metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-iso­propyl-1-methyl-1,2,4-triazol-5-yl­­idene)(tri­phenyl­phos­phane)iridium(I) tetra­fluorido­borate di­chloro­methane 0.8-solvate

crossmark logo

aDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA, and bDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 January 2023; accepted 24 January 2023; online 31 January 2023)

A new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra­fluorido­borate counter-anion, [Ir(C8H12)(C18H15P)(C6H11N3)]BF4·0.8CH2Cl2, has been synthesized and structurally characterized. The central IrI atom of the cationic complex has a distorted square-planar coordination environment, formed by a bidentate cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a tri­phenyl­phosphane ligand. The crystal structure comprises C—H⋯π(ring) inter­actions that orient the phenyl rings; non-classical hydrogen-bonding inter­actions between the cationic complex and the tetra­fluorido­borate anion are also present. The complex crystallizes in a triclinic unit cell with two structural units and an incorporation of di­chloro­methane solvate mol­ecules with an occupancy of 0.8.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbenes (NHC) have emerged as excellent ligands in transition-metal chemistry and in homogeneous catalysis (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; de Frémont et al., 2009[Frémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862-892.]; Diez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. P. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). They have also shown catalytic activity in the transfer hydrogenation of ketones and imines (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized in the past (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]). As part of our ongoing research, we continue to synthesize new imidazole- and triazole-based NHC complexes of rhodium and iridium in order to study the effect of different substituents on the NHC and other ligands coordinating to the metal in transfer hydrogenation reactions (Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.], 2022[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]).

The mol­ecular structure of the title complex 2, shown in Fig. 1[link], is characterized as an IrI cationic complex with a tetra­fluorido­borate counter-ion, with partial incorporation of di­chloro­methane solvate mol­ecules (s.o.f. 0.8). The distorted square-planar environment around the IrI atom is defined by the bidentate cyclo­octa-1,5-diene (COD) ligand, the carbene C1 atom of the triazole NHC ligand, and the P atom of the tri­phenyl­phosphane ligand. The P1—Ir1—C1 bond angle is 93.88 (10)°. The N1—C1—N3 bond angle of the coordinating carbene atom significantly differs with a value of 103.3 (3)° from the expected sp2 hybridization.

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound 2. Displacement ellipsoids are drawn at the 50% probability level.

The crystal packing of the title compound is displayed in Fig. 2[link]. There are several non-classical hydrogen-bonding inter­actions between the cation and anion that orient the [BF4] group. Additionally, there are non-classical inter­molecular hydrogen-bonding inter­actions between the hydrogen atom of a phenyl group (H10) and a nitro­gen atom of the NHC ligand (N2). Non-classical hydrogen bonding inter­actions are shown as dotted green lines in Fig. 2[link], and their numerical data summarized in Table 1[link]. Notably absent are hydrogen-bonding inter­actions with the di­chloro­methane solvate. The lack of hydrogen-bonding inter­actions involving the solvate may contribute to its partial occupancy.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F3Si 0.95 2.60 3.471 (5) 153
C2—H2⋯F1Si 0.95 2.30 3.154 (5) 149
C5—H5C⋯F3Si 0.98 2.54 3.505 (5) 169
C6—H6C⋯F2Sii 0.98 2.50 3.451 (5) 163
C10—H10⋯N2iii 0.95 2.42 3.364 (6) 172
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Crystal packing of the title compound 2 shown along the a axis. Non-classical hydrogen-bonding inter­actions are shown as dotted green lines. C—H⋯π(ring) inter­actions are shown as dashed orange lines between hydrogen atoms and phenyl ring centroids.

