organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Phenyl­ene di­allyl bis­­(carbonate)

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bDoctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by R. J. Butcher, Howard University, USA (Received 13 December 2022; accepted 13 February 2023; online 21 February 2023)

The title mol­ecule, C14H14O6, is based on a benzene core di-substituted by allyl carbonate groups in the para positions. The mol­ecule is placed on an inversion centre, and the substituents are twisted with respect to the central benzene ring plane. The crystal structure does not include significant inter­molecular inter­actions other than weak C—H⋯O contacts between CH groups in the benzene ring and carbonate O atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Allylic compounds are common reagents in organic chemistry for obtaining new allyl derivatives and polymeric materials (e.g. Nair et al., 2010[Nair, D. P., Cramer, N. B., Scott, T. F., Bowman, C. N. & Shandas, R. (2010). Polymer, 51, 4383-4389.]). Within this class of compounds, functional allyl aromatic carbonates (Flores Ahuactzin et al., 2009[Flores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.]) are also suitable building blocks to produce diallyl carbonate compounds (López et al., 1997[López, D., Plata, P., Burillo, G. & Medina, C. (1997). Radiat. Phys. Chem. 50, 171-173.]), as well as reactive homopolycarbonates or copolymers, obtained by free radical polymerization. Concerning diallyl carbonates, they can be used as cross-linking agents (Nair et al., 2010[Nair, D. P., Cramer, N. B., Scott, T. F., Bowman, C. N. & Shandas, R. (2010). Polymer, 51, 4383-4389.]; López & Burillo, 1991[López, D. & Burillo, G. (1991). ACS Symp. Ser. 475, 262-270.]), and they can also be polymerized to homopolymers or copolymers, such as poly[all­yl(p-allyl­carbonate)benzoate] (López-V et al., 2011[López-V, D., Herrera-G, A. M. & Castillo-Rojas, S. (2011). Radiat. Phys. Chem. 80, 481-486.]) or poly[1-benzoate-2,3-di­allyl­carbonate glycerol] (López et al., 1997[López, D., Plata, P., Burillo, G. & Medina, C. (1997). Radiat. Phys. Chem. 50, 171-173.]).

The reaction between allyl chloro­formate (ACF) and a diol affords mono allyl carbonate and diallyl carbonate derivatives. The reaction of ACF with hydro­quinone gives allyl-4-hy­droxy­phenyl carbonate (Flores et al., 2009[Flores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.]) and 1,4-phenyl­ene diallyl bis­(carbonate). Herein, we report the structure of the latter. The title compound represents the first instance of a 1,4-phenyl­ene bis­(carbonate) derivative to be characterized by X-ray diffraction.

The mol­ecule lies on an inversion centre in space group P21/n, with the symmetry element coinciding with the centre of the benzene ring (Fig. 1[link]). This ring is disubstituted in the para positions by allyl carbonate groups, which are not coplanar with the ring: the dihedral angle between the mean plane of the benzene and the plane of the carbonate group O4/C5/O6/O7 is 68.69 (4)°, and the dihedral angle between the carbonate group and the allyl group C8/C9/C10 is 51.1 (2)°. This twisted conformation was previously observed for the four reported X-ray structures bearing a benzene ring substituted by an allyl carbonate group (Flores Ahuactzin et al., 2009[Flores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.]; Herrera-González et al., 2009[Herrera-González, A. M., López-Velázquez, D. & Bernès, S. (2009). Acta Cryst. E65, o2810-o2811.]; Li et al., 2019[Li, M., Chen, H., Zheng, K., Liu, X., Xiao, S. & Zhang, N. (2019). Inorg. Chim. Acta, 495, 119000.]; Schmid et al., 2019[Schmid, M., Grossmann, A. S., Mayer, P., Müller, T. & Magauer, T. (2019). Tetrahedron, 75, 3195-3215.]). This conformation does not promote strong inter­molecular contacts in the crystal structure, as hydrogen bonds or ππ inter­actions. The benzene H atoms are, however, engaged in C—H⋯O contacts with neighbouring mol­ecules. The C1—H1 group makes an almost linear contact with the carbonate O atom O7 (Table 1[link], entry 1; Fig. 2[link]), while C2—H2 inter­acts with the carbonyl O atom O6, forming centrosymmetric R22(14) ring motifs in the crystal (Table 1[link], entry 2; Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O7i 0.93 2.59 3.5100 (16) 169
C2—H2⋯O6ii 0.93 2.57 3.4555 (16) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, y-1, z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Non-H atoms are drawn at the 30% probability level. Non-labelled atoms are generated by the symmetry operation 1 − x, 1 − y, −z. The inset is the raw material as obtained from the synthesis. The edges of the hexa­gonal flake have dimensions of ca 5 mm.
[Figure 2]
Figure 2
Part of the crystal structure based on C1—H1⋯O7 inter­actions (Table 1[link], entry 1). The asymmetric unit is coloured in grey, while orange, green and magenta moieties are generated by inversion, 21 axis and n glide plane, respectively.
[Figure 3]
Figure 3
Part of the crystal structure based on C2—H2⋯O6 inter­actions (Table 1[link], entry 2). Grey fragments are generated from the asymmetric unit by lattice translations, and orange fragments are generated by inversion.

