organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

15,15-Di­phenyl-2,3,4,5,6,8,9,11,12-octa­hydro­imidazo[2,1-h][1,4,12]trioxa[7]thia­[9]aza­cyclo­tetra­decin-14(15H)-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5s.net.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 9 February 2023; accepted 10 February 2023; online 17 February 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title mol­ecule, C23H26N2O4S, adopts a cup-shaped conformation. In the crystal, layers lying parallel to the ab plane are formed by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. The layers stack along the c-axis direction through normal van der Waals inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing the thio­hydantoin scaffold exhibit many pharmacological activities, including anti­microbial, anti­carcinogenic, anti-inflammatory, anti­bacterial, anti-androgen and anti-diabetic effects (Meusel et al., 2004[Meusel, M. & Gütschow, M. (2004). Org. Prep. Proced. Int. 36, 391-443.]; Tomasic et al., 2009[Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596-1629.]; Scholl et al. 1999[Scholl, S., Koch, A., Henning, D., Kempter, G. & Kleinpeter, E. (1999). Struct. Chem. 10, 355-366.]; Vengurlekar et al. 2012[Vengurlekar, S., Sharma, R. & Trivedi, P. (2012). Lett. Drug. Des. Discov. 9, 549-555.]; Jain et al. 2013[Jain, V. S., Vora, D. K. & Ramaa, C. (2013). Bioorg. Med. Chem. 21, 1599-1620.]; Efsta­thiou et al. 2015[Efstathiou, E., Titus, M., Wen, S., Hoang, A., Karlou, M., Ashe, R., Tu, S. M., Aparicio, A., Troncoso, P., Mohler, J. & Logothetis, C. J. (2015). Eur. Urol. 67, 53-60.]). As part of our ongoing work in this area (Guerrab et al. 2022a[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. 40, 8765-8782.],b[Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, https://doi.org/10.1080/07391102.2022.2069865], 2023[Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. J. & Ramli, Y. (2023). IUCrData, 8, x230060.]), the title compound (Fig. 1[link]) was prepared and its crystal structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids. Intra­molecular hydrogen bonds are depicted by dashed lines.

The mol­ecule adopts a cup-shaped conformation with the five-membered ring as the base and the C12–C17 benzene ring and the crown ether ring as the sides. This conformation is likely due to packing considerations since the three-dimensional structure is fairly compact with this arrangement (Fig. 2[link]) but it may also be aided by the C5—H5B⋯N2 hydrogen bond (Table 1[link] and Fig. 1[link]). The five-membered ring is almost planar (r.m.s. deviation = 0.009 Å) and the C12–C17 and C18–C23 benzene rings are inclined to it by 62.10 (7) and 61.35 (9)°, respectively. The conformation of the crown ether ring places S1, O2 and O3 pointing away from the center of the mol­ecule, but O4 points towards it. Intra­molecular C—H⋯O and C—H⋯N inter­actions occur (Table 1[link]). In the crystal, zigzag chains of mol­ecules extending along the a-axis direction are linked by C14—H14⋯O2 hydrogen bonds and these are connected into layers lying parallel to the ab plane by C6—H6ACg3 inter­actions (Table 1[link] and Fig. 2[link]). The layers stack along the c-axis direction with normal van der Waals contacts (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C18–C23 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N2 0.99 2.59 3.233 (3) 123
C10—H10B⋯O3 0.99 2.50 3.162 (3) 124
C14—H14⋯O2i 0.95 2.56 3.397 (3) 148
C6—H6ACg3ii 0.99 2.84 3.792 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y+1, z.
[Figure 2]
Figure 2
Plan view of the layer structure viewed along the c-axis direction. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are shown by black and green dashed lines, respectively.
[Figure 3]
Figure 3
Elevation view of the layer structure seen along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

To a solution of 5,5-diphenyl-2-thioxoimidazolidin-4-one (500 mg, 1.86 mmol), one equivalent of 1-chloro-2-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­oxy}ethane (365 µl, 1.86 mmol) dissolved in absolute di­methyl­formamide (DMF, 10 ml) was added and the resulting solution heated under reflux for 4 h in the presence of two equivalents of K2CO3 (513 mg, 3.72 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from ethanol solution to yield colourless blocks of the title compound (Guerrab et al., 2018[Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component inversion twin with a refined BASF value of 0.25 (7).

