organic compounds
1,4-Phenylene diallyl bis(carbonate)
aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bDoctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title molecule, C14H14O6, is based on a benzene core di-substituted by allyl carbonate groups in the para positions. The molecule is placed on an inversion centre, and the substituents are twisted with respect to the central benzene ring plane. The does not include significant intermolecular interactions other than weak C—H⋯O contacts between CH groups in the benzene ring and carbonate O atoms.
Keywords: crystal structure; carbonate; allyl group; monomer.
CCDC reference: 2241801
Structure description
Allylic compounds are common reagents in organic chemistry for obtaining new allyl derivatives and polymeric materials (e.g. Nair et al., 2010). Within this class of compounds, functional allyl aromatic carbonates (Flores Ahuactzin et al., 2009) are also suitable building blocks to produce diallyl carbonate compounds (López et al., 1997), as well as reactive homopolycarbonates or copolymers, obtained by polymerization. Concerning diallyl carbonates, they can be used as cross-linking agents (Nair et al., 2010; López & Burillo, 1991), and they can also be polymerized to homopolymers or copolymers, such as poly[allyl(p-allylcarbonate)benzoate] (López-V et al., 2011) or poly[1-benzoate-2,3-diallylcarbonate glycerol] (López et al., 1997).
The reaction between allyl chloroformate (ACF) and a diol affords mono allyl carbonate and diallyl carbonate derivatives. The reaction of ACF with hydroquinone gives allyl-4-hydroxyphenyl carbonate (Flores et al., 2009) and 1,4-phenylene diallyl bis(carbonate). Herein, we report the structure of the latter. The title compound represents the first instance of a 1,4-phenylene bis(carbonate) derivative to be characterized by X-ray diffraction.
The molecule lies on an inversion centre in P21/n, with the coinciding with the centre of the benzene ring (Fig. 1). This ring is disubstituted in the para positions by allyl carbonate groups, which are not coplanar with the ring: the dihedral angle between the mean plane of the benzene and the plane of the carbonate group O4/C5/O6/O7 is 68.69 (4)°, and the dihedral angle between the carbonate group and the allyl group C8/C9/C10 is 51.1 (2)°. This twisted conformation was previously observed for the four reported X-ray structures bearing a benzene ring substituted by an allyl carbonate group (Flores Ahuactzin et al., 2009; Herrera-González et al., 2009; Li et al., 2019; Schmid et al., 2019). This conformation does not promote strong intermolecular contacts in the as hydrogen bonds or π–π interactions. The benzene H atoms are, however, engaged in C—H⋯O contacts with neighbouring molecules. The C1—H1 group makes an almost linear contact with the carbonate O atom O7 (Table 1, entry 1; Fig. 2), while C2—H2 interacts with the carbonyl O atom O6, forming centrosymmetric R22(14) ring motifs in the crystal (Table 1, entry 2; Fig. 3).
Synthesis and crystallization