Both inter­molecular and intra­molecular C—H⋯π(ring) inter­actions are observed and shown as dashed orange lines in Figs. 2[link] and 3[link]. The intra­molecular C—H⋯π(ring) inter­action is between a hydrogen atom on the isopropyl wingtip of the NHC ligand (H5A) and a phenyl phosphane ring (C19–C24). This intra­molecular inter­action displays an H⋯centroid distance of 2.61 Å and a C—H⋯centroid angle of 168°. The inter­molecular C—H⋯π(ring) inter­action orients phenyl phosphane rings of adjacent moieties as it occurs between a hydrogen atom of a phenyl ring (H21) and an adjacent phenyl ring (C13–C18). The inter­molecular C—H⋯π(ring) inter­action has an H⋯centroid distance of 2.73 Å and a C—H⋯centroid angle of 157°. The C—H⋯π(ring) inter­actions orient phenyl rings on adjacent moieties (C13–C18 and C19–C24) into an approximately perpendicular arrangement, shown in Fig. 3[link], with a dihedral angle between the ring planes of 82.3 (2)°.

[Figure 3]
Figure 3
View of the title compound 2 showing perpendicular ring orientations arising from C—H⋯π(ring) inter­actions (shown as dashed orange lines). [Symmetry code: (i) −x + 1, −y + 1, −z + 2.]

Synthesis and crystallization

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-yl­idene) chloro­iridium (1) was synthesized by a previously published procedure (Rushlow et al., 2022[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.]). The synthesis, shown schematically in Fig. 4[link], was performed under nitro­gen atmosphere using reagent grade materials purchased from Sigma–Aldrich and Strem, which were used as received without further purification. All NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak of CDCl3 (δ in p.p.m.).

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound 2.

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate (2): Tri­phenyl­phosphane (0.064 g, 0.245 mmol) and AgBF4 (0.048 g 0.245 mmol) were added to an oven-dried flask containing complex (1) (0.113 g, 0.245 mmol) in 10 ml of CH2Cl2, and stirred under N2 in the dark for 90 min. The mixture was filtered through Celite and the solvent was removed under reduced pressure. The bright orange–red solid was washed with pentane and dried under vacuum yielding 0.165 g (86.9%) of the title compound 2. 1H NMR: δ (p.p.m.) 8.18 (s, 1 H, N—C3H—N), 7.49–7.32 (m, 15 H, Harom), 5.36 (m, 1 H, CH(CH3)2), 4.38, 3.99 (m, 4 H, CH of COD), 4.05 (s, 3 H, CH3—N), 2.27–1.6 (m, CH2 of COD), 1.56 [d, 6 H, CH(CH3)2]. 13C NMR: δ 177.74 (Ir—C), 140.32 (N—CH—N), 132.46–128.38 (Carom), 87.82, 87.43, 85.34, 85.01 (CH of COD), 53.23 [CH(CH3)2], 41.31 (N—CH3), 33.41, 33.18, 31.45, 30.39 CH2 of COD, 24.37, 22.15 [CH(CH3)2]. 31P: δ 17.23.