Table 2
Experimental details

Crystal data
Chemical formula C23H26N2O4S
Mr 426.52
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 16.6007 (17), 9.2362 (10), 13.8439 (14)
V3) 2122.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.28 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 19152, 5219, 4568
Rint 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.03
No. of reflections 5219
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.25 (7)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

15,15-Diphenyl-2,3,4,5,6,8,9,11,12-octahydroimidazo[2,1-h][1,4,12]trioxa[7]thia[9]azacyclotetradecin-14(15H)-one top
Crystal data top
C23H26N2O4SDx = 1.335 Mg m3
Mr = 426.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 8169 reflections
a = 16.6007 (17) Åθ = 2.5–28.1°
b = 9.2362 (10) ŵ = 0.19 mm1
c = 13.8439 (14) ÅT = 150 K
V = 2122.6 (4) Å3Block, colourless
Z = 40.28 × 0.24 × 0.17 mm
F(000) = 904
Data collection top
Bruker Smart APEX CCD
diffractometer
5219 independent reflections
Radiation source: fine-focus sealed tube4568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1211
Tmin = 0.84, Tmax = 0.97l = 1818
19152 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0489P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5219 reflectionsΔρmax = 0.42 e Å3
272 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.25 (7)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 30 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refinement in Pna21 with SHELXL resulted in a Flack parameter of ca 0.25 and the message `inversion twin or centrosymmetric space group'. As the intensity statistics and PLATON ADSYMM did not support a centrosymmetric space group, the refinement was finished in Pna21 treating the model as an inversion twin with the addition of the instructions TWIN and BASF 0.25. The refined value of BASF was 0.25 (7).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22326 (3)0.46089 (6)0.63964 (4)0.02584 (14)
O10.37107 (10)0.15624 (16)0.40483 (11)0.0262 (3)
O20.26905 (9)0.77584 (18)0.59446 (13)0.0305 (4)
O30.29439 (10)0.71630 (18)0.39376 (13)0.0332 (4)
O40.26344 (11)0.41717 (17)0.31948 (13)0.0311 (4)
N10.29066 (11)0.2903 (2)0.50682 (14)0.0221 (4)
N20.37902 (11)0.37283 (19)0.61953 (13)0.0220 (4)
C10.30600 (13)0.3719 (2)0.58992 (16)0.0212 (4)
C20.36224 (13)0.2330 (2)0.47512 (15)0.0209 (4)
C30.42545 (13)0.2866 (2)0.54857 (15)0.0201 (4)
C40.27256 (15)0.5931 (3)0.71517 (17)0.0293 (5)
H4A0.2313100.6448850.7535410.035*
H4B0.3086620.5422560.7608880.035*
C50.32084 (14)0.7016 (3)0.65901 (19)0.0310 (6)
H5A0.3464420.7714050.7037640.037*
H5B0.3638870.6517190.6223710.037*
C60.31097 (16)0.8699 (3)0.5306 (2)0.0346 (6)
H6A0.3516000.9247200.5680610.041*
H6B0.2722620.9405790.5035400.041*
C70.35286 (15)0.7933 (3)0.4482 (2)0.0350 (6)
H7A0.3804650.8648520.4064800.042*
H7B0.3937360.7253860.4738190.042*
C80.32854 (16)0.6518 (3)0.30959 (19)0.0326 (6)
H8A0.3785610.5995760.3270500.039*
H8B0.3424610.7279690.2621610.039*
