organic compounds
Aquatrifluoridoboron–1,3-dioxolan-2-one (1/2)
aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193, Bellaterra, Spain
*Correspondence e-mail: matic.lozinsek@ijs.si
The 3H2O·2OC(OCH2)2, was determined by low-temperature single-crystal X-ray diffraction. The crystallizes in the orthorhombic P212121 with four formula units per The consists of an aquatrifluoridoboron molecule and two ethylene carbonate molecules, connected by O—H⋯O=C hydrogen bonds. This is an interesting example of a superacidic BF3H2O species co-crystallized with an organic carbonate.
of the of aquatrifluoridoboron with two ethylene carbonate (systematic name: 1,3-dioxolan-2-one) molecules, BFCCDC reference: 2237804
Structure description
Adducts synthesized from boron trifluoride and various organic carbonates have been reported as potential functional electrolyte additives for secondary (rechargeable) lithium-ion batteries (Eisele et al., 2020), and have been shown to modify the electrode surfaces, resulting in resistance and better capacity retention at high current rates. Recently, the use of BF3-based additives has been extended to divalent-metal batteries, namely calcium-ion batteries (Forero-Saboya et al., 2021; Bodin et al., 2023), where their decomposition into boron-crosslinked polymeric matrices in the passivation layer was found to be crucial for calcium plating and stripping. Such BF3 adducts are moisture sensitive and readily hydrolyze to form BF3H2O (Simonov et al., 1996; Fonari et al., 1997). The title formed from the boron trifluoride–ethylene carbonate (1/1) adduct, BF3·OC(OCH2)2, upon exposure to moisture.
The BF3H2O·2OC(OCH2)2 crystallizes in the orthorhombic Sohncke P212121 with one aquatrifluoridoboron and two ethylene carbonate molecules in the (Fig. 1). The two OC(OCH2)2 molecules have an essentially identical molecular shape (slightly twisted), which also agrees well with the determination of 1,3-dioxolan-2-one (Atterberry & Bond, 2019). The B—O and B—F bond lengths [1.5236 (18) Å and 1.3718 (18)–1.3760 (17) Å, respectively] in the BF3H2O molecule of the title are similar to those found in BF3H2O (Mootz & Steffen, 1981a), BF3H2O·H2O (Mootz & Steffen, 1981b), BF3H2O·C4H8O2 (Barthen & Frank, 2019), or adducts of BF3 and organic carbonates (Bodin et al., 2023). The F—B—F angles [110.75 (12)–112.57 (12)°] are larger than the O—B—F angles, with the angle involving F1 [109.23 (11)°] being significantly larger than the other two angles [105.47 (11)° and 106.41 (12)°]. The hydrogen atoms of the H2O moiety in the BF3H2O adduct are inclined toward the F1 atom, with the angle between the B—O bond and the plane defined by the water atoms being 128 (2)°. The overall shape of the BF3 moiety in BF3H2O in terms of bond lengths and angles is similar to that of the BF4− anion (Lozinšek, 2021).
Aquatrifluoridoboron is stabilized in the solid state by hydrogen-bonding interactions with oxygen hydrogen-bond acceptors, such as 1,4-dioxane (Barthen & Frank, 2019) or (Bott et al., 1991; Simonov et al., 1996; Fonari et al., 1997; Gelmboldt et al., 2012). In the present case, the BF3H2O molecule is hydrogen-bonded to the carbonyl oxygen atoms of the two ethylene carbonate molecules, forming a C=O⋯H—O—H⋯O=C fragment with a D22(5) graph-set motif (Etter, 1990) and O⋯O distances of 2.5637 (15) Å and 2.5985 (15) Å (Table 1, Figs. 1 and 2). A similar hydrogen-bonding motif was observed in the of the BF3H2O·2Ph3PO (Chekhlov, 2005).
