metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­chlorido­tetra­kis­(4-meth­­oxy­pyridine-κN)ruthenium(II)

crossmark logo

aRigaku Americas Corporation, 9009 New Trails Dr., The Woodlands, TX 77381, USA, and b900 N Grand Avenue, Suite 61651, Sherman, TX 75090, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by R. J. Butcher, Howard University, USA (Received 30 January 2023; accepted 20 February 2023; online 28 February 2023)

The structure of the title complex, [RuCl2(C6H6NO)4], exhibits point group symmetry [\overline{4}]. The structure exhibits disorder around a [\overline{4}] axis. The 4-meth­oxy­pyridine ligands have a propeller-like arrangement around the RuII atom at 52.0 (3)° from the RuN4 plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Ru—N distances in the title compound (Fig. 1[link]) are 2.059 (7) and 2.137 (5) Å for N1A and N1B, respectively. These diverge from the Ru—N(pyrid­yl) distances of 2.090 (3) and 2.092 (3) Å found in the structure of the ruthenium(II) complex containing four 4-meth­oxy­pyridine and trans-bis­(thio­cyanato-κN) ligands (Cadranel et al., 2016[Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475.]). The title complex has a propeller-like arrangement of the pyridyl ligands around the ruth­enium(II) at 52.0 (3)° from the plane containing the ruthenium and the coordinating nitro­gen atoms. This arrangement is typical of RuII complexes with polypyridyl ligands such as the aforementioned bis­(thio­cyanato) complex (Cadranel et al., 2016[Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475.]) or Ru(pyrazine-κN)4Cl2 (Nesterov et al., 2012[Nesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). Acta Cryst. E68, m1193.]). The structure of the title complex has the ruthenium atoms positioned on the [\overline{4}] axis (Fig. 2[link]), which results in disorder of the chlorido and 4-methoxypyridine ligands.

[Figure 1]
Figure 1
Displacement ellipsoid (50% probability level) representation of the title complex with disorder omitted for clarity.
[Figure 2]
Figure 2
Projection of 1 onto the (111) plane. Anisotropic displacement ellipsoids have been set to the 50% probability level. Additional conformations of the mol­ecule generated via the disorder around [\overline{4}] as well as the hydrogen atoms have been removed for the sake of clarity.

Synthesis and crystallization

Following the synthetic procedures for trans-Ru(4-meth­oxy­pyridine-κN)4Cl2 (Alborés et al., 2004[Alborés, P., Slep, L. D., Weyhermüller, T. & Baraldo, L. M. (2004). Inorg. Chem. 43, 6762-6773.]) and trans-Ru(pyrazine-κN)4Cl2 (Carlucci et al., 2002[Carlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907-1911.]), a mixture of 4-meth­oxy­pyridine (0.5 mL, 5 mmol) and [RuCl2(dmso)4] (100 mg, 0.21 mmol) in 17 mL of toluene and 3 mL of butanol were refluxed for 3 h with stirring. After sitting in the cooled solution for four days, the solid was filtered in air and washed with 20 mL of toluene to afford 49 mg of the product (39% yield).

Orange prisms were grown from a slow liquid diffusion of tetra­hydro­furan into a di­chloro­methane solution of the title complex.

Refinement

Crystal data, data collection, and refinement details are summarized in Table 1[link]. The asymmetric unit contains one 4-meth­oxy­pyridine disordered over two positions around the [\overline{4}] axis with ratios set to 0.55 and 0.45 between the two conformations. This ratio yielded the highest quality model as judged by the metrics R1, wR2, as well as resolution of residual electron density. Standard uncertainties were not reported due to the occupancy ratios being fixed. H atoms bound to C atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and constrained to ride on the parent atom. Uiso (H) values were set to a multiple of Ueq (C) [1.2 for CH2 (sp2) and 1.5 for CH3 (sp3)]. Twinning by merohedry was resolved by completing the final refinement using the matrix (0 1 0 1 0 0 0 0 [\overline{1}]) twin law.