C90.26965 (16)0.5486 (3)0.26582 (19)0.0341 (6)
H9A0.2160340.5952530.2627290.041*
H9B0.2865960.5259510.1989370.041*
C100.20222 (15)0.4167 (3)0.39115 (18)0.0302 (5)
H10A0.1483800.4140190.3604360.036*
H10B0.2058840.5051350.4313300.036*
C110.21474 (14)0.2835 (3)0.45276 (18)0.0268 (5)
H11A0.1693510.2739900.4987040.032*
H11B0.2150050.1966080.4108700.032*
C120.48827 (13)0.3867 (2)0.50146 (16)0.0205 (4)
C130.53956 (14)0.4642 (2)0.56242 (18)0.0263 (5)
H130.5359670.4514460.6303740.032*
C140.59561 (15)0.5596 (2)0.52449 (19)0.0312 (6)
H140.6302970.6117680.5665060.037*
C150.60130 (15)0.5791 (3)0.42553 (19)0.0330 (6)
H150.6393610.6453900.3996640.040*
C160.55158 (16)0.5020 (3)0.36486 (19)0.0330 (6)
H160.5556770.5146770.2969380.040*
C170.49500 (14)0.4052 (3)0.40275 (17)0.0272 (5)
H170.4610810.3519020.3604270.033*
C180.46593 (13)0.1555 (2)0.59558 (16)0.0218 (5)
C190.46380 (15)0.1332 (3)0.69500 (18)0.0285 (5)
H190.4383230.2018650.7359560.034*
C200.49917 (17)0.0100 (3)0.7340 (2)0.0377 (7)
H200.4982330.0044340.8019600.045*
C210.53572 (16)0.0920 (3)0.6754 (2)0.0374 (6)
H210.5584270.1772200.7025310.045*
C220.53873 (15)0.0684 (3)0.5777 (2)0.0334 (6)
H220.5639130.1376910.5369290.040*
C230.50554 (15)0.0549 (3)0.53801 (18)0.0262 (5)
H230.5098120.0712190.4704520.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (2)0.0282 (3)0.0284 (3)0.0015 (2)0.0053 (2)0.0022 (3)
O10.0308 (9)0.0251 (8)0.0227 (8)0.0017 (7)0.0012 (7)0.0063 (7)
O20.0252 (8)0.0259 (9)0.0403 (10)0.0009 (7)0.0014 (7)0.0011 (7)
O30.0290 (9)0.0309 (9)0.0398 (10)0.0008 (7)0.0031 (8)0.0067 (8)
O40.0376 (10)0.0279 (9)0.0279 (9)0.0030 (7)0.0015 (8)0.0024 (7)
N10.0206 (9)0.0232 (9)0.0224 (9)0.0002 (7)0.0003 (7)0.0022 (8)
N20.0220 (9)0.0237 (9)0.0203 (10)0.0015 (7)0.0013 (7)0.0029 (7)
C10.0239 (11)0.0186 (10)0.0212 (11)0.0000 (8)0.0025 (9)0.0006 (9)
C20.0230 (11)0.0189 (10)0.0207 (10)0.0004 (8)0.0002 (9)0.0007 (8)
C30.0229 (11)0.0191 (10)0.0183 (10)0.0010 (8)0.0003 (8)0.0027 (8)
C40.0288 (13)0.0347 (13)0.0243 (12)0.0083 (10)0.0011 (10)0.0085 (10)
C50.0243 (12)0.0293 (12)0.0394 (15)0.0043 (9)0.0049 (10)0.0108 (10)
C60.0313 (13)0.0232 (12)0.0493 (17)0.0033 (10)0.0038 (12)0.0042 (11)
C70.0315 (13)0.0313 (13)0.0420 (15)0.0067 (11)0.0035 (11)0.0012 (12)
C80.0366 (14)0.0284 (13)0.0328 (14)0.0058 (11)0.0051 (11)0.0039 (11)
C90.0403 (15)0.0377 (15)0.0244 (13)0.0057 (11)0.0031 (11)0.0031 (10)
C100.0265 (12)0.0375 (14)0.0267 (12)0.0032 (10)0.0035 (10)0.0027 (11)
C110.0214 (11)0.0293 (12)0.0298 (12)0.0037 (9)0.0046 (9)0.0051 (10)
C120.0202 (10)0.0161 (10)0.0251 (11)0.0036 (8)0.0018 (9)0.0001 (8)
C130.0254 (12)0.0234 (11)0.0301 (12)0.0002 (9)0.0004 (10)0.0049 (10)
C140.0252 (12)0.0228 (11)0.0455 (15)0.0013 (9)0.0007 (11)0.0050 (11)
C150.0233 (12)0.0261 (12)0.0495 (17)0.0021 (10)0.0071 (11)0.0114 (11)
C160.0298 (13)0.0373 (14)0.0318 (13)0.0056 (11)0.0056 (10)0.0116 (11)
C170.0253 (12)0.0302 (13)0.0262 (12)0.0021 (9)0.0005 (10)0.0024 (10)
C180.0182 (10)0.0214 (10)0.0259 (11)0.0023 (8)0.0016 (9)0.0008 (9)