|
Synthesis and crystallization
Single crystals of the BF3H2O·2OC(OCH2)2 were discovered when a crystalline sample of the air-sensitive BF3·OC(OCH2)2 adduct was examined under a protective cold nitrogen stream at about −50 °C. The BF3·OC(OCH2)2 compound was synthesized from dry ethylene carbonate and BF3 gas under anhydrous conditions, as described previously (Bodin et al., 2023). Platelet-shaped co-crystals of BF3H2O·2OC(OCH2)2 were located in a droplet at the tip of the aluminium trough (Veith & Bärnighausen, 1974) of the low-temperature crystal mounting apparatus, which likely formed by an inadvertent introduction of a small amount of moisture. Selected crystals were mounted on the diffractometer employing a previously described procedure for mounting crystals at low temperatures (Lozinšek et al., 2021). The crystals melted and turned into droplets when exposed to air at room temperature.
Refinement
Crystal data, data collection, and structure . Positions and isotropic thermal displacement parameters of hydrogen atoms were freely refined (Cooper et al., 2010).
details are summarized in Table 2Structural data
CCDC reference: 2237804
https://doi.org/10.1107/S2414314623000627/wm4182sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623000627/wm4182Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).2C3H4O3·H2BF3O | Dx = 1.701 Mg m−3 |
Mr = 261.95 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 24984 reflections |
a = 5.44197 (4) Å | θ = 4.6–75.5° |
b = 13.09134 (8) Å | µ = 1.65 mm−1 |
c = 14.36102 (9) Å | T = 150 K |
V = 1023.12 (1) Å3 | Plate, clear colourless |
Z = 4 | 0.18 × 0.08 × 0.05 mm |
F(000) = 536 |
XtaLAB Synergy, Dualflex, Eiger2 R CdTe 1M diffractometer | 2134 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2100 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 76.1°, θmin = 4.6° |
ω scans | h = −6→6 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −15→16 |
Tmin = 0.663, Tmax = 1.000 | l = −18→18 |
34542 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0311P)2 + 0.1146P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.019 | (Δ/σ)max < 0.001 |
wR(F2) = 0.050 | Δρmax = 0.11 e Å−3 |
S = 1.04 | Δρmin = −0.13 e Å−3 |
2134 reflections | Extinction correction: SHELXL (Sheldrick, 2015b), Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]–1/4 |
195 parameters | Extinction coefficient: 0.0035 (5) |
0 restraints | Absolute structure: Flack x determined using 853 quotients [(I+)–(I–)]/[(I+)+(I–)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.05 (3) |
Hydrogen site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.05387 (16) | 0.46158 (7) | 0.69151 (6) | 0.0345 (2) | |