Table 1
Experimental details

Crystal data
Chemical formula [RuCl2(C12H14N2O2)2]
Mr 608.47
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 17.2417 (1), 8.7307 (2)
V3) 2595.43 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.25 × 0.12 × 0.10
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.901, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 102632, 1494, 1367
Rint 0.029
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.07
No. of reflections 1494
No. of parameters 147
No. of restraints 131
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.53a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.53a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.53a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

trans-Dichloridotetrakis(4-methoxypyridine-κN)ruthenium(II) top
Crystal data top
[RuCl2(C12H14N2O2)2]Dx = 1.557 Mg m3
Mr = 608.47Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 17604 reflections
a = 17.2417 (1) Åθ = 2.4–30.1°
c = 8.7307 (2) ŵ = 0.85 mm1
V = 2595.43 (7) Å3T = 293 K
Z = 4Block, orange
F(000) = 12400.25 × 0.12 × 0.1 mm
Data collection top
XtaLAB Mini II
diffractometer
1494 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source1367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2222
Tmin = 0.901, Tmax = 1.000l = 1111
102632 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + 15.430P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1494 reflectionsΔρmax = 0.38 e Å3
147 parametersΔρmin = 0.38 e Å3
131 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.5000000.2500000.8750000.03156 (14)
N1B0.4401 (5)0.3133 (5)0.7009 (8)0.0333 (16)0.45
C1B0.3596 (5)0.3168 (5)0.6994 (9)0.031 (2)0.45
H1B0.3312030.2937770.7777100.038*0.45
C2B0.3214 (4)0.3547 (7)0.5807 (11)0.053 (4)0.45
H2B0.2675590.3570280.5796910.064*0.45
C3B0.3639 (6)0.3891 (6)0.4636 (9)0.038 (2)0.45
C4B0.4444 (6)0.3857 (5)0.4652 (8)0.033 (2)0.45
H4B0.4727670.4087120.3868510.040*0.45
C5B0.4825 (4)0.3478 (6)0.5838 (10)0.036 (3)0.45
H5B0.5364120.3454610.5848690.043*0.45
Cl10.3999 (6)0.3486 (6)0.8850 (3)0.0360 (4)0.5
O1B0.3229 (10)0.4262 (12)0.3520 (15)0.052 (4)0.45
N1A0.4418 (6)0.3089 (5)1.0449 (8)0.0321 (13)0.55
C5A0.4350 (7)0.3866 (6)1.0540 (13)0.045 (3)0.55
H5A0.4593800.4153370.9777690.054*0.55
C2A0.3646 (7)0.3066 (7)1.2771 (14)0.055 (4)0.55
H2A0.3417060.2755101.3514890.066*0.55
C1A0.4062 (7)0.2740 (6)1.1595 (13)0.044 (3)0.55
H1A0.4097910.2202311.1607700.052*0.55
C3A0.3574 (7)0.3869 (7)1.2831 (8)0.038 (2)0.55
C4A0.3959 (6)0.4277 (5)1.1639 (11)0.035 (2)0.55
H4A0.3946180.4816091.1605560.042*0.55
C6A0.2873 (11)0.3862 (10)1.5143 (15)0.077 (5)0.55
H6AA0.2470650.3535011.4741720.116*0.55
H6AB0.2655340.4212741.5881800.116*0.55
H6AC0.3262250.3548361.5624640.116*0.55