To a three-neck round-bottom flask connected to an addition funnel, hydroquinone (2.28 g, 20.7 mmol) was added and dissolved in 20 ml of THF under an argon atmosphere. After continuous agitation, a homogeneous phase was observed in the reaction flask, and NaHCO3 (0.86 g, 10.3 mmol), previously dissolved in 5 ml of distilled water, was added. Then, the reaction flask was placed in an ice bath and allyl chloroformate (1.09 ml, 10.3 mmol) was slowly added dropwise, maintaining the agitation. After complete addition, the reaction was left for 5–10 minutes at 273 K, and then at room temperature for 2 h. After completion of the reaction, the products were extracted in a separation funnel using CH2Cl2, and dried over anhydrous Na2SO4. The reaction mixture was filtered and concentrated. The resulting concentrated solution was precipitated into hexane. The precipitate was collected, washed with hexane, and dried in vacuo (yield: 1.152 g, 20%). Transparent prismatic single crystals were recovered from this material for X-ray study (see Fig. 1, inset). 1H NMR (500 MHz, CDCl3), δ (p.p.m.): 4.75 (d, J = 5.0 Hz, 4H), 5.34 (d, J = 10.0 Hz, 2H), 5.44 (dd, J = 17.5, 1.5 Hz, 2H), 5.90 (m, 2H), 7.21 (s, 4H); 13C NMR (125 MHz, CDCl3), δ (p.p.m.): 69.3 (–CH2–), 119.7 (=CH2), 122.0 (benzene), 131.1 (=CH), 148.6 (benzene), 154.3 (C=O); FTIR (ATR, ν, cm−1): 3082 (Csp2—H), 2960 (Csp3—H), 1757 (C=O), 1649 (C=C, allyl), 1602 (C=C, aromatic), 770 (aromatic ring), 730 (Csp3—H).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2241801
https://doi.org/10.1107/S2414314623001335/bv4045sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623001335/bv4045Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623001335/bv4045Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2018); cell
X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C14H14O6 | F(000) = 292 |
Mr = 278.25 | Dx = 1.328 Mg m−3 |
Monoclinic, P21/n | Ag Kα radiation, λ = 0.56083 Å |
a = 10.2808 (13) Å | Cell parameters from 19549 reflections |
b = 5.4764 (6) Å | θ = 2.3–31.6° |
c = 12.7396 (15) Å | µ = 0.06 mm−1 |
β = 104.070 (9)° | T = 253 K |
V = 695.74 (14) Å3 | Prism, colourless |
Z = 2 | 0.60 × 0.50 × 0.50 mm |
Stoe Stadivari diffractometer | 1620 independent reflections |
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source | 1305 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.029 |
Detector resolution: 5.81 pixels mm-1 | θmax = 21.5°, θmin = 2.3° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2018) | k = −7→7 |
Tmin = 0.536, Tmax = 1.000 | l = −16→16 |
16744 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1879P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1620 reflections | Δρmax = 0.18 e Å−3 |
98 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.023 (6) |
Primary atom site location: dual |
Refinement. Allyl H atoms (H10a and H10b) were refined with free coordinates, and other H atoms were placed on calculated positions. All H atoms were refined with isotropic displacements, calculated as Uiso(H) = 1.2×Ueq(carrier C atom). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.41290 (13) | 0.3086 (2) | −0.03895 (10) | 0.0404 (3) | |
H1 | 0.354051 | 0.182011 | −0.066169 | 0.049* | |
C2 | 0.47808 (13) | 0.3163 (2) | 0.06961 (10) | 0.0401 (3) | |
H2 | 0.464542 | 0.194551 | 0.116732 | 0.048* | |
C3 | 0.56326 (12) | 0.5078 (2) | 0.10622 (9) | 0.0365 (3) | |
O4 | 0.63189 (9) | 0.50484 (17) | 0.21618 (7) | 0.0450 (3) | |
C5 | 0.59396 (12) | 0.6762 (2) | 0.27902 (9) | 0.0366 (3) | |
O6 | 0.51476 (10) | 0.83464 (18) | 0.24966 (7) | 0.0498 (3) | |
O7 | 0.66007 (9) | 0.63120 (18) | 0.37984 (6) | 0.0440 (3) | |
C8 | 0.62690 (13) | 0.7968 (3) | 0.45975 (10) | 0.0444 (3) | |
H8A | 0.532199 | 0.785459 | 0.457866 | 0.053* | |
H8B | 0.646954 | 0.964013 | 0.444160 | 0.053* | |
C9 | 0.70837 (14) | 0.7236 (3) | 0.56723 (10) | 0.0476 (3) | |
H9 | 0.799945 | 0.700847 | 0.575414 | 0.057* | |
C10 | 0.6593 (2) | 0.6888 (3) | 0.65149 (13) | 0.0630 (4) | |
H10A | 0.7141 (18) | 0.644 (4) | 0.7198 (16) | 0.076* | |
