organic compounds
2-Bromo-6-hydrazinylpyridine
aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: MossineV@missouri.edu
The title compound, C5H6BrN3, crystallizes in the orthorhombic P212121 with two molecules with different conformations in the In the crystal, N—H⋯N and bifurcated N—H⋯(N,N) hydrogen bonds link the molecules into [100] chains; a short Br⋯Br halogen bond and π–π stacking interactions are also observed.
Keywords: crystal structure; arylhydrazine; hydrogen bonding; halogen bond; π-stacking.
CCDC reference: 2243041
Structure description
Since Emil Fischer's discovery of phenylhydrazine nearly 150 years ago (Kauffman & Ciula, 1977), there has been a persistent interest in arylhydrazines because of their numerous applications in organic chemistry, for instance, as synthetic precursors to a number of antimicrobial (Rollas & Küçükgüzel, 2007), thrombopoietic (Kuter, 2010), anti-inflammatory (Fraga & Barreiro, 2006) or vasodilatory (Reece, 1981) drugs, but also due to their presence in wild and cultivated mushrooms, with a history of neurotoxic and carcinogenic effects (Toth, 2000). In the course of our search for inhibitors of bacterial virulence factors (Mossine et al., 2016, 2020), we prepared the title compound, which was considered a potential precursor for pharmacologically active, metal-binding Here we report its crystal structure.
The title compound, (I), crystallizes in the orthorhombic P212121, with eight molecules per The contains two conformationally non-equivalent molecules of 6-bromopyridin-2-ylhydrazine, (I1) and (I2), as shown in Fig. 1. All bond lengths and angles are within their expected ranges. The molecules are essentially flat, with the greatest deviations from the average molecular planes, among the non-hydrogen atoms, found for N2 at 0.081 (2) Å and N5 at 0.073 (2) Å in (I1) and (I2), respectively. The spatial arrangements of the hydrazino groups, as defined by the torsion angles H2A—N2—N3—H3A = 137 (3)° and H5—N5—N6—H6A = 121 (3)°, correspond to the low-energy conformation that has been calculated for acyl (Centore et al., 2010). There is a notable difference between the conformations of (I1) and (I2), however. While in (I1) the hydrazine nitrogen atom N3 is in the syn-disposition with respect to the pyridine nitrogen atom N1, with N1—C5—N2—N3 = 5.4 (3)°, in (I2) the hydrazine group is in the anti-conformation, with the corresponding torsion angle N4—C10—N5—N6 = 171.0 (2)°. For comparison, in 3-chloropyrid-2-ylhydrazine (Wang et al., 2010), the hydrazine group is in the syn-conformation, with the respective torsion angle being −9.6°. The only other structural analogue of (I) for which X-ray diffraction data are available is 2-hydrazinopyridine; however, no of this molecule as a free base is known. In crystalline palladium(II) (Drożdżewski et al., 2006) and copper(I) (Healy et al. 1988) complexes of 2-hydrazinopyridine, both the terminal hydrazine and pyridine nitrogen atoms are co-ordinated to the same metal ion, thus stabilizing the syn-conformation of this ligand. In the 2-hydrazinopyridine dihydrochloride salt (Zora et al., 2006), both the terminal hydrazine and pyridine nitrogen atoms are protonated and thus forced into the anti-conformation.
The conventional hydrogen bonding in the I) is extensive and involves all nitrogen atoms of both hydrazine groups and pyridine rings (Table 1) and is shown in Fig. 2. The hydrogen-bonding pattern is represented by a network of infinite chains, which propagate in the [100] direction. This network features R22(7) rings, which are formed by almost coplanar molecules (I1) and (I2), as shown in Fig. 1, and which represent the shortest intermolecular heteroatom contacts in the crystal. A centrepiece of the network is N3, which participates in five short heteroatom contacts, once as an acceptor and four times as a donor of hydrogen bonds [two bifurcated N—H⋯(N,N) links]. Over half the hydrogen-bonding contacts are multicentered and include two bifurcated hydrogen bonds for donor atoms H3A and H3B, and N6 acts as a double acceptor (Fig. 2; Table 1).