O1A0.3210 (10)0.4290 (9)1.3939 (10)0.051 (3)0.55
C6B0.3627 (9)0.4650 (8)0.2338 (13)0.041 (3)0.45
H6BA0.3264010.4936630.1726460.061*0.45
H6BB0.3890150.4277430.1706150.061*0.45
H6BC0.3999520.4999920.2774670.061*0.45
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02965 (17)0.02965 (17)0.0354 (3)0.0000.0000.000
N1B0.034 (3)0.030 (5)0.036 (3)0.004 (3)0.000 (3)0.004 (3)
C1B0.034 (3)0.026 (6)0.033 (4)0.006 (3)0.001 (3)0.002 (4)
C2B0.040 (4)0.056 (10)0.063 (6)0.003 (5)0.008 (4)0.027 (7)
C3B0.038 (4)0.030 (6)0.047 (5)0.003 (4)0.014 (3)0.011 (5)
C4B0.039 (4)0.041 (6)0.020 (4)0.002 (4)0.012 (3)0.005 (3)
C5B0.032 (4)0.048 (7)0.029 (4)0.004 (4)0.010 (3)0.007 (4)
Cl10.032 (2)0.042 (3)0.0339 (8)0.0063 (6)0.0015 (13)0.0008 (13)
O1B0.047 (6)0.055 (9)0.054 (6)0.009 (5)0.018 (5)0.022 (6)
N1A0.039 (4)0.023 (3)0.034 (2)0.001 (2)0.001 (2)0.007 (2)
C5A0.058 (7)0.023 (3)0.053 (5)0.001 (3)0.018 (5)0.006 (3)
C2A0.068 (8)0.035 (3)0.061 (6)0.004 (4)0.029 (6)0.013 (3)
C1A0.056 (7)0.025 (3)0.049 (4)0.004 (4)0.016 (4)0.013 (3)
C3A0.050 (6)0.036 (3)0.030 (3)0.003 (3)0.005 (3)0.005 (3)
C4A0.041 (6)0.028 (3)0.034 (3)0.005 (3)0.005 (3)0.006 (3)
C6A0.117 (13)0.070 (9)0.046 (6)0.008 (8)0.029 (7)0.006 (6)
O1A0.073 (9)0.049 (5)0.032 (4)0.006 (4)0.003 (5)0.001 (4)
C6B0.056 (7)0.029 (5)0.037 (5)0.005 (5)0.020 (5)0.003 (4)
Geometric parameters (Å, º) top
Ru1—N1Bi2.137 (5)C4B—C5B1.3900
Ru1—N1Bii2.137 (5)C5B—H5B0.9300
Ru1—N1Biii2.137 (5)O1B—C6B1.409 (11)
Ru1—N1B2.137 (5)N1A—C5A1.346 (9)
Ru1—Cl1iii2.4235 (15)N1A—C1A1.319 (10)
Ru1—Cl1ii2.4235 (15)C5A—H5A0.9300
Ru1—Cl1i2.4235 (16)C5A—C4A1.370 (11)
Ru1—Cl12.4236 (15)C2A—H2A0.9300
Ru1—N1A2.059 (7)C2A—C1A1.372 (12)
Ru1—N1Aiii2.059 (7)C2A—C3A1.391 (11)
Ru1—N1Ai2.059 (7)C1A—H1A0.9300
Ru1—N1Aii2.059 (7)C3A—C4A1.421 (11)
N1B—C1B1.3900C3A—O1A1.363 (7)
N1B—C5B1.3900C4A—H4A0.9300
C1B—H1B0.9300C6A—H6AA0.9600
C1B—C2B1.3900C6A—H6AB0.9600
C2B—H2B0.9300C6A—H6AC0.9600
C2B—C3B1.3900C6A—O1A1.409 (11)
C3B—C4B1.3900C6B—H6BA0.9600
C3B—O1B1.363 (7)C6B—H6BB0.9600
C4B—H4B0.9300C6B—H6BC0.9600
N1Bi—Ru1—N1Bii120.4 (3)N1Aii—Ru1—N1Ai121.2 (2)
N1Bi—Ru1—N1B120.4 (3)N1A—Ru1—N1Aiii121.2 (2)
N1Bii—Ru1—N1B89.4 (5)N1Aiii—Ru1—N1Ai87.9 (4)
N1Biii—Ru1—N1B120.4 (3)C1B—N1B—Ru1120.8 (5)
N1Biii—Ru1—Cl1ii90.0 (4)C1B—N1B—C5B120.0
N1Biii—Ru1—Cl1i136.7 (2)C5B—N1B—Ru1119.1 (5)
N1Bi—Ru1—Cl1ii87.1 (4)N1B—C1B—H1B120.0
N1Bii—Ru1—Cl1i90.0 (4)N1B—C1B—C2B120.0
N1Bi—Ru1—Cl1i47.4 (2)C2B—C1B—H1B120.0
N1Bii—Ru1—Cl1ii47.4 (2)C1B—C2B—H2B120.0
N1Biii—Ru1—Cl187.1 (4)C1B—C2B—C3B120.0
N1Bii—Ru1—Cl1136.7 (2)C3B—C2B—H2B120.0
N1B—Ru1—Cl1i87.1 (4)C4B—C3B—C2B120.0
N1B—Ru1—Cl147.4 (2)O1B—C3B—C2B117.0 (9)
N1B—Ru1—Cl1ii136.7 (2)O1B—C3B—C4B123.0 (9)
N1Bi—Ru1—Cl190.0 (4)C3B—C4B—H4B120.0
Cl1i—Ru1—Cl1ii90.075 (5)C3B—C4B—C5B120.0
Cl1i—Ru1—Cl190.076 (5)C5B—C4B—H4B120.0
