B—C14B0.2 (5)
N3A—C14A—C19A—C18A177.53 (19)C15B—C14B—C19B—C18B2.5 (4)
C17A—C18A—C19A—C14A0.2 (3)N3B—C14B—C19B—C18B177.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1is the centroid of the C14A–C19A phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3A—H3E···O1A0.85 (3)1.83 (3)2.564 (2)144 (3)
N3B—H3F···O1B0.90 (3)1.80 (3)2.584 (2)144 (2)
C19A—H19A···O2A0.952.292.880 (2)120
C19B—H19B···O2B0.952.302.900 (3)120
C9A—H9A···O1Ai0.952.463.378 (3)161
C23A—H23A···Cg1ii1.002.513.498 (8)172
C23B—H23B···Cg1ii1.002.473.43 (2)161
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2018). Inorg. Chim. Acta, 473, 20–28.  CSD CrossRef CAS Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2019a). Z. Anorg. Allg. Chem. 645, 377–387.  CSD CrossRef CAS Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2022). Z. Naturforsch. Teil B , 77, 55–67.  CSD CrossRef CAS Google Scholar
First citationHerbig, M., Gevorgyan, L., Pflug, M., Wagler, J., Schwarzer, S. & Kroke, E. (2019b). ChemistryOpen 9, 894–902.  CSD CrossRef PubMed Google Scholar
First citationHerbig, M., Scholz, H., Böhme, U., Günther, B., Gevorgyan, L., Gerlach, D., Wagler, J., Schwarzer, S. & Kroke, E. (2021). Main Group Met. Chem. 44, 51–72.  CSD CrossRef CAS Google Scholar
First citationKraushaar, K., Herbig, M., Schmidt, D., Wagler, J., Böhme, U. & Kroke, E. (2017). Z. Naturforsch. Teil B, 72, 909–921.  CSD CrossRef CAS Google Scholar
First citationKraushaar, K., Schmidt, D., Schwarzer, A. & Kroke, E. (2014). Advances in Inorganic Chemistry, vol. 66, edited by M. Aresta & R. van Eldik, ch. 4 Reactions of CO2 and CO2 analogs (CXY with X, Y = O, S, NR) with reagents Containing Si—H and Si—N units, pp. 117–162. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-420221-4.00004-4.  Google Scholar
First citationKraushaar, K., Wiltzsch, C., Wagler, J., Böhme, U., Schwarzer, A., Roewer, G. & Kroke, E. (2012). Organometallics, 31, 4779–4785.  CSD CrossRef CAS Google Scholar
First citationOzaki, S. (1972). Chem. Rev. 72, 457–496.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSutor, D. J. (1958). Acta Cryst. 11, 453–458.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhong, S., Fan, M., Liu, J. & Liu, B. (2011). Acta Cryst. E67, o3230.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146