of (In addition, there is one short intermolecular contact, Br1⋯Br2 [3.6328 (7) Å], which satisfies the distance and directionality conditions (Table 2) for a halogen bond (Desiraju et al., 2013), with Br2 serving as a donor and Br1 as an acceptor of the bond, as shown in Fig. 3. Intermolecular non-polar interactions, which may contribute to the stability of molecular packing in the crystal, are represented by hydrogen–carbon contacts between the aromatic rings; the shortest of these contacts, C6—H6A⋯C9 [H6A⋯C9i = 2.72 (3) Å, symmetry code: (i) −1 + x, y, z] is about 0.18 Å shorter than the sum of the van der Waals radii. The aromatic rings of both (I1) and (I2) are involved in a well-defined system of staggered π–π stacking interactions (Table 3). These various interactions can be seen in the Hirshfeld surface of the title compound (Fig. 3).
|
|
Synthesis and crystallization
The title compound was prepared following an established synthetic route (Zoppellaro et al., 2004). Specifically, 8.0 g (34 mmoles) of 2,6-dibromopyridine, 15 ml (310 mmoles) of hydrazine hydrate, and 2 ml of 1-propanol were heated at 80°C for 12 h. The reaction mixture slowly separated into two layers, with the lower layer taking about 5 ml, then the mixture homogenized back. After cooling overnight at 4°C, the solution deposited pale-yellow needles of the title compound suitable for further X-ray diffraction studies.
Refinement
Crystal data, data collection and structure . Enantiopurity of the crystal chosen for data collection was established on the basis of the Flack parameter determined [0.012 (5) for 999 quotients (Parsons et al., 2013)].
details are summarized in Table 4
|
Structural data
CCDC reference: 2243041
https://doi.org/10.1107/S2414314623001694/hb4424sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623001694/hb4424Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623001694/hb4424Isup3.cml
Data collection: APEX3 (Bruker, 2021); cell
APEX3 and SAINT (Bruker, 2021); data reduction: APEX3 and SAINT (Bruker, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Crystal Explorer 17.5 (Mackenzie et al., 2017), Mercury (Macrae et al., 2020)'; software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).C5H6BrN3 | Dx = 1.961 Mg m−3 |
Mr = 188.04 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, P212121 | Cell parameters from 9416 reflections |
a = 3.9606 (3) Å | θ = 3.7–73.7° |
b = 13.9649 (9) Å | µ = 8.02 mm−1 |
c = 23.0332 (14) Å | T = 150 K |
V = 1273.95 (15) Å3 | Needle, colourless |
Z = 8 | 0.24 × 0.04 × 0.03 mm |
F(000) = 736 |
Bruker APEXII area detector diffractometer | 2564 independent reflections |
