organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Bromo-6-hydrazinyl­pyridine

crossmark logo

aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: MossineV@missouri.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 February 2023; accepted 23 February 2023; online 28 February 2023)

The title compound, C5H6BrN3, crystallizes in the ortho­rhom­bic space group P212121 with two mol­ecules with different conformations in the asymmetric unit. In the crystal, N—H⋯N and bifurcated N—H⋯(N,N) hydrogen bonds link the mol­ecules into [100] chains; a short Br⋯Br halogen bond and ππ stacking inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Since Emil Fischer's discovery of phenyl­hydrazine nearly 150 years ago (Kauffman & Ciula, 1977[Kauffman, G. B. & Ciula, R. P. (1977). J. Chem. Educ. 54, 295.]), there has been a persistent inter­est in aryl­hydrazines because of their numerous applications in organic chemistry, for instance, as synthetic precursors to a number of anti­microbial (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]), thrombopoietic (Kuter, 2010[Kuter, D. J. (2010). Semin. Hematol. 47, 243-248.]), anti-inflammatory (Fraga & Barreiro, 2006[Fraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167-198.]) or vasodilatory (Reece, 1981[Reece, P. A. (1981). Med. Res. Rev. 1, 73-96.]) drugs, but also due to their presence in wild and cultivated mushrooms, with a history of neurotoxic and carcinogenic effects (Toth, 2000[Toth, B. (2000). In Vivo, 14, 299-319.]). In the course of our search for inhibitors of bacterial virulence factors (Mossine et al., 2016[Mossine, V. V., Waters, J. K., Chance, D. L. & Mawhinney, T. P. (2016). Toxicol. Sci. 154, 403-415.], 2020[Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2020). Acta Cryst. E76, 557-561.]), we prepared the title compound, which was considered a potential precursor for pharmacologically active, metal-binding hydrazones. Here we report its crystal structure.

The title compound, (I), crystallizes in the ortho­rhom­bic space group P212121, with eight mol­ecules per unit cell. The asymmetric unit contains two conformationally non-equivalent mol­ecules of 6-bromo­pyridin-2-ylhydrazine, (I1) and (I2), as shown in Fig. 1[link]. All bond lengths and angles are within their expected ranges. The mol­ecules are essentially flat, with the greatest deviations from the average mol­ecular planes, among the non-hydrogen atoms, found for N2 at 0.081 (2) Å and N5 at 0.073 (2) Å in (I1) and (I2), respectively. The spatial arrangements of the hydrazino groups, as defined by the torsion angles H2A—N2—N3—H3A = 137 (3)° and H5—N5—N6—H6A = 121 (3)°, correspond to the low-energy conformation that has been calculated for acyl hydrazides (Centore et al., 2010[Centore, R., Carella, A., Tuzi, A., Capobianco, A. & Peluso, A. (2010). CrystEngComm, 12, 1186-1193.]). There is a notable difference between the conformations of (I1) and (I2), however. While in (I1) the hydrazine nitro­gen atom N3 is in the syn-disposition with respect to the pyridine nitro­gen atom N1, with N1—C5—N2—N3 = 5.4 (3)°, in (I2) the hydrazine group is in the anti-conformation, with the corresponding torsion angle N4—C10—N5—N6 = 171.0 (2)°. For comparison, in 3-chloro­pyrid-2-ylhydrazine (Wang et al., 2010[Wang, P., Wan, R., Yu, P., He, Q. & Zhang, J. (2010). Acta Cryst. E66, o2599.]), the hydrazine group is in the syn-conformation, with the respective torsion angle being −9.6°. The only other structural analogue of (I) for which X-ray diffraction data are available is 2-hydrazino­pyridine; however, no crystal structure of this mol­ecule as a free base is known. In crystalline palladium(II) (Drożdżewski et al., 2006[Drożdżewski, P., Musiała, M. & Kubiak, M. (2006). Aust. J. Chem. 59, 329-335.]) and copper(I) (Healy et al. 1988[Healy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1988). Aust. J. Chem. 41, 623-633.]) complexes of 2-hydrazino­pyridine, both the terminal hydrazine and pyridine nitro­gen atoms are co-ordinated to the same metal ion, thus stabilizing the syn-conformation of this ligand. In the 2-hydrazino­pyridine di­hydro­chloride salt (Zora et al., 2006[Zora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677-o2679.]), both the terminal hydrazine and pyridine nitro­gen atoms are protonated and thus forced into the anti-conformation.