The title compound 2 was crystallized by slow diffusion of pentane into a CH2Cl2 solution.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C8H12)(C18H15P)(C6H11N3)]BF4·0.8CH2Cl2
Mr 842.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.551 (3), 12.444 (4), 13.804 (5)
α, β, γ (°) 95.258 (10), 101.022 (9), 94.954 (10)
V3) 1761.6 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.00
Crystal size (mm) 0.20 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.639, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 31123, 7234, 6448
Rint 0.042
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 1.04
No. of reflections 7234
No. of parameters 409
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.41, −0.90
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[(1,2,5,6-η)-Cycloocta-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)iridium(I) tetrafluoridoborate dichloromethane 0.8-solvate top
Crystal data top
[Ir(C8H12)(C18H15P)(C6H11N3)]BF4·0.8CH2Cl2Z = 2
Mr = 842.57F(000) = 835
Triclinic, P1Dx = 1.589 Mg m3
a = 10.551 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.444 (4) ÅCell parameters from 9889 reflections
c = 13.804 (5) Åθ = 2.4–25.8°
α = 95.258 (10)°µ = 4.00 mm1
β = 101.022 (9)°T = 100 K
γ = 94.954 (10)°Plate, clear light orange
V = 1761.6 (10) Å30.20 × 0.08 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
6448 reflections with I > 2σ(I)
Detector resolution: 8 pixels mm-1Rint = 0.042
ω and φ scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.639, Tmax = 0.745k = 1515
31123 measured reflectionsl = 1717
7234 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0283P)2 + 2.2709P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7234 reflectionsΔρmax = 1.41 e Å3
409 parametersΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.47116 (2)0.28881 (2)0.65724 (2)0.01084 (5)
P10.48620 (10)0.22720 (7)0.81228 (7)0.0129 (2)
Cl2S0.0421 (2)0.01421 (16)0.36372 (19)0.0789 (7)0.8
F3S0.9219 (3)0.5389 (2)0.78303 (18)0.0328 (6)
F4S0.8164 (2)0.69052 (19)0.76826 (18)0.0289 (6)
F1S0.9941 (2)0.6736 (2)0.6995 (2)0.0326 (6)
F2S0.8057 (2)0.5665 (2)0.63363 (17)0.0320 (6)
N10.2423 (3)0.4168 (2)0.6840 (2)0.0140 (7)
N30.4195 (3)0.5201 (2)0.7218 (2)0.0143 (7)
Cl1S0.0513 (3)0.0240 (2)0.1530 (2)0.1174 (11)0.8