Radiation source: Incoatec IMuS microfocus Cu tube | 2546 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.027 |
φ and ω scans | θmax = 74.3°, θmin = 3.7° |
Absorption correction: multi-scan (AXScale; Bruker, 2021) | h = −4→4 |
Tmin = 0.521, Tmax = 0.754 | k = −17→17 |
25559 measured reflections | l = −28→28 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0151P)2 + 0.5435P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.033 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.27 e Å−3 |
2564 reflections | Δρmin = −0.36 e Å−3 |
181 parameters | Absolute structure: Flack x determined using 999 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.012 (5) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrazine H atoms were treated by a mixture of independent and constrained refinement while the methine hydrogen atoms were initially placed in calculated positions. All hydrogen-atom coordinates were allowed to refine freely, while displacement parameters were constrained to ride on the carrier atoms [Uiso(methine H) = 1.2Ueq]. |
x | y | z | Uiso*/Ueq | ||
Br2 | 0.82558 (6) | −0.11957 (2) | 0.41033 (2) | 0.02165 (7) | |
N5 | 0.2752 (6) | 0.10488 (14) | 0.55037 (8) | 0.0196 (4) | |
N4 | 0.5314 (5) | −0.00629 (12) | 0.49331 (8) | 0.0161 (4) | |
Br1 | −0.03786 (6) | 0.36607 (2) | 0.24286 (2) | 0.02079 (7) | |
N2 | 0.2746 (6) | 0.13007 (15) | 0.39929 (8) | 0.0252 (5) | |
N1 | 0.1329 (5) | 0.22862 (13) | 0.32263 (8) | 0.0150 (4) | |
N6 | 0.1173 (5) | 0.14093 (14) | 0.60068 (8) | 0.0185 (4) | |
C3 | 0.4274 (6) | 0.10092 (16) | 0.24479 (10) | 0.0209 (5) | |
H3 | 0.526775 | 0.057251 | 0.218189 | 0.025* | |
C8 | 0.6904 (6) | −0.12096 (17) | 0.58795 (10) | 0.0198 (4) | |
H8 | 0.742112 | −0.160750 | 0.620199 | 0.024* | |
N3 | 0.1114 (6) | 0.19152 (15) | 0.43885 (9) | 0.0198 (4) | |
C9 | 0.5193 (6) | −0.03596 (15) | 0.59669 (10) | 0.0171 (4) | |
H9 | 0.455892 | −0.016115 | 0.634609 | 0.021* | |
C5 | 0.2734 (6) | 0.14643 (15) | 0.34125 (9) | 0.0171 (4) | |
C1 | 0.1477 (6) | 0.24529 (14) | 0.26623 (10) | 0.0153 (4) | |
C4 | 0.4229 (6) | 0.08000 (16) | 0.30289 (10) | 0.0194 (5) | |
H4 | 0.518306 | 0.022107 | 0.317038 | 0.023* | |
C2 | 0.2855 (7) | 0.18666 (17) | 0.22446 (10) | 0.0198 (5) | |
H2 | 0.284680 | 0.203175 | 0.184451 | 0.024* | |
C6 | 0.6988 (6) | −0.08743 (15) | 0.48825 (10) | 0.0160 (4) | |
C10 | 0.4416 (6) | 0.02050 (15) | 0.54774 (9) | 0.0154 (4) | |
C7 | 0.7876 (6) | −0.14892 (16) | 0.53255 (10) | 0.0194 (5) | |
H7 | 0.907529 | −0.206701 | 0.525612 | 0.023* | |
H5 | 0.217 (8) | 0.134 (2) | 0.5193 (13) | 0.023* | |
H6A | −0.002 (8) | 0.099 (2) | 0.6194 (14) | 0.029* | |