C190.0262 (13)0.0341 (13)0.0253 (12)0.0017 (10)0.0012 (9)0.0007 (10)
C200.0306 (14)0.0514 (16)0.0312 (14)0.0049 (12)0.0017 (11)0.0191 (13)
C210.0243 (13)0.0309 (13)0.0569 (17)0.0005 (11)0.0038 (11)0.0162 (12)
C220.0246 (12)0.0258 (12)0.0497 (17)0.0046 (10)0.0031 (12)0.0004 (12)
C230.0252 (12)0.0259 (12)0.0274 (12)0.0015 (9)0.0003 (9)0.0007 (10)
Geometric parameters (Å, º) top
S1—C11.742 (2)C9—H9A0.9900
S1—C41.804 (2)C9—H9B0.9900
O1—C21.213 (3)C10—C111.512 (3)
O2—C51.417 (3)C10—H10A0.9900
O2—C61.421 (3)C10—H10B0.9900
O3—C71.420 (3)C11—H11A0.9900
O3—C81.426 (3)C11—H11B0.9900
O4—C101.420 (3)C12—C171.382 (3)
O4—C91.427 (3)C12—C131.396 (3)
N1—C21.373 (3)C13—C141.385 (3)
N1—C11.399 (3)C13—H130.9500
N1—C111.467 (3)C14—C151.385 (4)
N2—C11.280 (3)C14—H140.9500
N2—C31.481 (3)C15—C161.376 (4)
C2—C31.543 (3)C15—H150.9500
C3—C181.531 (3)C16—C171.399 (4)
C3—C121.538 (3)C16—H160.9500
C4—C51.501 (4)C17—H170.9500
C4—H4A0.9900C18—C231.390 (3)
C4—H4B0.9900C18—C191.392 (3)
C5—H5A0.9900C19—C201.390 (4)
C5—H5B0.9900C19—H190.9500
C6—C71.512 (4)C20—C211.383 (4)
C6—H6A0.9900C20—H200.9500
C6—H6B0.9900C21—C221.371 (4)
C7—H7A0.9900C21—H210.9500
C7—H7B0.9900C22—C231.379 (3)
C8—C91.494 (4)C22—H220.9500
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900
C1—S1—C4100.98 (11)C8—C9—H9A109.2
C5—O2—C6113.00 (18)O4—C9—H9B109.2
C7—O3—C8111.80 (19)C8—C9—H9B109.2
C10—O4—C9114.71 (19)H9A—C9—H9B107.9
C2—N1—C1108.25 (18)O4—C10—C11107.34 (19)
C2—N1—C11124.32 (19)O4—C10—H10A110.2
C1—N1—C11126.81 (19)C11—C10—H10A110.2
C1—N2—C3106.09 (18)O4—C10—H10B110.2
N2—C1—N1116.06 (19)C11—C10—H10B110.2
N2—C1—S1128.12 (17)H10A—C10—H10B108.5
N1—C1—S1115.82 (16)N1—C11—C10111.8 (2)
O1—C2—N1125.9 (2)N1—C11—H11A109.3
O1—C2—C3129.4 (2)C10—C11—H11A109.3
N1—C2—C3104.72 (17)N1—C11—H11B109.3
N2—C3—C18111.83 (18)C10—C11—H11B109.3
N2—C3—C12108.13 (16)H11A—C11—H11B107.9
C18—C3—C12110.98 (17)C17—C12—C13119.0 (2)
N2—C3—C2104.83 (16)C17—C12—C3123.3 (2)
C18—C3—C2108.94 (17)C13—C12—C3117.72 (19)
C12—C3—C2112.00 (17)C14—C13—C12120.4 (2)
C5—C4—S1113.21 (17)C14—C13—H13119.8
C5—C4—H4A108.9C12—C13—H13119.8
S1—C4—H4A108.9C13—C14—C15120.3 (2)
C5—C4—H4B108.9C13—C14—H14119.9
S1—C4—H4B108.9C15—C14—H14119.9
H4A—C4—H4B107.7C16—C15—C14119.7 (2)
O2—C5—C4109.02 (19)C16—C15—H15120.1
O2—C5—H5A109.9C14—C15—H15120.1
C4—C5—H5A109.9C15—C16—C17120.3 (2)
O2—C5—H5B109.9C15—C16—H16119.8
C4—C5—H5B109.9C17—C16—H16119.8
H5A—C5—H5B108.3C12—C17—C16120.3 (2)
O2—C6—C7114.1 (2)C12—C17—H17119.9
O2—C6—H6A108.7C16—C17—H17119.9
C7—C6—H6A108.7C23—C18—C19118.7 (2)
O2—C6—H6B108.7C23—C18—C3119.5 (2)
C7—C6—H6B108.7C19—C18—C3121.7 (2)
H6A—C6—H6B107.6C20—C19—C18119.6 (2)
O3—C7—C6108.7 (2)C20—C19—H19120.2
O3—C7—H7A109.9C18—C19—H19120.2
C6—C7—H7A109.9C21—C20—C19121.0 (2)
O3—C7—H7B109.9C21—C20—H20119.5
C6—C7—H7B109.9C19—C20—H20119.5
H7A—C7—H7B108.3C22—C21—C20119.1 (3)
O3—C8—C9109.7 (2)C22—C21—H21120.4
O3—C8—H8A109.7C20—C21—H21120.4
C9—C8—H8A109.7C21—C22—C23120.6 (3)
O3—C8—H8B109.7C21—C22—H22119.7
C9—C8—H8B109.7C23—C22—H22119.7