F2 | 0.31541 (19) | 0.57475 (6) | 0.75716 (6) | 0.0347 (2) | |
F3 | 0.35784 (17) | 0.40399 (6) | 0.78723 (6) | 0.0320 (2) | |
O1 | 0.4683 (2) | 0.46651 (8) | 0.64281 (7) | 0.0283 (2) | |
H1A | 0.518 (5) | 0.404 (2) | 0.6252 (19) | 0.071 (8)* | |
H1B | 0.432 (5) | 0.5005 (19) | 0.5968 (17) | 0.052 (6)* | |
O2 | 0.6234 (2) | 0.29312 (8) | 0.58425 (7) | 0.0312 (2) | |
O3 | 0.29867 (18) | 0.19871 (7) | 0.62526 (7) | 0.0266 (2) | |
O4 | 0.59130 (18) | 0.13169 (7) | 0.53775 (7) | 0.0255 (2) | |
C1 | 0.5104 (2) | 0.21312 (10) | 0.58256 (9) | 0.0232 (3) | |
C2 | 0.2189 (3) | 0.09379 (11) | 0.61128 (10) | 0.0267 (3) | |
H2A | 0.062 (4) | 0.0949 (14) | 0.5867 (13) | 0.033 (5)* | |
H2B | 0.220 (3) | 0.0629 (13) | 0.6729 (12) | 0.025 (4)* | |
C3 | 0.4125 (3) | 0.04997 (10) | 0.54606 (10) | 0.0249 (3) | |
H3A | 0.349 (4) | 0.0354 (14) | 0.4844 (13) | 0.031 (4)* | |
H3B | 0.497 (4) | −0.0097 (15) | 0.5697 (12) | 0.030 (5)* | |
B1 | 0.2884 (3) | 0.47702 (12) | 0.72354 (11) | 0.0252 (3) | |
O5 | 0.3601 (2) | 0.59963 (8) | 0.51501 (8) | 0.0359 (3) | |
O6 | 0.60783 (19) | 0.63618 (7) | 0.39559 (7) | 0.0280 (2) | |
O7 | 0.31353 (19) | 0.74337 (7) | 0.43534 (6) | 0.0266 (2) | |
C4 | 0.4246 (3) | 0.65572 (10) | 0.45246 (9) | 0.0240 (3) | |
C5 | 0.6409 (3) | 0.72193 (11) | 0.33235 (10) | 0.0305 (3) | |
H5B | 0.793 (4) | 0.7521 (16) | 0.3486 (14) | 0.040 (5)* | |
H5A | 0.649 (4) | 0.6923 (14) | 0.2694 (14) | 0.038 (5)* | |
C6 | 0.4207 (3) | 0.78959 (11) | 0.35281 (10) | 0.0291 (3) | |
H6B | 0.470 (3) | 0.8616 (15) | 0.3687 (13) | 0.032 (4)* | |
H6A | 0.296 (4) | 0.7853 (15) | 0.3028 (14) | 0.040 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0260 (4) | 0.0419 (5) | 0.0356 (4) | −0.0012 (4) | −0.0027 (3) | 0.0046 (4) |
F2 | 0.0475 (5) | 0.0265 (4) | 0.0300 (4) | 0.0037 (4) | −0.0046 (4) | −0.0043 (3) |
F3 | 0.0379 (5) | 0.0309 (4) | 0.0273 (4) | 0.0026 (4) | −0.0013 (4) | 0.0085 (3) |
O1 | 0.0324 (5) | 0.0254 (5) | 0.0271 (5) | 0.0034 (4) | 0.0049 (4) | 0.0046 (4) |
O2 | 0.0325 (5) | 0.0237 (4) | 0.0373 (5) | −0.0033 (4) | 0.0051 (5) | −0.0004 (4) |
O3 | 0.0256 (5) | 0.0243 (4) | 0.0299 (5) | 0.0006 (4) | 0.0066 (4) | −0.0026 (4) |
O4 | 0.0236 (5) | 0.0243 (4) | 0.0285 (5) | 0.0008 (4) | 0.0043 (4) | −0.0025 (4) |
C1 | 0.0240 (6) | 0.0236 (6) | 0.0220 (6) | 0.0025 (5) | 0.0007 (5) | 0.0016 (5) |
C2 | 0.0243 (7) | 0.0258 (6) | 0.0300 (7) | −0.0032 (5) | 0.0023 (6) | −0.0027 (5) |
C3 | 0.0236 (6) | 0.0234 (6) | 0.0275 (6) | −0.0009 (5) | −0.0003 (5) | −0.0010 (5) |
B1 | 0.0282 (8) | 0.0253 (7) | 0.0220 (7) | 0.0020 (6) | −0.0007 (6) | 0.0015 (5) |
O5 | 0.0459 (6) | 0.0315 (5) | 0.0303 (5) | −0.0073 (5) | −0.0016 (5) | 0.0098 (4) |