N20.3241 (3)0.5858 (3)0.7354 (3)0.0205 (7)
C290.5370 (4)0.3642 (3)0.5344 (3)0.0160 (8)
H290.5504410.4453130.5455820.019*
C300.4086 (4)0.3233 (3)0.5020 (3)0.0175 (8)
H300.3472270.3802570.4940700.021*
C10.3731 (4)0.4161 (3)0.6917 (3)0.0127 (8)
C190.3798 (4)0.2770 (3)0.8936 (3)0.0149 (8)
C30.5541 (4)0.5679 (3)0.7448 (3)0.0195 (9)
H3A0.5688010.6162380.6949490.029*
H3B0.6115780.5101000.7442170.029*
H3C0.5725500.6093680.8106430.029*
C260.6151 (4)0.1796 (3)0.6262 (3)0.0192 (9)
H260.6555870.1438140.6847400.023*
C180.7466 (4)0.3189 (3)0.8620 (3)0.0165 (8)
H180.7350670.3374000.7958590.020*
C250.4913 (4)0.1322 (3)0.5797 (3)0.0175 (8)
H250.4597940.0687030.6113810.021*
C200.3871 (4)0.3897 (3)0.9148 (3)0.0157 (8)
H200.4442060.4352930.8869350.019*
C130.6444 (4)0.2631 (3)0.8936 (3)0.0143 (8)
C280.6511 (4)0.3133 (3)0.5028 (3)0.0216 (9)
H28A0.7183410.3718100.4972500.026*
H28B0.6211250.2720440.4363930.026*
C40.1441 (4)0.3222 (3)0.6507 (3)0.0177 (8)
H40.1905050.2568410.6393650.021*
C20.2177 (4)0.5198 (3)0.7113 (3)0.0201 (9)
H20.1335290.5406720.7126470.024*
C70.4587 (4)0.0800 (3)0.8046 (3)0.0172 (8)
C170.8647 (4)0.3474 (3)0.9264 (3)0.0207 (9)
H170.9338370.3855450.9043470.025*
C310.3584 (4)0.2175 (3)0.4384 (3)0.0213 (9)
H31A0.3599340.2273290.3682310.026*
H31B0.2670380.1978320.4431320.026*
C240.2981 (4)0.2109 (3)0.9367 (3)0.0188 (8)
H240.2935870.1342150.9239430.023*
C160.8827 (4)0.3207 (3)1.0234 (3)0.0245 (9)
H160.9642570.3399141.0672950.029*
C120.5586 (5)0.0158 (3)0.8343 (3)0.0244 (10)
H120.6425690.0492710.8657170.029*
C140.6636 (4)0.2380 (3)0.9921 (3)0.0186 (8)
H140.5943250.2011751.0151800.022*
C230.2232 (4)0.2573 (3)0.9986 (3)0.0227 (9)
H230.1675330.2119531.0278800.027*
C320.4375 (4)0.1250 (3)0.4685 (3)0.0216 (9)
H32A0.5107540.1247790.4331410.026*
H32B0.3820810.0553480.4471990.026*
C80.3358 (5)0.0294 (3)0.7579 (3)0.0250 (10)
H80.2677640.0720710.7357580.030*
C50.0668 (4)0.3029 (3)0.7313 (3)0.0208 (9)
H5A0.1267370.2977210.7940040.031*
H5B0.0091480.2351710.7120110.031*
H5C0.0149710.3634520.7397930.031*
C210.3119 (4)0.4351 (3)0.9760 (3)0.0193 (9)
H210.3167170.5117600.9896340.023*
C220.2290 (4)0.3682 (3)1.0178 (3)0.0227 (9)
H220.1765350.3992081.0593770.027*
C270.7118 (4)0.2375 (4)0.5753 (3)0.0257 (10)
H27A0.7530040.1826270.5388160.031*
H27B0.7809450.2801290.6264940.031*
C60.0561 (5)0.3377 (4)0.5533 (3)0.0363 (12)
H6A0.0050260.3983020.5638650.055*
H6B0.0025280.2712990.5288810.055*
H6C0.1091130.3535900.5042140.055*
C150.7816 (4)0.2661 (4)1.0557 (3)0.0255 (10)
H150.7936590.2479501.1219840.031*