H3A | 0.189 (9) | 0.247 (2) | 0.4323 (14) | 0.029* | |
H6B | 0.249 (9) | 0.164 (2) | 0.6242 (14) | 0.029* | |
H2A | 0.340 (8) | 0.080 (2) | 0.4114 (13) | 0.023* | |
H3B | −0.094 (10) | 0.192 (2) | 0.4303 (14) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.02599 (13) | 0.02054 (11) | 0.01841 (11) | 0.00436 (10) | 0.00240 (9) | −0.00398 (9) |
N5 | 0.0309 (11) | 0.0166 (9) | 0.0112 (8) | 0.0065 (8) | −0.0005 (8) | −0.0007 (7) |
N4 | 0.0197 (10) | 0.0138 (8) | 0.0149 (8) | −0.0018 (8) | −0.0008 (8) | −0.0004 (6) |
Br1 | 0.02350 (12) | 0.02039 (11) | 0.01847 (11) | 0.00379 (9) | 0.00074 (9) | 0.00649 (8) |
N2 | 0.0451 (14) | 0.0163 (9) | 0.0143 (9) | 0.0125 (10) | 0.0005 (9) | 0.0026 (8) |
N1 | 0.0174 (9) | 0.0136 (8) | 0.0138 (8) | −0.0005 (7) | −0.0022 (8) | −0.0009 (7) |
N6 | 0.0234 (10) | 0.0186 (9) | 0.0136 (8) | 0.0000 (8) | 0.0019 (8) | −0.0032 (7) |
C3 | 0.0215 (11) | 0.0202 (10) | 0.0209 (11) | 0.0004 (9) | 0.0017 (10) | −0.0061 (8) |
C8 | 0.0198 (10) | 0.0191 (10) | 0.0205 (10) | −0.0022 (10) | −0.0067 (9) | 0.0048 (9) |
N3 | 0.0271 (12) | 0.0169 (9) | 0.0154 (9) | 0.0034 (8) | −0.0009 (8) | 0.0001 (7) |
C9 | 0.0193 (11) | 0.0183 (10) | 0.0138 (9) | −0.0035 (9) | −0.0016 (9) | 0.0005 (8) |
C5 | 0.0205 (11) | 0.0130 (10) | 0.0177 (10) | −0.0023 (8) | −0.0040 (8) | −0.0006 (8) |
C1 | 0.0146 (10) | 0.0146 (9) | 0.0165 (10) | −0.0007 (8) | −0.0020 (9) | 0.0020 (8) |
C4 | 0.0218 (12) | 0.0139 (9) | 0.0223 (11) | −0.0004 (8) | −0.0007 (9) | −0.0017 (8) |
C2 | 0.0214 (12) | 0.0232 (11) | 0.0146 (10) | −0.0016 (9) | 0.0003 (9) | −0.0005 (8) |
C6 | 0.0163 (10) | 0.0160 (10) | 0.0157 (10) | −0.0016 (8) | 0.0006 (9) | −0.0037 (8) |
C10 | 0.0165 (10) | 0.0142 (9) | 0.0156 (10) | −0.0027 (8) | −0.0016 (9) | −0.0010 (8) |
C7 | 0.0189 (11) | 0.0141 (10) | 0.0252 (11) | 0.0005 (9) | −0.0027 (9) | 0.0006 (8) |
Br2—C6 | 1.917 (2) | C5—C4 | 1.411 (3) |
N5—N6 | 1.410 (3) | C1—C2 | 1.376 (3) |
N5—C10 | 1.351 (3) | C6—C7 | 1.379 (3) |
N4—C6 | 1.318 (3) | N2—H2A | 0.80 (3) |
N4—C10 | 1.356 (3) | N3—H3A | 0.85 (3) |
Br1—C1 | 1.917 (2) | N3—H3B | 0.84 (4) |
N2—N3 | 1.409 (3) | N5—H5 | 0.86 (3) |
N2—C5 | 1.356 (3) | N6—H6A | 0.87 (3) |
N1—C5 | 1.346 (3) | N6—H6B | 0.82 (3) |
N1—C1 | 1.321 (3) | C2—H2 | 0.95 |
C3—C4 | 1.370 (3) | C3—H3 | 0.95 |
C3—C2 | 1.403 (3) | C4—H4 | 0.95 |
C8—C9 | 1.382 (3) | C7—H7 | 0.95 |
C8—C7 | 1.389 (3) | C8—H8 | 0.95 |
C9—C10 | 1.410 (3) | C9—H9 | 0.95 |
C10—N5—N6 | 124.36 (19) | N3—N2—H2A | 117 (2) |
C6—N4—C10 | 116.81 (19) | C5—N2—H2A | 120 (2) |
C5—N2—N3 | 122.2 (2) | N2—N3—H3A | 106 (2) |
C1—N1—C5 | 116.46 (19) | N2—N3—H3B | 107 (2) |
C4—C3—C2 | 120.2 (2) | H3A—N3—H3B | 108 (3) |
C9—C8—C7 | 120.8 (2) | N6—N5—H5 | 114 (2) |
