inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure reinvestigation of silver(I) fluoride, AgF

crossmark logo

aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 December 2022; accepted 7 January 2023; online 24 January 2023)

A crystal structure reinvestigation of AgF based on a low-temperature high-resolution single-crystal X-ray diffraction data is reported. Silver(I) fluoride crystallizes in the rock salt structure type (Fm[\overline{3}]m) with a unit-cell parameter of 4.92171 (14) Å at 100 K, resulting in an Ag—F bond length of 2.46085 (7) Å.

3D view (loading...)
[Scheme 3D1]

Structure description

Crystal structure data of the following binary silver fluorides can be retrieved from the Inorganic Crystal Structure Database (ICSD; Bergerhoff et al., 1983[Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66-69.]; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]): Ag2F, AgF, AgF2, AgF3, Ag2F5, and Ag3F8 (Table 1[link]).

Table 1
Crystal structure data of binary silver fluorides reported in the ICSD database (only one entry for each crystalline phase is given)

PND = powder neutron diffraction; PXRD = powder X-ray diffraction; SCXRD = single-crystal X-ray diffraction.

Compound Space group Unit-cell parameters Method, conditions Reference
Ag2F P[\overline{3}]m1 a = 2.99877 (5) Å, c = 5.6950 (2) Å PND, 300 K Williams (1989[Williams, A. (1989). J. Phys. Condens. Matter, 1, 2569-2574.])
AgF Fm[\overline{3}]m a = 4.92 Å PXRD Ott (1926[Ott, H. (1926). Z. Kristallogr. 63, 222-230.])
AgF2 P21/n a = 3.34 Å, b = 4.57 Å, c = 4.65 Å, β = 84.5° PXRD, 123 K / 195 K Baturina et al. (1967[Baturina, É. A., Luk'yanychev, Y. A. & Rastorguev, L. N. (1967). J. Struct. Chem. 7, 591-592.])
AgF2 Pbca a = 5.568 (1) Å, b = 5.831 (1) Å, c = 5.101 (1) Å SCXRD Jesih et al. (1990[Jesih, A., Lutar, K., Žemva, B., Bachmann, B., Becker, S., Müller, B. G. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 588, 77-83.])
AgF2 Pbcn a = 5.476 (10) Å, b = 8.331 (15) Å, c = 5.787 (7) Å Synchrotron PXRD, 14.8 GPa Grzelak et al. (2017b[Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017b). Dalton Trans. 46, 14742-14745.])
AgF2 Pca21 a = 5.475 (7) Å, b = 4.704 (6) Å, c = 5.564 (6) Å Synchrotron PXRD, 10 GPa Grzelak et al. (2017a[Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651-14661.])
AgF3 P6122 a = 5.0782 (2) Å, c = 15.4523 (8) Å PND Žemva et al. (1991[Žemva, B., Lutar, K., Jesih, A., Casteel, W. J. Jr, Wilkinson, A. P., Cox, D. E., Von Dreele, R. B., Borrmann, H. & Bartlett, N. (1991). J. Am. Chem. Soc. 113, 4192-4198.])
Ag2F5 P[\overline{1}] a = 4.999 (2) Å, b = 11.087 (5) Å, c = 7.357 (3) Å, α = 90.05 (3)°, β = 106.54 (4)°, γ = 90.18 (4)° SCXRD Fischer & Müller (2002[Fischer, R. & Müller, B. G. (2002). Z. Anorg. Allg. Chem. 628, 2592-2596.])
Ag3F8 P21/n a = 5.04664 (8) Å, b = 11.0542 (2) Å, c = 5.44914 (9) Å, β = 97.170 (2)° Synchrotron PXRD, 299 K Graudejus et al. (2000[Graudejus, O., Wilkinson, A. P. & Bartlett, N. (2000). Inorg. Chem. 39, 1545-1548.])