C90.3128 (5)0.0837 (4)0.7436 (3)0.0345 (12)
H90.2290410.1181590.7130450.041*
C100.4134 (6)0.1451 (3)0.7745 (3)0.0350 (12)
H100.3977950.2220880.7652480.042*
B1S0.8842 (5)0.6174 (4)0.7206 (3)0.0215 (10)
C110.5356 (5)0.0964 (4)0.8182 (3)0.0336 (12)
H110.6041320.1396310.8374320.040*
C1S0.0793 (11)0.0608 (8)0.2588 (7)0.096 (4)0.8
H1SA0.0306190.1241320.2453610.115*0.8
H1SB0.1727770.0878200.2739800.115*0.8
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01151 (8)0.01098 (7)0.01084 (7)0.00251 (5)0.00350 (5)0.00161 (5)
P10.0144 (5)0.0126 (5)0.0122 (5)0.0019 (4)0.0037 (4)0.0022 (4)
Cl2S0.0736 (16)0.0489 (12)0.0991 (17)0.0194 (10)0.0109 (13)0.0124 (11)
F3S0.0445 (18)0.0312 (14)0.0234 (13)0.0127 (12)0.0013 (12)0.0094 (11)
F4S0.0257 (15)0.0321 (14)0.0331 (14)0.0090 (11)0.0133 (12)0.0044 (11)
F1S0.0200 (14)0.0391 (15)0.0430 (16)0.0048 (11)0.0141 (12)0.0089 (12)
F2S0.0251 (15)0.0475 (16)0.0214 (13)0.0043 (12)0.0001 (11)0.0028 (11)
N10.0119 (18)0.0140 (15)0.0163 (16)0.0019 (12)0.0040 (13)0.0001 (13)
N30.0144 (18)0.0125 (15)0.0179 (16)0.0042 (12)0.0058 (14)0.0031 (13)
Cl1S0.119 (3)0.094 (2)0.114 (2)0.0425 (18)0.0074 (19)0.0362 (17)
N20.020 (2)0.0168 (17)0.0268 (19)0.0063 (14)0.0091 (16)0.0023 (14)
C290.020 (2)0.0178 (19)0.0130 (18)0.0026 (16)0.0084 (17)0.0074 (15)
C300.026 (2)0.0182 (19)0.0090 (18)0.0066 (16)0.0012 (16)0.0050 (15)
C10.016 (2)0.0139 (18)0.0096 (17)0.0004 (15)0.0039 (15)0.0061 (14)
C190.012 (2)0.021 (2)0.0114 (18)0.0012 (15)0.0016 (15)0.0022 (15)
C30.018 (2)0.0154 (19)0.023 (2)0.0016 (16)0.0024 (17)0.0008 (16)
C260.023 (2)0.020 (2)0.019 (2)0.0146 (17)0.0085 (18)0.0047 (16)
C180.018 (2)0.021 (2)0.0133 (18)0.0054 (16)0.0080 (16)0.0031 (15)
C250.029 (2)0.0067 (17)0.0174 (19)0.0075 (16)0.0046 (18)0.0007 (15)
C200.014 (2)0.020 (2)0.0127 (18)0.0001 (15)0.0020 (16)0.0019 (15)
C130.015 (2)0.0149 (18)0.0137 (18)0.0066 (15)0.0037 (16)0.0005 (15)
C280.018 (2)0.027 (2)0.024 (2)0.0031 (17)0.0121 (18)0.0066 (18)
C40.009 (2)0.021 (2)0.022 (2)0.0024 (15)0.0046 (16)0.0028 (16)
C20.018 (2)0.020 (2)0.026 (2)0.0087 (17)0.0077 (18)0.0046 (17)
C70.028 (2)0.0140 (19)0.0104 (18)0.0004 (16)0.0078 (17)0.0010 (15)
C170.011 (2)0.030 (2)0.021 (2)0.0002 (17)0.0063 (17)0.0008 (17)
C310.025 (2)0.021 (2)0.015 (2)0.0013 (17)0.0001 (17)0.0019 (16)
C240.019 (2)0.022 (2)0.0157 (19)0.0013 (16)0.0036 (17)0.0060 (16)
C160.016 (2)0.037 (2)0.019 (2)0.0020 (18)0.0031 (18)0.0009 (18)
C120.039 (3)0.021 (2)0.017 (2)0.0062 (19)0.0104 (19)0.0039 (17)