C8—C9—C10 | 118.1 (2) | C10—N5—H5 | 121 (2) |
N2—C5—C4 | 120.3 (2) | N5—N6—H6A | 114 (2) |
N1—C5—N2 | 117.3 (2) | N5—N6—H6B | 114 (2) |
N1—C5—C4 | 122.3 (2) | H6A—N6—H6B | 107 (3) |
N1—C1—Br1 | 114.48 (16) | C1—C2—H2 | 122 |
N1—C1—C2 | 126.9 (2) | C3—C2—H2 | 122 |
C2—C1—Br1 | 118.63 (17) | C2—C3—H3 | 120 |
C3—C4—C5 | 118.5 (2) | C4—C3—H3 | 120 |
C1—C2—C3 | 115.7 (2) | C3—C4—H4 | 121 |
N4—C6—Br2 | 114.58 (16) | C5—C4—H4 | 121 |
N4—C6—C7 | 126.7 (2) | C6—C7—H7 | 122 |
C7—C6—Br2 | 118.69 (17) | C8—C7—H7 | 122 |
N5—C10—N4 | 114.20 (19) | C7—C8—H8 | 120 |
N5—C10—C9 | 123.9 (2) | C9—C8—H8 | 120 |
N4—C10—C9 | 121.9 (2) | C8—C9—H9 | 121 |
C6—C7—C8 | 115.7 (2) | C10—C9—H9 | 121 |
C5—N1—C1—Br1 | −177.25 (16) | C10—N4—C6—Br2 | −178.79 (16) |
C5—N1—C1—C2 | 1.4 (4) | C10—N4—C6—C7 | 1.2 (4) |
C1—N1—C5—N2 | 177.1 (2) | C6—N4—C10—N5 | 179.1 (2) |
C1—N1—C5—C4 | −1.3 (3) | C6—N4—C10—C9 | −0.7 (3) |
N3—N2—C5—N1 | 5.4 (3) | N6—N5—C10—N4 | 171.0 (2) |
N3—N2—C5—C4 | −176.2 (2) | N6—N5—C10—C9 | −9.2 (4) |
Br1—C1—C2—C3 | 177.84 (18) | Br2—C6—C7—C8 | 179.49 (17) |
N1—C1—C2—C3 | −0.8 (4) | N4—C6—C7—C8 | −0.5 (4) |
C1—C2—C3—C4 | 0.0 (4) | C6—C7—C8—C9 | −0.7 (3) |
C2—C3—C4—C5 | 0.0 (4) | C7—C8—C9—C10 | 1.1 (3) |
C3—C4—C5—N1 | 0.7 (4) | C8—C9—C10—N4 | −0.3 (3) |
C3—C4—C5—N2 | −177.6 (2) | C8—C9—C10—N5 | 179.9 (2) |
C5—N2—N3—H3A | −54 (2) | C10—N5—N6—H6A | −45 (2) |
C5—N2—N3—H3B | 61 (2) | C10—N5—N6—H6B | 77 (2) |
H2A—N2—N3—H3A | 137 (3) | H5—N5—N6—H6A | 121 (3) |
H2A—N2—N3—H3B | −109 (3) | H5—N5—N6—H6B | −117 (3) |
H2A—N2—C5—N1 | 174 (3) | H5—N5—C10—N4 | 6 (2) |
H2A—N2—C5—C4 | −7 (3) | H5—N5—C10—C9 | −174 (2) |
Br1—C1—C2—H2 | −2 | Br2—C6—C7—H7 | −1 |
N1—C1—C2—H2 | 179 | N4—C6—C7—H7 | 180 |
C1—C2—C3—H3 | −180 | C6—C7—C8—H8 | 179 |
H2—C2—C3—C4 | −180 | H7—C7—C8—C9 | 179 |
H2—C2—C3—H3 | 0 | H7—C7—C8—H8 | −1 |
C2—C3—C4—H4 | 180 | C7—C8—C9—H9 | −179 |
H3—C3—C4—C5 | 180 | H8—C8—C9—C10 | −179 |
H3—C3—C4—H4 | 0 | H8—C8—C9—H9 | 1 |
H4—C4—C5—N1 | −179 | H9—C9—C10—N4 | 180 |
C1—N1—C9—H9B | 176 | H9—C9—C10—N5 | 0 |
H4—C4—C5—N2 | 2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N4 | 0.80 (3) | 2.36 (3) | 3.058 (3) | 146 (3) |
N3—H3A···N6i | 0.85 (3) | 2.43 (3) | 3.212 (3) | 154 (3) |
N3—H3A···N5ii | 0.85 (3) | 2.67 (3) | 3.149 (3) | 117 (3) |
N3—H3B···N2iii | 0.84 (4) | 2.74 (4) | 3.543 (3) | 161 (3) |
N3—H3B···N6ii | 0.84 (4) | 2.69 (3) | 3.183 (3) | 119 (2) |
N5—H5···N3 | 0.86 (3) | 2.06 (3) | 2.913 (3) | 173 (3) |
N6—H6B···N1i | 0.82 (3) | 2.46 (3) | 3.257 (3) | 164 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) x−1, y, z. |
C—D···A—C | D···A | C—D···A | D···A—C | Symmetry code |