The crystal structure of silver subfluoride, Ag2F, was elucidated from powder and single-crystal X-ray diffraction data (Ott & Seyfarth, 1928[Ott, H. & Seyfarth, H. (1928). Z. Kristallogr. 67, 430-433.]; Terrey & Diamond, 1928[Terrey, H. & Diamond, H. (1928). J. Chem. Soc. pp. 2820-2824.]; Argay & Náray-Szabó, 1966[Argay, G. & Náray-Szabó, I. (1966). Acta Chim. Acad. Sci. Hung. 49, 329-337.]) as well as studied by powder neutron diffraction measurements from room temperature to 20 K (Williams, 1989[Williams, A. (1989). J. Phys. Condens. Matter, 1, 2569-2574.]). Silver(I) fluoride, AgF, has been investigated at ambient conditions only by powder X-ray diffraction (Ott, 1926[Ott, H. (1926). Z. Kristallogr. 63, 222-230.]; Bottger, & Geddes, 1972[Bottger, G. L. & Geddes, A. L. (1972). J. Chem. Phys. 56, 3735-3739.]). The high-pressure structural behavior of AgF was thoroughly studied by powder X-ray diffraction (Halleck et al., 1972[Halleck, P. M., Jamieson, J. C. & Pistorius, C. W. F. T. (1972). J. Phys. Chem. Solids, 33, 769-773.]; Jamieson et al., 1975[Jamieson, J. C., Halleck, P. M., Roof, R. B. & Pistorius, C. W. F. T. (1975). J. Phys. Chem. Solids, 36, 939-944.]), powder neutron diffraction experiments to 6.5 GPa (Hull & Berastegui, 1998[Hull, S. & Berastegui, P. (1998). J. Phys.: Condens. Matter, 10, 7945-7955.]), and by synchrotron powder X-ray diffraction measurements up to 39 GPa (Grzelak et al., 2017a[Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651-14661.]). Silver(II) fluoride, AgF2, was studied by powder X-ray diffraction (Ruff & Giese, 1934[Ruff, O. & Giese, M. (1934). Z. Anorg. Allg. Chem. 219, 143-148.]; Charpin et al., 1966[Charpin, P., Dianoux, A.-J., Marquet-Ellis, H. & Nguyen-Nghi (1966). C. R. Seances Acad. Sci., Ser. C, 263, 1359-1361.]; Baturina et al., 1967[Baturina, É. A., Luk'yanychev, Y. A. & Rastorguev, L. N. (1967). J. Struct. Chem. 7, 591-592.]; Kiselev et al., 1988[Kiselev, Yu. M., Popov, A. I., Timakov, A. A., Bukharin, K. V. & Sukhoverkhov, V. F. (1988). Russ. J. Inorg. Chem 33, 708-710.]) and its crystal structure determined from single-crystal X-ray diffraction data (Jesih et al., 1990[Jesih, A., Lutar, K., Žemva, B., Bachmann, B., Becker, S., Müller, B. G. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 588, 77-83.]), as well as by powder neutron diffraction (Charpin et al., 1970[Charpin, P., Plurien, P. & Mériel, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 7-13.]; Fischer et al., 1971[Fischer, P., Schwarzenbach, D. & Rietveld, H. M. (1971). J. Phys. Chem. Solids, 32, 543-550.]). Moreover, the high-pressure structural behavior of AgF2 was explored employing synchrotron X-ray diffraction (Grzelak et al., 2017a[Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651-14661.],b[Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017b). Dalton Trans. 46, 14742-14745.]). The crystal structure of silver(III) fluoride, AgF3, was refined from powder neutron diffraction data and synchrotron powder X-ray diffraction data was also measured (Žemva et al., 1991[Žemva, B., Lutar, K., Jesih, A., Casteel, W. J. Jr, Wilkinson, A. P., Cox, D. E., Von Dreele, R. B., Borrmann, H. & Bartlett, N. (1991). J. Am. Chem. Soc. 113, 4192-4198.]). A mixed-valence silver(II,III) fluoride Ag2F5, or AgIIF[AgIIIF4], was structurally characterized by single-crystal X-ray diffraction (Fischer & Müller, 2002[Fischer, R. & Müller, B. G. (2002). Z. Anorg. Allg. Chem. 628, 2592-2596.]), whereas the crystal structure of Ag3F8, or AgII[AgIIIF4]2, was determined by synchrotron powder X-ray diffraction (Graudejus et al., 2000[Graudejus, O., Wilkinson, A. P. & Bartlett, N. (2000). Inorg. Chem. 39, 1545-1548.]). Two recent reports explored the pressure–composition phase diagram of binary silver fluorides by theoretical methods (Kurzydłowski et al., 2021[Kurzydłowski, D., Derzsi, M., Zurek, E. & Grochala, W. (2021). Chem. Eur. J. 27, 5536-5545.]; Rybin et al., 2022[Rybin, N., Chepkasov, I., Novoselov, D. Y., Anisimov, V. I. & Oganov, A. R. (2022). J. Phys. Chem. C, 126, 15057-15063.]).

Herein, a low-temperature high-resolution (0.54 Å) single-crystal X-ray diffraction measurement of AgF (rock salt structure type, Fm[\overline{3}]m) is reported (Fig. 1[link]). The unit-cell parameter (Table 2[link]) is in good agreement with the previously reported room-temperature value of 4.936 (1) Å (Bottger & Geddes, 1972[Bottger, G. L. & Geddes, A. L. (1972). J. Chem. Phys. 56, 3735-3739.]). The Ag—F bond length determined from the current low-temperature data is 2.46085 (7) Å.