[Figure 1]
Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for mol­ecules (I1) and (I2). Hydrogen bonds are shown as dashed lines.

The conventional hydrogen bonding in the crystal structure of (I) is extensive and involves all nitro­gen atoms of both hydrazine groups and pyridine rings (Table 1[link]) and is shown in Fig. 2[link]. The hydrogen-bonding pattern is represented by a network of infinite chains, which propagate in the [100] direction. This network features R22(7) rings, which are formed by almost coplanar mol­ecules (I1) and (I2), as shown in Fig. 1[link], and which represent the shortest inter­molecular heteroatom contacts in the crystal. A centrepiece of the network is N3, which participates in five short heteroatom contacts, once as an acceptor and four times as a donor of hydrogen bonds [two bifurcated N—H⋯(N,N) links]. Over half the hydrogen-bonding contacts are multicentered and include two bifurcated hydrogen bonds for donor atoms H3A and H3B, and N6 acts as a double acceptor (Fig. 2[link]; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4 0.80 (3) 2.36 (3) 3.058 (3) 146 (3)
N3—H3A⋯N6i 0.85 (3) 2.43 (3) 3.212 (3) 154 (3)
N3—H3A⋯N5ii 0.85 (3) 2.67 (3) 3.149 (3) 117 (3)
N3—H3B⋯N2iii 0.84 (4) 2.74 (4) 3.543 (3) 161 (3)
N3—H3B⋯N6ii 0.84 (4) 2.69 (3) 3.183 (3) 119 (2)
N5—H5⋯N3 0.86 (3) 2.06 (3) 2.913 (3) 173 (3)
N6—H6B⋯N1i 0.82 (3) 2.46 (3) 3.257 (3) 164 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-1, y, z].
[Figure 2]
Figure 2
Mol­ecular packing of (I). Hydrogen bonds are shown as cyan dotted lines. Crystallographic axes colour codes: a – red; b – green; c – blue.

In addition, there is one short inter­molecular contact, Br1⋯Br2 [3.6328 (7) Å], which satisfies the distance and directionality conditions (Table 2[link]) for a halogen bond (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]), with Br2 serving as a donor and Br1 as an acceptor of the bond, as shown in Fig. 3[link]. Inter­molecular non-polar inter­actions, which may contribute to the stability of mol­ecular packing in the crystal, are represented by hydrogen–carbon contacts between the aromatic rings; the shortest of these contacts, C6—H6A⋯C9 [H6A⋯C9i = 2.72 (3) Å, symmetry code: (i) −1 + x, y, z] is about 0.18 Å shorter than the sum of the van der Waals radii. The aromatic rings of both (I1) and (I2) are involved in a well-defined system of staggered ππ stacking inter­actions (Table 3[link]). These various inter­actions can be seen in the Hirshfeld surface of the title compound (Fig. 3[link]).

Table 2
Halogen-bond geometry (Å, °)

C—DA—C DA C—DA DA—C Symmetry code
C6—Br2⋯Br1—C1 3.6328 (7) 169.39 (6) 103.45 (7) x + 1, y + [{1\over 2}], −z + [{1\over 2}]

Table 3
π–π stacking geometry (Å, °)

(a) perpendicular distance of Cg(I) on ring J; (b) perpendicular distance of Cg(J) on ring I; (c) dihedral angle between Planes I and J; (d) angle between Cg(I)–>Cg(J) vector and normal to plane I; (e) angle between Cg(I)–>Cg(J) vector and normal to plane J.