O6 | 0.0299 (5) | 0.0225 (4) | 0.0314 (5) | 0.0031 (4) | 0.0017 (4) | −0.0006 (4) |
O7 | 0.0303 (5) | 0.0240 (4) | 0.0255 (4) | 0.0035 (4) | 0.0055 (4) | 0.0024 (4) |
C4 | 0.0278 (7) | 0.0212 (6) | 0.0229 (6) | −0.0023 (5) | −0.0024 (5) | 0.0002 (5) |
C5 | 0.0343 (8) | 0.0271 (7) | 0.0302 (7) | −0.0041 (6) | 0.0083 (6) | 0.0000 (6) |
C6 | 0.0355 (8) | 0.0244 (7) | 0.0273 (6) | 0.0000 (6) | 0.0034 (6) | 0.0069 (5) |
F1—B1 | 1.3718 (18) | C2—C3 | 1.522 (2) |
F2—B1 | 1.3753 (17) | C3—H3A | 0.969 (19) |
F3—B1 | 1.3760 (17) | C3—H3B | 0.97 (2) |
O1—H1A | 0.90 (3) | O5—C4 | 1.2122 (17) |
O1—H1B | 0.82 (3) | O6—C4 | 1.3139 (18) |
O1—B1 | 1.5236 (18) | O6—C5 | 1.4550 (17) |
O2—C1 | 1.2147 (17) | O7—C4 | 1.3200 (16) |
O3—C1 | 1.3187 (16) | O7—C6 | 1.4530 (17) |
O3—C2 | 1.4545 (16) | C5—H5B | 0.95 (2) |
O4—C1 | 1.3208 (16) | C5—H5A | 0.98 (2) |
O4—C3 | 1.4512 (17) | C5—C6 | 1.519 (2) |
C2—H2A | 0.92 (2) | C6—H6B | 1.01 (2) |
C2—H2B | 0.972 (18) | C6—H6A | 0.99 (2) |
H1A—O1—H1B | 110 (2) | F1—B1—O1 | 109.23 (11) |
B1—O1—H1A | 119.4 (18) | F2—B1—F3 | 112.57 (12) |
B1—O1—H1B | 114.2 (17) | F2—B1—O1 | 106.41 (12) |
C1—O3—C2 | 109.38 (10) | F3—B1—O1 | 105.47 (11) |
C1—O4—C3 | 109.35 (10) | C4—O6—C5 | 109.37 (11) |
O2—C1—O3 | 123.81 (12) | C4—O7—C6 | 109.27 (11) |
O2—C1—O4 | 122.46 (12) | O5—C4—O6 | 124.23 (13) |
O3—C1—O4 | 113.73 (12) | O5—C4—O7 | 122.13 (14) |
O3—C2—H2A | 108.3 (12) | O6—C4—O7 | 113.64 (11) |
O3—C2—H2B | 105.4 (10) | O6—C5—H5B | 106.1 (13) |
O3—C2—C3 | 103.55 (11) | O6—C5—H5A | 105.9 (11) |
H2A—C2—H2B | 110.9 (16) | O6—C5—C6 | 103.38 (11) |
C3—C2—H2A | 114.2 (12) | H5B—C5—H5A | 110.5 (17) |
C3—C2—H2B | 113.6 (11) | C6—C5—H5B | 113.6 (13) |
O4—C3—C2 | 103.71 (11) | C6—C5—H5A | 116.3 (12) |
O4—C3—H3A | 108.0 (11) | O7—C6—C5 | 103.40 (11) |
O4—C3—H3B | 107.7 (11) | O7—C6—H6B | 108.2 (11) |
C2—C3—H3A | 112.9 (12) | O7—C6—H6A | 107.1 (12) |
C2—C3—H3B | 114.7 (11) | C5—C6—H6B | 112.2 (11) |
H3A—C3—H3B | 109.3 (16) | C5—C6—H6A | 111.6 (11) |
F1—B1—F2 | 110.75 (12) | H6B—C6—H6A | 113.6 (15) |
F1—B1—F3 | 112.08 (13) | ||
O3—C2—C3—O4 | 5.22 (14) | O6—C5—C6—O7 | 9.38 (14) |
C1—O3—C2—C3 | −4.14 (14) | C4—O6—C5—C6 | −7.83 (15) |
C1—O4—C3—C2 | −4.81 (14) | C4—O7—C6—C5 | −8.29 (15) |
C2—O3—C1—O2 | −178.23 (13) | C5—O6—C4—O5 | −177.25 (14) |
C2—O3—C1—O4 | 1.26 (15) | C5—O6—C4—O7 | 2.92 (16) |
C3—O4—C1—O2 | −178.06 (13) | C6—O7—C4—O5 | −176.09 (13) |
C3—O4—C1—O3 | 2.44 (15) | C6—O7—C4—O6 | 3.74 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2 | 0.90 (3) | 1.67 (3) | 2.5637 (15) | 175 (3) |
O1—H1B···O5 | 0.82 (3) | 1.79 (3) | 2.5985 (15) | 166 (2) |