Table 2
Experimental details

Crystal data
Chemical formula AgF
Mr 126.87
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 100
a (Å) 4.92171 (14)
V3) 119.22 (1)
Z 4
Radiation type Ag Kα, λ = 0.56087 Å
μ (mm−1) 8.51
Crystal size (mm) 0.06 × 0.05 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 730, 37, 37
Rint 0.050
(sin θ/λ)max−1) 0.926
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.011, 0.020, 1.28
No. of reflections 37
No. of parameters 3
Δρmax, Δρmin (e Å−3) 0.59, −0.55
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), OLEX2.solve and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The rock salt-type structure of AgF. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Agglomerated single-crystals with typical dimensions of ∼50 µm were recovered from a solid-state reaction (T = 310 °C) where AgF (Thermo Scientific, 99+%) was used as a starting material. A small amount of sample was placed onto a watch glass and covered with a protective layer of perfluoro­deca­lin (Fluorochem, 96.0%, cis and trans) inside a nitro­gen-filled glovebox (Vigor, H2O < 0.1 ppm). The sample was examined under a polarizing microscope outside the glovebox, and selected crystals were mounted on a MiTeGen Dual Thickness MicroLoops with the aid of Baysilone-Paste (Bayer-Silicone, mittelviskos).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: olex2.solve 1.5 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL 2019/2 (Sheldrick, 2015); molecular graphics: OLEX2 1.5 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: OLEX2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Silver(I) fluoride top
Crystal data top
AgFAg Kα radiation, λ = 0.56087 Å
Mr = 126.87Cell parameters from 689 reflections
Cubic, Fm3mθ = 5.7–31.2°
a = 4.92171 (14) ŵ = 8.51 mm1
V = 119.22 (1) Å3T = 100 K
Z = 4Irregular, colourless
F(000) = 2240.06 × 0.05 × 0.05 mm
Dx = 7.068 Mg m3
Data collection top
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
diffractometer
37 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Ag) X-ray Source37 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 13.3333 pixels mm-1θmax = 31.3°, θmin = 5.7°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 98
Tmin = 0.724, Tmax = 1.000l = 88
730 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.011 w = 1/[σ2(Fo2) + 0.2914P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max < 0.001
S = 1.28Δρmax = 0.59 e Å3
37 reflectionsΔρmin = 0.55 e Å3
3 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.0000000.0000000.0000000.01650 (12)
F10.5000000.0000000.0000000.0199 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01650 (12)0.01650 (12)0.01650 (12)0.0000.0000.000
F10.0199 (8)0.0199 (8)0.0199 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Ag1—F1i2.4609 (1)Ag1—F1iii2.4609 (1)
Ag1—F1ii2.4609 (1)Ag1—F1iv2.4609 (1)
Ag1—F12.4609 (1)Ag1—F1v2.4609 (1)
F1i—Ag1—F190.0Ag1vi—F1—Ag190.0
F1v—Ag1—F1iii180.0Ag1vii—F1—Ag1viii180.0
F1v—Ag1—F1ii90.0Ag1vii—F1—Ag1ix90.0
F1iv—Ag1—F1iii90.0Ag1x—F1—Ag1viii90.0
F1—Ag1—F1ii90.0Ag1—F1—Ag1ix90.0
F1iv—Ag1—F1ii90.0Ag1x—F1—Ag1ix90.0
F1i—Ag1—F1v90.0Ag1—F1—Ag1viii90.0
F1i—Ag1—F1iv90.0Ag1vi—F1—Ag1x90.0
F1—Ag1—F1v90.0Ag1—F1—Ag1vii90.0
F1i—Ag1—F1ii180.0Ag1vi—F1—Ag1ix180.0
F1iv—Ag1—F1v90.0Ag1x—F1—Ag1vii90.0
F1—Ag1—F1iv180.0Ag1—F1—Ag1x180.0
F1i—Ag1—F1iii90.0Ag1vi—F1—Ag1viii90.0
F1—Ag1—F1iii90.0Ag1viii—F1—Ag1ix90.0
F1iii—Ag1—F1ii90.0Ag1vi—F1—Ag1vii90.0
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x1, y, z; (v) x1/2, y, z1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y, z1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1, y, z.
Crystal structure data of binary silver fluorides reported in the ICSD database (only one entry for each crystalline phase is given) top
PND = powder neutron diffraction; PXRD = powder X-ray diffraction; SCXRD = single-crystal X-ray diffraction.
CompoundSpace groupUnit-cell parametersMethod, conditionsReference
Ag2FP3m1a = 2.99877 (5) Å, c = 5.6950 (2) ÅPND, 300 KWilliams (1989)
AgFFm3ma = 4.92 ÅPXRDOtt (1926)
AgF2P21/na = 3.34 Å, b = 4.57 Å, c = 4.65 Å, β = 84.5°PXRD, 123 K / 195 KBaturina et al. (1967)
AgF2Pbcaa = 5.568 (1) Å, b = 5.831 (1) Å, c = 5.101 (1) ÅSCXRDJesih et al. (1990)
AgF2Pbcna = 5.476 (10) Å, b = 8.331 (15) Å, c = 5.787 (7) ÅSynchrotron PXRD, 14.8 GPaGrzelak et al. (2017b)
AgF2Pca21a = 5.475 (7) Å, b = 4.704 (6) Å, c = 5.564 (6) ÅSynchrotron PXRD, 10 GPaGrzelak et al. (2017a)
AgF3P6122a = 5.0782 (2) Å, c = 15.4523 (8) ÅPNDŽemva et al. (1991)
Ag2F5P1a = 4.999 (2) Å, b = 11.087 (5) Å, c = 7.357 (3) Å, α = 90.05 (3)°, β = 106.54 (4)°, γ = 90.18 (4)°SCXRDFischer & Müller (2002)
Ag3F8P21/na = 5.04664 (8) Å, b = 11.0542 (2) Å, c = 5.44914 (9) Å, β = 97.170 (2)°Synchrotron PXRD, 299 KGraudejus et al. (2000)
 