Cg(I)⋯Cg(J) Cgi-Cgj Cg(I)-perpa Cg(J)-perpb αac βad γe Slippage
Cg1⋯Cg1iv 3.9607 (14) 3.4889 (10) –3.4890 (10) 0.03 (11) 28.2 28.2 1.875
Cg1⋯Cg1v 3.9605 (14) –3.4889 (10) 3.4888 (10) 0.03 (11) 28.2 28.2 1.875
Cg2⋯Cg2iv 3.9607 (14) 3.4345 (9) –3.4346 (9) 0.00 (11) 29.9 29.9 1.972
Cg2⋯Cg2v 3.9605 (14) –3.4345 (9) 3.4345 (9) 0.00 (11) 29.9 29.9 1.972
Symmetry codes: (iv) x − 1, y, z; (v) x + 1, y, z.
[Figure 3]
Figure 3
Views of the Hirshfeld surface for (a) mol­ecule (I2) and (b) mol­ecule (I1), mapped over dnorm in the range −0.56 to 0.97 a.u. with the blue-to-red color palette reflecting distances from a point on the surface to the closest nuclei. The neighboring mol­ecules involved in the shortest N—H⋯N hydrogen bonds, the Br⋯Br halogen bond, and the CgCg stacking inter­actions are shown.

Synthesis and crystallization

The title compound was prepared following an established synthetic route (Zoppellaro et al., 2004[Zoppellaro, G., Enkelmann, V., Geies, A. & Baumgarten, M. (2004). Org. Lett. 6, 4929-4932.]). Specifically, 8.0 g (34 mmoles) of 2,6-di­bromo­pyridine, 15 ml (310 mmoles) of hydrazine hydrate, and 2 ml of 1-propanol were heated at 80°C for 12 h. The reaction mixture slowly separated into two layers, with the lower layer taking about 5 ml, then the mixture homogenized back. After cooling overnight at 4°C, the solution deposited pale-yellow needles of the title compound suitable for further X-ray diffraction studies.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Enanti­opurity of the crystal chosen for data collection was established on the basis of the Flack absolute structure parameter determined [0.012 (5) for 999 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])].

Table 4
Experimental details

Crystal data
Chemical formula C5H6BrN3
Mr 188.04
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 3.9606 (3), 13.9649 (9), 23.0332 (14)
V3) 1273.95 (15)
Z 8
Radiation type Cu Kα
μ (mm−1) 8.02
Crystal size (mm) 0.24 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (AXScale; Bruker, 2021[Bruker (2021). AXScale, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.521, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 25559, 2564, 2546
Rint 0.027
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.033, 1.07
No. of reflections 2564
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.36
Absolute structure Flack x determined using 999 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.012 (5)
Computer programs: APEX3 and SAINT (Bruker, 2021[Bruker (2021). AXScale, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Crystal Explorer 17.5 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2021); cell refinement: APEX3 and SAINT (Bruker, 2021); data reduction: APEX3 and SAINT (Bruker, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Crystal Explorer 17.5 (Mackenzie et al., 2017), Mercury (Macrae et al., 2020)'; software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