C140.018 (2)0.024 (2)0.0142 (19)0.0032 (16)0.0027 (17)0.0050 (16)
C230.017 (2)0.034 (2)0.017 (2)0.0045 (18)0.0053 (17)0.0049 (18)
C320.034 (3)0.0152 (19)0.0142 (19)0.0006 (17)0.0031 (18)0.0015 (16)
C80.036 (3)0.020 (2)0.019 (2)0.0045 (18)0.0073 (19)0.0023 (17)
C50.014 (2)0.025 (2)0.022 (2)0.0029 (16)0.0009 (17)0.0049 (17)
C210.016 (2)0.024 (2)0.0159 (19)0.0030 (16)0.0006 (17)0.0032 (16)
C220.017 (2)0.035 (2)0.017 (2)0.0063 (18)0.0062 (18)0.0012 (18)
C270.022 (2)0.036 (2)0.024 (2)0.0128 (19)0.0104 (19)0.0079 (19)
C60.021 (3)0.065 (3)0.021 (2)0.010 (2)0.004 (2)0.005 (2)
C150.027 (3)0.037 (3)0.014 (2)0.0079 (19)0.0050 (18)0.0060 (18)
C90.054 (3)0.026 (2)0.022 (2)0.014 (2)0.015 (2)0.0038 (19)
C100.069 (4)0.015 (2)0.026 (2)0.001 (2)0.023 (3)0.0020 (18)
B1S0.019 (3)0.028 (3)0.019 (2)0.006 (2)0.004 (2)0.007 (2)
C110.059 (4)0.025 (2)0.025 (2)0.017 (2)0.018 (2)0.0117 (19)
C1S0.097 (8)0.086 (7)0.087 (7)0.048 (6)0.018 (6)0.024 (6)
Geometric parameters (Å, º) top
Ir1—P12.3207 (12)C28—C271.528 (6)
Ir1—C292.207 (4)C4—H41.0000
Ir1—C302.211 (4)C4—C51.524 (5)
Ir1—C12.034 (4)C4—C61.520 (6)
Ir1—C262.198 (4)C2—H20.9500
Ir1—C252.183 (3)C7—C121.399 (6)
P1—C191.839 (4)C7—C81.399 (6)
P1—C131.819 (4)C17—H170.9500
P1—C71.820 (4)C17—C161.391 (6)
Cl2S—C1S1.709 (10)C31—H31A0.9900
F3S—B1S1.395 (5)C31—H31B0.9900
F4S—B1S1.398 (5)C31—C321.522 (6)
F1S—B1S1.395 (5)C24—H240.9500
F2S—B1S1.385 (5)C24—C231.391 (5)
N1—C11.364 (5)C16—H160.9500
N1—C41.477 (5)C16—C151.382 (6)
N1—C21.362 (5)C12—H120.9500
N3—N21.379 (4)C12—C111.386 (6)
N3—C11.343 (5)C14—H140.9500
N3—C31.456 (5)C14—C151.376 (6)
Cl1S—C1S1.683 (9)C23—H230.9500
N2—C21.302 (5)C23—C221.375 (6)
C29—H291.0000C32—H32A0.9900
C29—C301.380 (6)C32—H32B0.9900
C29—C281.524 (5)C8—H80.9500
C30—H301.0000C8—C91.396 (6)
C30—C311.508 (5)C5—H5A0.9800
C19—C201.398 (5)C5—H5B0.9800
C19—C241.391 (5)C5—H5C0.9800
C3—H3A0.9800C21—H210.9500
C3—H3B0.9800C21—C221.395 (6)
C3—H3C0.9800C22—H220.9500
C26—H261.0000C27—H27A0.9900
C26—C251.394 (6)C27—H27B0.9900
C26—C271.515 (6)C6—H6A0.9800
C18—H180.9500C6—H6B0.9800
C18—C131.393 (5)C6—H6C0.9800
C18—C171.383 (6)C15—H150.9500
C25—H251.0000C9—H90.9500
C25—C321.523 (5)C9—C101.385 (7)
C20—H200.9500C10—H100.9500
C20—C211.382 (5)C10—C111.377 (7)
C13—C141.405 (5)C11—H110.9500
C28—H28A0.9900C1S—H1SA0.9900
C28—H28B0.9900C1S—H1SB0.9900
C29—Ir1—P1157.81 (11)N2—C2—N1111.5 (3)
C29—Ir1—C3036.40 (15)N2—C2—H2124.3
C30—Ir1—P1165.57 (11)C12—C7—P1122.4 (3)
C1—Ir1—P193.88 (10)C12—C7—C8119.1 (4)
C1—Ir1—C2993.11 (14)C8—C7—P1118.1 (3)