H8A—C8—H8B108.2C22—C23—C18120.8 (2)
O4—C9—C8112.3 (2)C22—C23—H23119.6
O4—C9—H9A109.2C18—C23—H23119.6
C3—N2—C1—N12.5 (2)C2—N1—C11—C1093.2 (3)
C3—N2—C1—S1176.97 (17)C1—N1—C11—C1076.6 (3)
C2—N1—C1—N22.0 (3)O4—C10—C11—N165.4 (2)
C11—N1—C1—N2173.2 (2)N2—C3—C12—C17125.5 (2)
C2—N1—C1—S1177.53 (15)C18—C3—C12—C17111.5 (2)
C11—N1—C1—S16.3 (3)C2—C3—C12—C1710.5 (3)
C4—S1—C1—N217.3 (2)N2—C3—C12—C1353.2 (2)
C4—S1—C1—N1162.16 (17)C18—C3—C12—C1369.8 (2)
C1—N1—C2—O1179.9 (2)C2—C3—C12—C13168.20 (18)
C11—N1—C2—O18.7 (4)C17—C12—C13—C140.8 (3)
C1—N1—C2—C30.5 (2)C3—C12—C13—C14177.91 (19)
C11—N1—C2—C3172.0 (2)C12—C13—C14—C150.1 (3)
C1—N2—C3—C18119.9 (2)C13—C14—C15—C160.7 (4)
C1—N2—C3—C12117.66 (19)C14—C15—C16—C170.5 (4)
C1—N2—C3—C22.0 (2)C13—C12—C17—C161.0 (3)
O1—C2—C3—N2178.5 (2)C3—C12—C17—C16177.6 (2)
N1—C2—C3—N20.8 (2)C15—C16—C17—C120.4 (4)
O1—C2—C3—C1858.6 (3)N2—C3—C18—C23173.82 (19)
N1—C2—C3—C18120.68 (19)C12—C3—C18—C2365.3 (3)
O1—C2—C3—C1264.5 (3)C2—C3—C18—C2358.4 (3)
N1—C2—C3—C12116.16 (19)N2—C3—C18—C195.8 (3)
C1—S1—C4—C564.68 (19)C12—C3—C18—C19115.1 (2)
C6—O2—C5—C4173.52 (18)C2—C3—C18—C19121.2 (2)
S1—C4—C5—O259.4 (2)C23—C18—C19—C201.7 (4)
C5—O2—C6—C777.0 (3)C3—C18—C19—C20177.9 (2)
C8—O3—C7—C6174.8 (2)C18—C19—C20—C210.8 (4)
O2—C6—C7—O359.3 (3)C19—C20—C21—C221.8 (4)
C7—O3—C8—C9168.7 (2)C20—C21—C22—C230.3 (4)
C10—O4—C9—C891.9 (3)C21—C22—C23—C182.2 (4)
O3—C8—C9—O474.9 (3)C19—C18—C23—C223.2 (4)
C9—O4—C10—C11169.19 (19)C3—C18—C23—C22176.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C18–C23 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5B···N20.992.593.233 (3)123
C10—H10B···O30.992.503.162 (3)124
C14—H14···O2i0.952.563.397 (3)148
C6—H6A···Cg3ii0.992.843.792 (3)162
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AA; investigation, WG and AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfstathiou, E., Titus, M., Wen, S., Hoang, A., Karlou, M., Ashe, R., Tu, S. M., Aparicio, A., Troncoso, P., Mohler, J. & Logothetis, C. J. (2015). Eur. Urol. 67, 53–60.  CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, https://doi.org/10.1080/07391102.2022.2069865  CSD CrossRef Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. 40, 8765–8782.  CSD CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. J. & Ramli, Y. (2023). IUCrData, 8, x230060.  Google Scholar
First citationGuerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.  Google Scholar
First citationJain, V. S., Vora, D. K. & Ramaa, C. (2013). Bioorg. Med. Chem. 21, 1599–1620.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMeusel, M. & Gütschow, M. (2004). Org. Prep. Proced. Int. 36, 391–443.  CrossRef CAS Google Scholar
First citationScholl, S., Koch, A., Henning, D., Kempter, G. & Kleinpeter, E. (1999). Struct. Chem. 10, 355–366.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629.  Web of Science PubMed Google Scholar
First citationVengurlekar, S., Sharma, R. & Trivedi, P. (2012). Lett. Drug. Des. Discov. 9, 549–555.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146