2-Bromo-6-hydrazinylpyridine top
Crystal data top
C5H6BrN3Dx = 1.961 Mg m3
Mr = 188.04Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9416 reflections
a = 3.9606 (3) Åθ = 3.7–73.7°
b = 13.9649 (9) ŵ = 8.02 mm1
c = 23.0332 (14) ÅT = 150 K
V = 1273.95 (15) Å3Needle, colourless
Z = 80.24 × 0.04 × 0.03 mm
F(000) = 736
Data collection top
Bruker APEXII area detector
diffractometer
2564 independent reflections
Radiation source: Incoatec IMuS microfocus Cu tube2546 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.027
φ and ω scansθmax = 74.3°, θmin = 3.7°
Absorption correction: multi-scan
(AXScale; Bruker, 2021)
h = 44
Tmin = 0.521, Tmax = 0.754k = 1717
25559 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.5435P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.27 e Å3
2564 reflectionsΔρmin = 0.36 e Å3
181 parametersAbsolute structure: Flack x determined using 999 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.012 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrazine H atoms were treated by a mixture of independent and constrained refinement while the methine hydrogen atoms were initially placed in calculated positions. All hydrogen-atom coordinates were allowed to refine freely, while displacement parameters were constrained to ride on the carrier atoms [Uiso(methine H) = 1.2Ueq].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.82558 (6)0.11957 (2)0.41033 (2)0.02165 (7)
N50.2752 (6)0.10488 (14)0.55037 (8)0.0196 (4)
N40.5314 (5)0.00629 (12)0.49331 (8)0.0161 (4)
Br10.03786 (6)0.36607 (2)0.24286 (2)0.02079 (7)
N20.2746 (6)0.13007 (15)0.39929 (8)0.0252 (5)
N10.1329 (5)0.22862 (13)0.32263 (8)0.0150 (4)
N60.1173 (5)0.14093 (14)0.60068 (8)0.0185 (4)
C30.4274 (6)0.10092 (16)0.24479 (10)0.0209 (5)
H30.5267750.0572510.2181890.025*
C80.6904 (6)0.12096 (17)0.58795 (10)0.0198 (4)
H80.7421120.1607500.6201990.024*
N30.1114 (6)0.19152 (15)0.43885 (9)0.0198 (4)
C90.5193 (6)0.03596 (15)0.59669 (10)0.0171 (4)
H90.4558920.0161150.6346090.021*
C50.2734 (6)0.14643 (15)0.34125 (9)0.0171 (4)
C10.1477 (6)0.24529 (14)0.26623 (10)0.0153 (4)
C40.4229 (6)0.08000 (16)0.30289 (10)0.0194 (5)
H40.5183060.0221070.3170380.023*
C20.2855 (7)0.18666 (17)0.22446 (10)0.0198 (5)
H20.2846800.2031750.1844510.024*
C60.6988 (6)0.08743 (15)0.48825 (10)0.0160 (4)
C100.4416 (6)0.02050 (15)0.54774 (9)0.0154 (4)
C70.7876 (6)0.14892 (16)0.53255 (10)0.0194 (5)
H70.9075290.2067010.5256120.023*
H50.217 (8)0.134 (2)0.5193 (13)0.023*
H6A0.002 (8)0.099 (2)0.6194 (14)0.029*
H3A0.189 (9)0.247 (2)0.4323 (14)0.029*
H6B0.249 (9)0.164 (2)0.6242 (14)0.029*
H2A0.340 (8)0.080 (2)0.4114 (13)0.023*
H3B0.094 (10)0.192 (2)0.4303 (14)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02599 (13)0.02054 (11)0.01841 (11)0.00436 (10)0.00240 (9)0.00398 (9)
N50.0309 (11)0.0166 (9)0.0112 (8)0.0065 (8)0.0005 (8)0.0007 (7)
N40.0197 (10)0.0138 (8)0.0149 (8)0.0018 (8)0.0008 (8)0.0004 (6)
Br10.02350 (12)0.02039 (11)0.01847 (11)0.00379 (9)0.00074 (9)0.00649 (8)
N20.0451 (14)0.0163 (9)0.0143 (9)0.0125 (10)0.0005 (9)0.0026 (8)
N10.0174 (9)0.0136 (8)0.0138 (8)0.0005 (7)0.0022 (8)0.0009 (7)
N60.0234 (10)0.0186 (9)0.0136 (8)0.0000 (8)0.0019 (8)0.0032 (7)
C30.0215 (11)0.0202 (10)0.0209 (11)0.0004 (9)0.0017 (10)0.0061 (8)
C80.0198 (10)0.0191 (10)0.0205 (10)0.0022 (10)0.0067 (9)0.0048 (9)
N30.0271 (12)0.0169 (9)0.0154 (9)0.0034 (8)0.0009 (8)0.0001 (7)
C90.0193 (11)0.0183 (10)0.0138 (9)0.0035 (9)0.0016 (9)0.0005 (8)
C50.0205 (11)0.0130 (10)0.0177 (10)0.0023 (8)0.0040 (8)0.0006 (8)
C10.0146 (10)0.0146 (9)0.0165 (10)0.0007 (8)0.0020 (9)0.0020 (8)
C40.0218 (12)0.0139 (9)0.0223 (11)0.0004 (8)0.0007 (9)0.0017 (8)