H10B | 0.5653 (19) | 0.700 (4) | 0.6461 (14) | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0448 (6) | 0.0346 (6) | 0.0399 (7) | −0.0038 (5) | 0.0063 (5) | −0.0041 (5) |
C2 | 0.0516 (7) | 0.0331 (6) | 0.0356 (6) | 0.0008 (5) | 0.0109 (5) | 0.0029 (5) |
C3 | 0.0409 (6) | 0.0367 (6) | 0.0290 (6) | 0.0076 (5) | 0.0031 (4) | −0.0027 (5) |
O4 | 0.0532 (5) | 0.0449 (5) | 0.0309 (4) | 0.0150 (4) | −0.0012 (4) | −0.0038 (4) |
C5 | 0.0368 (6) | 0.0387 (6) | 0.0320 (6) | 0.0025 (5) | 0.0040 (4) | 0.0004 (5) |
O6 | 0.0567 (6) | 0.0520 (6) | 0.0366 (5) | 0.0203 (4) | 0.0035 (4) | 0.0010 (4) |
O7 | 0.0472 (5) | 0.0508 (5) | 0.0291 (4) | 0.0135 (4) | 0.0000 (3) | −0.0038 (4) |
C8 | 0.0470 (7) | 0.0497 (7) | 0.0343 (6) | 0.0064 (6) | 0.0057 (5) | −0.0070 (5) |
C9 | 0.0469 (7) | 0.0544 (8) | 0.0371 (7) | 0.0016 (6) | 0.0019 (5) | −0.0077 (6) |
C10 | 0.0770 (11) | 0.0669 (10) | 0.0434 (8) | 0.0006 (9) | 0.0112 (7) | 0.0051 (7) |
C1—C3i | 1.3811 (17) | O7—C8 | 1.4640 (15) |
C1—C2 | 1.3830 (17) | C8—C9 | 1.4763 (17) |
C1—H1 | 0.9300 | C8—H8A | 0.9700 |
C2—C3 | 1.3733 (18) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C9—C10 | 1.306 (2) |
C3—O4 | 1.4071 (14) | C9—H9 | 0.9300 |
O4—C5 | 1.3513 (14) | C10—H10A | 0.947 (19) |
C5—O6 | 1.1863 (14) | C10—H10B | 0.954 (18) |
C5—O7 | 1.3221 (14) | ||
C3i—C1—C2 | 118.84 (11) | C5—O7—C8 | 114.10 (9) |
C3i—C1—H1 | 120.6 | O7—C8—C9 | 107.53 (10) |
C2—C1—H1 | 120.6 | O7—C8—H8A | 110.2 |
C3—C2—C1 | 118.48 (11) | C9—C8—H8A | 110.2 |
C3—C2—H2 | 120.8 | O7—C8—H8B | 110.2 |
C1—C2—H2 | 120.8 | C9—C8—H8B | 110.2 |
C2—C3—C1i | 122.68 (11) | H8A—C8—H8B | 108.5 |
C2—C3—O4 | 116.95 (11) | C10—C9—C8 | 123.81 (14) |
C1i—C3—O4 | 120.30 (11) | C10—C9—H9 | 118.1 |
C5—O4—C3 | 115.77 (9) | C8—C9—H9 | 118.1 |
O6—C5—O7 | 126.45 (11) | C9—C10—H10A | 122.1 (12) |
O6—C5—O4 | 126.58 (11) | C9—C10—H10B | 121.3 (11) |
O7—C5—O4 | 106.96 (9) | H10A—C10—H10B | 116.6 (16) |
C3i—C1—C2—C3 | 0.5 (2) | C3—O4—C5—O7 | 174.50 (10) |
C1—C2—C3—C1i | −0.5 (2) | O6—C5—O7—C8 | 0.88 (19) |
C1—C2—C3—O4 | −177.58 (11) | O4—C5—O7—C8 | −177.99 (10) |
C2—C3—O4—C5 | −110.62 (12) | C5—O7—C8—C9 | −179.91 (11) |
C1i—C3—O4—C5 | 72.25 (15) | O7—C8—C9—C10 | −130.59 (16) |
C3—O4—C5—O6 | −4.37 (19) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O7ii | 0.93 | 2.59 | 3.5100 (16) | 169 |
C2—H2···O6iii | 0.93 | 2.57 | 3.4555 (16) | 160 |
Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) x, y−1, z. |
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178; scholarship No. 820488 to I. Martínez-de la Luz; scholarship No. 1003328 to I. Núñez-Méndez); Secretaría de Educación Pública (award No. PROFOCIE 2018-20).
References
Flores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Herrera-González, A. M., López-Velázquez, D. & Bernès, S. (2009). Acta Cryst. E65, o2810–o2811. CSD CrossRef IUCr Journals Google Scholar
Li, M., Chen, H., Zheng, K., Liu, X., Xiao, S. & Zhang, N. (2019). Inorg. Chim. Acta, 495, 119000. CSD CrossRef Google Scholar
López, D. & Burillo, G. (1991). ACS Symp. Ser. 475, 262–270. Google Scholar
López, D., Plata, P., Burillo, G. & Medina, C. (1997). Radiat. Phys. Chem. 50, 171–173. Google Scholar
López-V, D., Herrera-G, A. M. & Castillo-Rojas, S. (2011). Radiat. Phys. Chem. 80, 481–486. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nair, D. P., Cramer, N. B., Scott, T. F., Bowman, C. N. & Shandas, R. (2010). Polymer, 51, 4383–4389. CrossRef CAS PubMed Google Scholar
Schmid, M., Grossmann, A. S., Mayer, P., Müller, T. & Magauer, T. (2019). Tetrahedron, 75, 3195–3215. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.