C3—H3B···F3i | 0.97 (2) | 2.474 (19) | 3.3085 (16) | 144.2 (14) |
C6—H6B···F1ii | 1.01 (2) | 2.51 (2) | 3.3974 (17) | 146.4 (14) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+1. |
Funding information
Funding for this research was provided by: European Research Council (ERC) (StG HiPeR-F and StG CAMBAT) (grant agreement Nos. 950625 and 715087); Marie Skłodowska-Curie Actions (COFUND-2016 DOC-FAM) under the European Union's Horizon 2020 research and innovation programme (grant No. 754397); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant No. N1-0189); Spanish Ministry for Economy, Industry and Competitiveness Severo Ochoa Programme for Centres of Excellence in R&D (contract No. CEX2019-000917-S).
References
Atterberry, S. & Bond, M. R. (2019). CSD Communication (CCDC 1965649). CCDC, Cambridge, England. Google Scholar
Barthen, P. & Frank, W. (2019). Acta Cryst. E75, 1787–1791. CSD CrossRef IUCr Journals Google Scholar
Bodin, C., Forero Saboya, J., Jankowski, P., Radan, K., Foix, D., Courrèges, C., Yousef, I., Dedryvère, R., Davoisne, C., Lozinšek, M. & Ponrouch, A. (2023). Batteries Supercaps 6, e202200433. CSD CrossRef Google Scholar
Bott, S. B., Alvanipour, A. & Atwood, J. L. (1991). J. Inclusion Phenom. Mol. Recognit. Chem. 10, 153–158. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chekhlov, A. N. (2005). Russ. J. Coord. Chem. 31, 9–13. Web of Science CrossRef CAS Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eisele, L., Laszczynski, N., Schneider, M., Lucht, B. & Krossing, I. (2020). J. Electrochem. Soc. 167, 060514. CSD CrossRef Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Fonari, M. S., Simonov, Y. A., Mazus, M. D., Ganin, E. V. & Gelmboldt, V. O. (1997). Crystallogr. Rep. 42, 790–794. Google Scholar
Forero-Saboya, J., Bodin, C. & Ponrouch, A. (2021). Electrochem. Commun. 124, 106936. Google Scholar
Gelmboldt, V. O., Ganin, E. V. & Fonari, M. S. (2012). J. Fluorine Chem. 135, 15–24. CrossRef CAS Google Scholar
Lozinšek, M. (2021). IUCrData, 6, x211215. Google Scholar
Lozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149–8156. Google Scholar
Mootz, D. & Steffen, M. (1981a). Z. Anorg. Allg. Chem. 483, 171–180. CSD CrossRef ICSD CAS Google Scholar
Mootz, D. & Steffen, M. (1981b). Acta Cryst. B37, 1110–1112. CrossRef ICSD CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simonov, Y. A., Fonari, M. S., Lipkowski, J., Gelmboldt, V. O. & Ganin, E. V. (1996). J. Inclusion Phenom. Mol. Recognit. Chem. 24, 149–161. CrossRef CAS Google Scholar
Veith, M. & Bärnighausen, H. (1974). Acta Cryst. B30, 1806–1813. CSD CrossRef IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.