C20.0214 (12)0.0232 (11)0.0146 (10)0.0016 (9)0.0003 (9)0.0005 (8)
C60.0163 (10)0.0160 (10)0.0157 (10)0.0016 (8)0.0006 (9)0.0037 (8)
C100.0165 (10)0.0142 (9)0.0156 (10)0.0027 (8)0.0016 (9)0.0010 (8)
C70.0189 (11)0.0141 (10)0.0252 (11)0.0005 (9)0.0027 (9)0.0006 (8)
Geometric parameters (Å, º) top
Br2—C61.917 (2)C5—C41.411 (3)
N5—N61.410 (3)C1—C21.376 (3)
N5—C101.351 (3)C6—C71.379 (3)
N4—C61.318 (3)N2—H2A0.80 (3)
N4—C101.356 (3)N3—H3A0.85 (3)
Br1—C11.917 (2)N3—H3B0.84 (4)
N2—N31.409 (3)N5—H50.86 (3)
N2—C51.356 (3)N6—H6A0.87 (3)
N1—C51.346 (3)N6—H6B0.82 (3)
N1—C11.321 (3)C2—H20.95
C3—C41.370 (3)C3—H30.95
C3—C21.403 (3)C4—H40.95
C8—C91.382 (3)C7—H70.95
C8—C71.389 (3)C8—H80.95
C9—C101.410 (3)C9—H90.95
C10—N5—N6124.36 (19)N3—N2—H2A117 (2)
C6—N4—C10116.81 (19)C5—N2—H2A120 (2)
C5—N2—N3122.2 (2)N2—N3—H3A106 (2)
C1—N1—C5116.46 (19)N2—N3—H3B107 (2)
C4—C3—C2120.2 (2)H3A—N3—H3B108 (3)
C9—C8—C7120.8 (2)N6—N5—H5114 (2)
C8—C9—C10118.1 (2)C10—N5—H5121 (2)
N2—C5—C4120.3 (2)N5—N6—H6A114 (2)
N1—C5—N2117.3 (2)N5—N6—H6B114 (2)
N1—C5—C4122.3 (2)H6A—N6—H6B107 (3)
N1—C1—Br1114.48 (16)C1—C2—H2122
N1—C1—C2126.9 (2)C3—C2—H2122
C2—C1—Br1118.63 (17)C2—C3—H3120
C3—C4—C5118.5 (2)C4—C3—H3120
C1—C2—C3115.7 (2)C3—C4—H4121
N4—C6—Br2114.58 (16)C5—C4—H4121
N4—C6—C7126.7 (2)C6—C7—H7122
C7—C6—Br2118.69 (17)C8—C7—H7122
N5—C10—N4114.20 (19)C7—C8—H8120
N5—C10—C9123.9 (2)C9—C8—H8120
N4—C10—C9121.9 (2)C8—C9—H9121
C6—C7—C8115.7 (2)C10—C9—H9121
C5—N1—C1—Br1177.25 (16)C10—N4—C6—Br2178.79 (16)
C5—N1—C1—C21.4 (4)C10—N4—C6—C71.2 (4)
C1—N1—C5—N2177.1 (2)C6—N4—C10—N5179.1 (2)
C1—N1—C5—C41.3 (3)C6—N4—C10—C90.7 (3)
N3—N2—C5—N15.4 (3)N6—N5—C10—N4171.0 (2)
N3—N2—C5—C4176.2 (2)N6—N5—C10—C99.2 (4)
Br1—C1—C2—C3177.84 (18)Br2—C6—C7—C8179.49 (17)
N1—C1—C2—C30.8 (4)N4—C6—C7—C80.5 (4)
C1—C2—C3—C40.0 (4)C6—C7—C8—C90.7 (3)
C2—C3—C4—C50.0 (4)C7—C8—C9—C101.1 (3)
C3—C4—C5—N10.7 (4)C8—C9—C10—N40.3 (3)
C3—C4—C5—N2177.6 (2)C8—C9—C10—N5179.9 (2)
C5—N2—N3—H3A54 (2)C10—N5—N6—H6A45 (2)
C5—N2—N3—H3B61 (2)C10—N5—N6—H6B77 (2)
H2A—N2—N3—H3A137 (3)H5—N5—N6—H6A121 (3)
H2A—N2—N3—H3B109 (3)H5—N5—N6—H6B117 (3)
H2A—N2—C5—N1174 (3)H5—N5—C10—N46 (2)
H2A—N2—C5—C47 (3)H5—N5—C10—C9174 (2)
Br1—C1—C2—H22Br2—C6—C7—H71
N1—C1—C2—H2179N4—C6—C7—H7180
C1—C2—C3—H3180C6—C7—C8—H8179
H2—C2—C3—C4180H7—C7—C8—C9179
H2—C2—C3—H30H7—C7—C8—H81
C2—C3—C4—H4180C7—C8—C9—H9179
H3—C3—C4—C5180H8—C8—C9—C10179
H3—C3—C4—H40H8—C8—C9—H91
H4—C4—C5—N1179H9—C9—C10—N4180
C1—N1—C9—H9B176H9—C9—C10—N50
H4—C4—C5—N22
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N40.80 (3)2.36 (3)3.058 (3)146 (3)
N3—H3A···N6i0.85 (3)2.43 (3)3.212 (3)154 (3)
N3—H3A···N5ii0.85 (3)2.67 (3)3.149 (3)117 (3)
N3—H3B···N2iii0.84 (4)2.74 (4)3.543 (3)161 (3)
N3—H3B···N6ii0.84 (4)2.69 (3)3.183 (3)119 (2)
N5—H5···N30.86 (3)2.06 (3)2.913 (3)173 (3)
N6—H6B···N1i0.82 (3)2.46 (3)3.257 (3)164 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x1, y, z.
Halogen-bond geometry (Å, °) top
C—D···A—CD···AC—D···AD···A—CSymmetry code
C6—Br2···Br1—C13.6328 (7)169.39 (6)103.45 (7)-x + 1, y + 1/2, -z + 1/2
ππ stacking geometry (Å, °) top
(a) perpendicular distance of Cg(I) on ring J; (b) perpendicular distance of Cg(J) on ring I; (c) dihedral angle between Planes I and J; (d) angle between Cg(I)-->Cg(J) vector and normal to plane I; (e) angle between Cg(I)-->Cg(J) vector and normal to plane J.
Cg(I)···Cg(J)Cgi-CgjCg(I)-perpaCg(J)-perpbαacβadγeSlippage
Cg1···Cg1iv3.9607 (14)3.4889 (10)–3.4890 (10)0.03 (11)28.228.21.875
Cg1···Cg1v3.9605 (14)–3.4889 (10)3.4888 (10)0.03 (11)28.228.21.875
Cg2···Cg2iv3.9607 (14)3.4345 (9)–3.4346 (9)0.00 (11)29.929.91.972
Cg2···Cg2v3.9605 (14)–3.4345 (9)3.4345 (9)0.00 (11)29.929.91.972
Symmetry codes: (iv) x - 1, y, z; (v) x + 1, y, z.
 