C6—Br2···Br1—C1 | 3.6328 (7) | 169.39 (6) | 103.45 (7) | -x + 1, y + 1/2, -z + 1/2 |
(a) perpendicular distance of Cg(I) on ring J; (b) perpendicular distance of Cg(J) on ring I; (c) dihedral angle between Planes I and J; (d) angle between Cg(I)-->Cg(J) vector and normal to plane I; (e) angle between Cg(I)-->Cg(J) vector and normal to plane J. |
Cg(I)···Cg(J) | Cgi-Cgj | Cg(I)-perpa | Cg(J)-perpb | αac | βad | γe | Slippage |
Cg1···Cg1iv | 3.9607 (14) | 3.4889 (10) | –3.4890 (10) | 0.03 (11) | 28.2 | 28.2 | 1.875 |
Cg1···Cg1v | 3.9605 (14) | –3.4889 (10) | 3.4888 (10) | 0.03 (11) | 28.2 | 28.2 | 1.875 |
Cg2···Cg2iv | 3.9607 (14) | 3.4345 (9) | –3.4346 (9) | 0.00 (11) | 29.9 | 29.9 | 1.972 |
Cg2···Cg2v | 3.9605 (14) | –3.4345 (9) | 3.4345 (9) | 0.00 (11) | 29.9 | 29.9 | 1.972 |
Symmetry codes: (iv) x - 1, y, z; (v) x + 1, y, z. |
Funding information
Funding for this research was provided by: National Institute of Food and Agriculture (grant No. Hatch 1023929 to T. P. Mawhinney); University of Missouri, Experiment Station Chemical Laboratories.
References
Bruker (2021). AXScale, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Centore, R., Carella, A., Tuzi, A., Capobianco, A. & Peluso, A. (2010). CrystEngComm, 12, 1186–1193. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drożdżewski, P., Musiała, M. & Kubiak, M. (2006). Aust. J. Chem. 59, 329–335. Google Scholar
Fraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167–198. Web of Science CrossRef PubMed CAS Google Scholar
Healy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1988). Aust. J. Chem. 41, 623–633. CSD CrossRef CAS Google Scholar
Kauffman, G. B. & Ciula, R. P. (1977). J. Chem. Educ. 54, 295. CrossRef Google Scholar
Kuter, D. J. (2010). Semin. Hematol. 47, 243–248. CrossRef CAS PubMed Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2020). Acta Cryst. E76, 557–561. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mossine, V. V., Waters, J. K., Chance, D. L. & Mawhinney, T. P. (2016). Toxicol. Sci. 154, 403–415. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Reece, P. A. (1981). Med. Res. Rev. 1, 73–96. CrossRef CAS PubMed Web of Science Google Scholar
Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Toth, B. (2000). In Vivo, 14, 299–319. PubMed CAS Google Scholar
Wang, P., Wan, R., Yu, P., He, Q. & Zhang, J. (2010). Acta Cryst. E66, o2599. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zoppellaro, G., Enkelmann, V., Geies, A. & Baumgarten, M. (2004). Org. Lett. 6, 4929–4932. CSD CrossRef PubMed CAS Google Scholar
Zora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677–o2679. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.