Cl1ii—Ru1—Cl1175.86 (12)N1B—C5B—H5B120.0
Cl1iii—Ru1—Cl1ii90.075 (5)C4B—C5B—N1B120.0
Cl1iii—Ru1—Cl190.074 (5)C4B—C5B—H5B120.0
Cl1iii—Ru1—Cl1i175.86 (12)C3B—O1B—C6B119.6 (13)
N1A—Ru1—N1Bi59.9 (2)C5A—N1A—Ru1125.2 (7)
N1Ai—Ru1—N1Biii178.8 (3)C1A—N1A—Ru1123.2 (6)
N1Aii—Ru1—N1Biii59.9 (2)C1A—N1A—C5A111.6 (7)
N1Aiii—Ru1—N1Bii58.5 (2)N1A—C5A—H5A116.6
N1Aii—Ru1—N1Bi58.5 (2)N1A—C5A—C4A126.8 (8)
N1A—Ru1—N1Bii178.8 (3)C4A—C5A—H5A116.6
N1Aii—Ru1—N1Bii91.40 (18)C1A—C2A—H2A120.6
N1Aiii—Ru1—N1Bi178.8 (3)C1A—C2A—C3A118.8 (8)
N1Ai—Ru1—N1Bi91.40 (18)C3A—C2A—H2A120.6
N1Ai—Ru1—N1Bii59.9 (2)N1A—C1A—C2A128.6 (8)
N1A—Ru1—N1Biii58.5 (2)N1A—C1A—H1A115.7
N1Aiii—Ru1—N1Biii91.40 (18)C2A—C1A—H1A115.7
N1Aii—Ru1—Cl1iii90.9 (4)C2A—C3A—C4A115.1 (8)
N1A—Ru1—Cl1ii131.8 (2)O1A—C3A—C2A126.7 (11)
N1Aiii—Ru1—Cl1ii92.0 (4)O1A—C3A—C4A118.1 (10)
N1Ai—Ru1—Cl192.0 (4)C5A—C4A—C3A119.1 (7)
N1A—Ru1—Cl144.0 (2)C5A—C4A—H4A120.4
N1Ai—Ru1—Cl1ii90.9 (4)C3A—C4A—H4A120.4
N1Aii—Ru1—Cl1131.9 (2)H6AA—C6A—H6AB109.5
N1Ai—Ru1—Cl1iii131.8 (2)H6AA—C6A—H6AC109.5
N1Aiii—Ru1—Cl1iii44.0 (2)H6AB—C6A—H6AC109.5
N1Aii—Ru1—Cl1i92.0 (4)O1A—C6A—H6AA109.5
N1Aiii—Ru1—Cl190.9 (4)O1A—C6A—H6AB109.5
N1A—Ru1—Cl1i90.9 (4)O1A—C6A—H6AC109.5
N1Aii—Ru1—Cl1ii44.0 (2)C3A—O1A—C6A116.2 (12)
N1Aiii—Ru1—Cl1i131.8 (2)O1B—C6B—H6BA109.5
N1A—Ru1—Cl1iii92.0 (4)O1B—C6B—H6BB109.5
N1Ai—Ru1—Cl1i44.0 (2)O1B—C6B—H6BC109.5
N1A—Ru1—N1Aii87.9 (4)H6BA—C6B—H6BB109.5
N1Aiii—Ru1—N1Aii121.2 (2)H6BA—C6B—H6BC109.5
N1A—Ru1—N1Ai121.2 (2)H6BB—C6B—H6BC109.5
Ru1—N1B—C1B—C2B176.5 (7)C5B—N1B—C1B—C2B0.0
Ru1—N1B—C5B—C4B176.6 (7)O1B—C3B—C4B—C5B179.1 (15)
Ru1—N1A—C5A—C4A179.0 (9)N1A—C5A—C4A—C3A0.1 (16)
Ru1—N1A—C1A—C2A178.7 (10)C5A—N1A—C1A—C2A1.3 (14)
N1B—C1B—C2B—C3B0.0C2A—C3A—C4A—C5A1.0 (14)
C1B—N1B—C5B—C4B0.0C2A—C3A—O1A—C6A0 (2)
C1B—C2B—C3B—C4B0.0C1A—N1A—C5A—C4A1.0 (14)
C1B—C2B—C3B—O1B179.2 (14)C1A—C2A—C3A—C4A0.8 (14)
C2B—C3B—C4B—C5B0.0C1A—C2A—C3A—O1A177.4 (14)
C2B—C3B—O1B—C6B177.3 (13)C3A—C2A—C1A—N1A0.5 (16)
C3B—C4B—C5B—N1B0.0C4A—C3A—O1A—C6A176.6 (14)
C4B—C3B—O1B—C6B2 (3)O1A—C3A—C4A—C5A178.0 (12)
Symmetry codes: (i) y+1/4, x+3/4, z+7/4; (ii) x+1, y+1/2, z; (iii) y+3/4, x1/4, z+7/4.
 

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College); Jerry Taylor and Nancy Bryant Foundation (gift to the Austin College Science Division).

References

First citationAlborés, P., Slep, L. D., Weyhermüller, T. & Baraldo, L. M. (2004). Inorg. Chem. 43, 6762–6773.  PubMed Google Scholar
First citationCadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464–5475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCarlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907–1911.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). Acta Cryst. E68, m1193.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146