Funding information

Funding for this research was provided by: National Institute of Food and Agriculture (grant No. Hatch 1023929 to T. P. Mawhinney); University of Missouri, Experiment Station Chemical Laboratories.

References

First citationBruker (2021). AXScale, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentore, R., Carella, A., Tuzi, A., Capobianco, A. & Peluso, A. (2010). CrystEngComm, 12, 1186–1193.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrożdżewski, P., Musiała, M. & Kubiak, M. (2006). Aust. J. Chem. 59, 329–335.  Google Scholar
First citationFraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167–198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHealy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1988). Aust. J. Chem. 41, 623–633.  CSD CrossRef CAS Google Scholar
First citationKauffman, G. B. & Ciula, R. P. (1977). J. Chem. Educ. 54, 295.  CrossRef Google Scholar
First citationKuter, D. J. (2010). Semin. Hematol. 47, 243–248.  CrossRef CAS PubMed Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2020). Acta Cryst. E76, 557–561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMossine, V. V., Waters, J. K., Chance, D. L. & Mawhinney, T. P. (2016). Toxicol. Sci. 154, 403–415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReece, P. A. (1981). Med. Res. Rev. 1, 73–96.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToth, B. (2000). In Vivo, 14, 299–319.  PubMed CAS Google Scholar
First citationWang, P., Wan, R., Yu, P., He, Q. & Zhang, J. (2010). Acta Cryst. E66, o2599.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoppellaro, G., Enkelmann, V., Geies, A. & Baumgarten, M. (2004). Org. Lett. 6, 4929–4932.  CSD CrossRef PubMed CAS Google Scholar
First citationZora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677–o2679.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146