C1—Ir1—C3084.88 (14)C18—C17—H17119.8
C1—Ir1—C26166.98 (15)C18—C17—C16120.4 (4)
C1—Ir1—C25154.53 (15)C16—C17—H17119.8
C26—Ir1—P188.71 (11)C30—C31—H31A109.0
C26—Ir1—C2980.05 (14)C30—C31—H31B109.0
C26—Ir1—C3095.73 (15)C30—C31—C32112.8 (3)
C25—Ir1—P195.32 (10)H31A—C31—H31B107.8
C25—Ir1—C2987.22 (14)C32—C31—H31A109.0
C25—Ir1—C3080.35 (14)C32—C31—H31B109.0
C25—Ir1—C2637.09 (15)C19—C24—H24120.0
C19—P1—Ir1118.72 (13)C23—C24—C19119.9 (4)
C13—P1—Ir1113.80 (12)C23—C24—H24120.0
C13—P1—C19100.49 (17)C17—C16—H16120.1
C13—P1—C7105.03 (18)C15—C16—C17119.7 (4)
C7—P1—Ir1112.41 (12)C15—C16—H16120.1
C7—P1—C19104.83 (17)C7—C12—H12119.9
C1—N1—C4125.6 (3)C11—C12—C7120.3 (4)
C2—N1—C1108.5 (3)C11—C12—H12119.9
C2—N1—C4125.8 (3)C13—C14—H14119.6
N2—N3—C3118.4 (3)C15—C14—C13120.7 (4)
C1—N3—N2113.3 (3)C15—C14—H14119.6
C1—N3—C3128.3 (3)C24—C23—H23119.7
C2—N2—N3103.5 (3)C22—C23—C24120.6 (4)
Ir1—C29—H29113.5C22—C23—H23119.7
C30—C29—Ir171.9 (2)C25—C32—H32A108.8
C30—C29—H29113.5C25—C32—H32B108.8
C30—C29—C28124.5 (4)C31—C32—C25113.6 (3)
C28—C29—Ir1112.9 (3)C31—C32—H32A108.8
C28—C29—H29113.5C31—C32—H32B108.8
Ir1—C30—H30113.9H32A—C32—H32B107.7
C29—C30—Ir171.7 (2)C7—C8—H8119.9
C29—C30—H30113.9C9—C8—C7120.2 (4)
C29—C30—C31126.4 (4)C9—C8—H8119.9
C31—C30—Ir1108.6 (2)C4—C5—H5A109.5
C31—C30—H30113.9C4—C5—H5B109.5
N1—C1—Ir1127.8 (3)C4—C5—H5C109.5
N3—C1—Ir1128.8 (3)H5A—C5—H5B109.5
N3—C1—N1103.3 (3)H5A—C5—H5C109.5
C20—C19—P1116.0 (3)H5B—C5—H5C109.5
C24—C19—P1124.7 (3)C20—C21—H21120.1
C24—C19—C20119.3 (3)C20—C21—C22119.8 (4)
N3—C3—H3A109.5C22—C21—H21120.1
N3—C3—H3B109.5C23—C22—C21119.9 (4)
N3—C3—H3C109.5C23—C22—H22120.1
H3A—C3—H3B109.5C21—C22—H22120.1
H3A—C3—H3C109.5C26—C27—C28113.5 (3)
H3B—C3—H3C109.5C26—C27—H27A108.9
Ir1—C26—H26114.2C26—C27—H27B108.9
C25—C26—Ir170.8 (2)C28—C27—H27A108.9
C25—C26—H26114.2C28—C27—H27B108.9
C25—C26—C27125.2 (4)H27A—C27—H27B107.7
C27—C26—Ir1109.8 (3)C4—C6—H6A109.5
C27—C26—H26114.2C4—C6—H6B109.5
C13—C18—H18119.8C4—C6—H6C109.5
C17—C18—H18119.8H6A—C6—H6B109.5
C17—C18—C13120.3 (4)H6A—C6—H6C109.5
Ir1—C25—H25113.6H6B—C6—H6C109.5
C26—C25—Ir172.1 (2)C16—C15—H15119.9
C26—C25—H25113.6C14—C15—C16120.2 (4)
C26—C25—C32124.4 (4)C14—C15—H15119.9
C32—C25—Ir1112.4 (2)C8—C9—H9120.3
C32—C25—H25113.6C10—C9—C8119.4 (5)
C19—C20—H20119.8C10—C9—H9120.3
C21—C20—C19120.4 (4)C9—C10—H10119.5
C21—C20—H20119.8C11—C10—C9121.0 (4)
C18—C13—P1121.7 (3)C11—C10—H10119.5
C18—C13—C14118.6 (4)F3S—B1S—F4S109.3 (3)
C14—C13—P1119.6 (3)F3S—B1S—F1S109.5 (4)
C29—C28—H28A109.0F1S—B1S—F4S109.0 (4)