Synthesis and crystallization

To a three-neck round-bottom flask connected to an addition funnel, hydro­quinone (2.28 g, 20.7 mmol) was added and dissolved in 20 ml of THF under an argon atmosphere. After continuous agitation, a homogeneous phase was observed in the reaction flask, and NaHCO3 (0.86 g, 10.3 mmol), previously dissolved in 5 ml of distilled water, was added. Then, the reaction flask was placed in an ice bath and allyl chloro­formate (1.09 ml, 10.3 mmol) was slowly added dropwise, maintaining the agitation. After complete addition, the reaction was left for 5–10 minutes at 273 K, and then at room temperature for 2 h. After completion of the reaction, the products were extracted in a separation funnel using CH2Cl2, and dried over anhydrous Na2SO4. The reaction mixture was filtered and concentrated. The resulting concentrated solution was precipitated into hexane. The precipitate was collected, washed with hexane, and dried in vacuo (yield: 1.152 g, 20%). Transparent prismatic single crystals were recovered from this material for X-ray study (see Fig. 1[link], inset). 1H NMR (500 MHz, CDCl3), δ (p.p.m.): 4.75 (d, J = 5.0 Hz, 4H), 5.34 (d, J = 10.0 Hz, 2H), 5.44 (dd, J = 17.5, 1.5 Hz, 2H), 5.90 (m, 2H), 7.21 (s, 4H); 13C NMR (125 MHz, CDCl3), δ (p.p.m.): 69.3 (–CH2–), 119.7 (=CH2), 122.0 (benzene), 131.1 (=CH), 148.6 (benzene), 154.3 (C=O); FTIR (ATR, ν, cm−1): 3082 (Csp2—H), 2960 (Csp3—H), 1757 (C=O), 1649 (C=C, all­yl), 1602 (C=C, aromatic), 770 (aromatic ring), 730 (Csp3—H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14O6
Mr 278.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 253
a, b, c (Å) 10.2808 (13), 5.4764 (6), 12.7396 (15)
β (°) 104.070 (9)
V3) 695.74 (14)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.06
Crystal size (mm) 0.60 × 0.50 × 0.50
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.536, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16744, 1620, 1305
Rint 0.029
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.04
No. of reflections 1620
No. of parameters 98
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4-Phenylene diallyl bis(carbonate) top
Crystal data top
C14H14O6F(000) = 292
Mr = 278.25Dx = 1.328 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56083 Å
a = 10.2808 (13) ÅCell parameters from 19549 reflections
b = 5.4764 (6) Åθ = 2.3–31.6°
c = 12.7396 (15) ŵ = 0.06 mm1
β = 104.070 (9)°T = 253 K
V = 695.74 (14) Å3Prism, colourless
Z = 20.60 × 0.50 × 0.50 mm
Data collection top
Stoe Stadivari
diffractometer
1620 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source1305 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.029
Detector resolution: 5.81 pixels mm-1θmax = 21.5°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 77
Tmin = 0.536, Tmax = 1.000l = 1616
16744 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1879P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1620 reflectionsΔρmax = 0.18 e Å3
98 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.023 (6)
Primary atom site location: dual
Special details top

Refinement. Allyl H atoms (H10a and H10b) were refined with free coordinates, and other H atoms were placed on calculated positions. All H atoms were refined with isotropic displacements, calculated as Uiso(H) = 1.2×Ueq(carrier C atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41290 (13)0.3086 (2)0.03895 (10)0.0404 (3)
H10.3540510.1820110.0661690.049*
C20.47808 (13)0.3163 (2)0.06961 (10)0.0401 (3)
H20.4645420.1945510.1167320.048*
C30.56326 (12)0.5078 (2)0.10622 (9)0.0365 (3)
O40.63189 (9)0.50484 (17)0.21618 (7)0.0450 (3)
C50.59396 (12)0.6762 (2)0.27902 (9)0.0366 (3)
O60.51476 (10)0.83464 (18)0.24966 (7)0.0498 (3)
O70.66007 (9)0.63120 (18)0.37984 (6)0.0440 (3)
C80.62690 (13)0.7968 (3)0.45975 (10)0.0444 (3)
H8A0.5321990.7854590.4578660.053*
H8B0.6469540.9640130.4441600.053*
C90.70837 (14)0.7236 (3)0.56723 (10)0.0476 (3)
H90.7999450.7008470.5754140.057*
C100.6593 (2)0.6888 (3)0.65149 (13)0.0630 (4)
H10A0.7141 (18)0.644 (4)0.7198 (16)0.076*
H10B0.5653 (19)0.700 (4)0.6461 (14)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (6)0.0346 (6)0.0399 (7)0.0038 (5)0.0063 (5)0.0041 (5)
C20.0516 (7)0.0331 (6)0.0356 (6)0.0008 (5)0.0109 (5)0.0029 (5)
C30.0409 (6)0.0367 (6)0.0290 (6)0.0076 (5)0.0031 (4)0.0027 (5)
O40.0532 (5)0.0449 (5)0.0309 (4)0.0150 (4)0.0012 (4)0.0038 (4)
C50.0368 (6)0.0387 (6)0.0320 (6)0.0025 (5)0.0040 (4)0.0004 (5)
O60.0567 (6)0.0520 (6)0.0366 (5)0.0203 (4)0.0035 (4)0.0010 (4)
O70.0472 (5)0.0508 (5)0.0291 (4)0.0135 (4)0.0000 (3)0.0038 (4)
C80.0470 (7)0.0497 (7)0.0343 (6)0.0064 (6)0.0057 (5)0.0070 (5)
C90.0469 (7)0.0544 (8)0.0371 (7)0.0016 (6)0.0019 (5)0.0077 (6)
C100.0770 (11)0.0669 (10)0.0434 (8)0.0006 (9)0.0112 (7)0.0051 (7)
Geometric parameters (Å, º) top
C1—C3i1.3811 (17)O7—C81.4640 (15)
C1—C21.3830 (17)C8—C91.4763 (17)
C1—H10.9300C8—H8A0.9700
C2—C31.3733 (18)C8—H8B0.9700
C2—H20.9300C9—C101.306 (2)
C3—O41.4071 (14)C9—H90.9300
O4—C51.3513 (14)C10—H10A0.947 (19)
C5—O61.1863 (14)C10—H10B0.954 (18)
C5—O71.3221 (14)
C3i—C1—C2118.84 (11)C5—O7—C8114.10 (9)
C3i—C1—H1120.6O7—C8—C9107.53 (10)
C2—C1—H1120.6O7—C8—H8A110.2
C3—C2—C1118.48 (11)C9—C8—H8A110.2
C3—C2—H2120.8O7—C8—H8B110.2
C1—C2—H2120.8C9—C8—H8B110.2
C2—C3—C1i122.68 (11)H8A—C8—H8B108.5
C2—C3—O4116.95 (11)C10—C9—C8123.81 (14)
C1i—C3—O4120.30 (11)C10—C9—H9118.1
C5—O4—C3115.77 (9)C8—C9—H9118.1
O6—C5—O7126.45 (11)C9—C10—H10A122.1 (12)
O6—C5—O4126.58 (11)C9—C10—H10B121.3 (11)
O7—C5—O4106.96 (9)H10A—C10—H10B116.6 (16)
C3i—C1—C2—C30.5 (2)C3—O4—C5—O7174.50 (10)
C1—C2—C3—C1i0.5 (2)O6—C5—O7—C80.88 (19)
C1—C2—C3—O4177.58 (11)O4—C5—O7—C8177.99 (10)
C2—C3—O4—C5110.62 (12)C5—O7—C8—C9179.91 (11)
C1i—C3—O4—C572.25 (15)O7—C8—C9—C10130.59 (16)
C3—O4—C5—O64.37 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O7ii0.932.593.5100 (16)169
C2—H2···O6iii0.932.573.4555 (16)160
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x, y1, z.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178; scholarship No. 820488 to I. Martínez-de la Luz; scholarship No. 1003328 to I. Núñez-Méndez); Secretaría de Educación Pública (award No. PROFOCIE 2018-20).

References

First citationFlores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrera-González, A. M., López-Velázquez, D. & Bernès, S. (2009). Acta Cryst. E65, o2810–o2811.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, M., Chen, H., Zheng, K., Liu, X., Xiao, S. & Zhang, N. (2019). Inorg. Chim. Acta, 495, 119000.  CSD CrossRef Google Scholar
First citationLópez, D. & Burillo, G. (1991). ACS Symp. Ser. 475, 262–270.  Google Scholar
First citationLópez, D., Plata, P., Burillo, G. & Medina, C. (1997). Radiat. Phys. Chem. 50, 171–173.  Google Scholar
First citationLópez-V, D., Herrera-G, A. M. & Castillo-Rojas, S. (2011). Radiat. Phys. Chem. 80, 481–486.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNair, D. P., Cramer, N. B., Scott, T. F., Bowman, C. N. & Shandas, R. (2010). Polymer, 51, 4383–4389.  CrossRef CAS PubMed Google Scholar
First citationSchmid, M., Grossmann, A. S., Mayer, P., Müller, T. & Magauer, T. (2019). Tetrahedron, 75, 3195–3215.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146