C29—C28—H28B109.0F2S—B1S—F3S108.8 (4)
C29—C28—C27113.0 (3)F2S—B1S—F4S110.3 (4)
H28A—C28—H28B107.8F2S—B1S—F1S110.0 (3)
C27—C28—H28A109.0C12—C11—H11120.0
C27—C28—H28B109.0C10—C11—C12120.0 (4)
N1—C4—H4108.2C10—C11—H11120.0
N1—C4—C5110.0 (3)Cl2S—C1S—H1SA107.5
N1—C4—C6110.6 (3)Cl2S—C1S—H1SB107.5
C5—C4—H4108.2Cl1S—C1S—Cl2S119.2 (5)
C6—C4—H4108.2Cl1S—C1S—H1SA107.5
C6—C4—C5111.6 (3)Cl1S—C1S—H1SB107.5
N1—C2—H2124.3H1SA—C1S—H1SB107.0
Ir1—P1—C19—C2056.0 (3)C18—C13—C14—C151.2 (6)
Ir1—P1—C19—C24126.2 (3)C18—C17—C16—C150.6 (6)
Ir1—P1—C13—C182.3 (3)C25—C26—C27—C2843.4 (5)
Ir1—P1—C13—C14175.2 (3)C20—C19—C24—C231.2 (6)
Ir1—P1—C7—C12108.8 (3)C20—C21—C22—C230.6 (6)
Ir1—P1—C7—C864.6 (3)C13—P1—C19—C2068.7 (3)
Ir1—C29—C30—C3199.9 (4)C13—P1—C19—C24109.1 (4)
Ir1—C29—C28—C2711.3 (4)C13—P1—C7—C1215.4 (4)
Ir1—C30—C31—C3238.6 (4)C13—P1—C7—C8171.2 (3)
Ir1—C26—C25—C32105.3 (3)C13—C18—C17—C160.1 (6)
Ir1—C26—C27—C2836.6 (4)C13—C14—C15—C160.7 (6)
Ir1—C25—C32—C3111.4 (4)C28—C29—C30—Ir1105.8 (4)
P1—C19—C20—C21179.4 (3)C28—C29—C30—C315.9 (6)
P1—C19—C24—C23178.9 (3)C4—N1—C1—Ir11.7 (5)
P1—C13—C14—C15178.8 (3)C4—N1—C1—N3178.4 (3)
P1—C7—C12—C11173.8 (3)C4—N1—C2—N2178.9 (3)
P1—C7—C8—C9175.3 (3)C2—N1—C1—Ir1177.7 (3)
N3—N2—C2—N10.2 (4)C2—N1—C1—N31.1 (4)
N2—N3—C1—Ir1177.9 (3)C2—N1—C4—C558.9 (5)
N2—N3—C1—N11.2 (4)C2—N1—C4—C664.9 (5)
C29—C30—C31—C3241.9 (5)C7—P1—C19—C20177.5 (3)
C29—C28—C27—C2631.9 (5)C7—P1—C19—C240.3 (4)
C30—C29—C28—C2794.5 (5)C7—P1—C13—C18121.0 (3)
C30—C31—C32—C2533.8 (5)C7—P1—C13—C1461.5 (3)
C1—N1—C4—C5121.8 (4)C7—C12—C11—C101.2 (6)
C1—N1—C4—C6114.5 (4)C7—C8—C9—C101.2 (6)
C1—N1—C2—N20.5 (4)C17—C18—C13—P1178.3 (3)
C1—N3—N2—C20.9 (4)C17—C18—C13—C140.8 (5)
C19—P1—C13—C18130.4 (3)C17—C16—C15—C140.2 (6)
C19—P1—C13—C1447.2 (3)C24—C19—C20—C211.5 (6)
C19—P1—C7—C12120.9 (3)C24—C23—C22—C210.9 (6)
C19—P1—C7—C865.7 (3)C12—C7—C8—C91.6 (6)
C19—C20—C21—C220.6 (6)C8—C7—C12—C110.4 (6)
C19—C24—C23—C220.0 (6)C8—C9—C10—C110.4 (6)
C3—N3—N2—C2178.4 (3)C27—C26—C25—Ir1101.1 (4)
C3—N3—C1—Ir14.9 (5)C27—C26—C25—C324.2 (6)
C3—N3—C1—N1178.4 (3)C9—C10—C11—C121.6 (6)
C26—C25—C32—C3194.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F3Si0.952.603.471 (5)153
C2—H2···F1Si0.952.303.154 (5)149
C5—H5C···F3Si0.982.543.505 (5)169
C6—H6C···F2Sii0.982.503.451 (5)163
C10—H10···N2iii0.952.423.364 (6)172
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862–892.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. P. (2013). Synlett, 24, 1188–1189.  CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146