Funding information

Funding for this research was provided by: Slovenian Research Agency (grant Nos. J2-2496 and P2-0105); European Research Council (ERC) and Marie Skłodowska-Curie Individual Fellowship (MSCA-IF) under the European Union's Horizon 2020 research and innovation programme (grant Nos. 950625 and 101031415); Jožef Stefan Institute Director's Fund.

References

First citationArgay, G. & Náray-Szabó, I. (1966). Acta Chim. Acad. Sci. Hung. 49, 329–337.  CAS Google Scholar
First citationBaturina, É. A., Luk'yanychev, Y. A. & Rastorguev, L. N. (1967). J. Struct. Chem. 7, 591–592.  CrossRef Google Scholar
First citationBergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66–69.  CrossRef CAS Web of Science Google Scholar
First citationBottger, G. L. & Geddes, A. L. (1972). J. Chem. Phys. 56, 3735–3739.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCharpin, P., Dianoux, A.-J., Marquet-Ellis, H. & Nguyen-Nghi (1966). C. R. Seances Acad. Sci., Ser. C, 263, 1359–1361.  Google Scholar
First citationCharpin, P., Plurien, P. & Mériel, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 7–13.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, P., Schwarzenbach, D. & Rietveld, H. M. (1971). J. Phys. Chem. Solids, 32, 543–550.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFischer, R. & Müller, B. G. (2002). Z. Anorg. Allg. Chem. 628, 2592–2596.  CrossRef CAS Google Scholar
First citationGraudejus, O., Wilkinson, A. P. & Bartlett, N. (2000). Inorg. Chem. 39, 1545–1548.  CrossRef ICSD PubMed CAS Google Scholar
First citationGrzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651–14661.  CrossRef ICSD CAS PubMed Google Scholar
First citationGrzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017b). Dalton Trans. 46, 14742–14745.  CrossRef CAS PubMed Google Scholar
First citationHalleck, P. M., Jamieson, J. C. & Pistorius, C. W. F. T. (1972). J. Phys. Chem. Solids, 33, 769–773.  CrossRef CAS Google Scholar
First citationHull, S. & Berastegui, P. (1998). J. Phys.: Condens. Matter, 10, 7945–7955.  CrossRef CAS Google Scholar
First citationJamieson, J. C., Halleck, P. M., Roof, R. B. & Pistorius, C. W. F. T. (1975). J. Phys. Chem. Solids, 36, 939–944.  CrossRef CAS Google Scholar
First citationJesih, A., Lutar, K., Žemva, B., Bachmann, B., Becker, S., Müller, B. G. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 588, 77–83.  CrossRef ICSD CAS Google Scholar
First citationKiselev, Yu. M., Popov, A. I., Timakov, A. A., Bukharin, K. V. & Sukhoverkhov, V. F. (1988). Russ. J. Inorg. Chem 33, 708–710.  Google Scholar
First citationKurzydłowski, D., Derzsi, M., Zurek, E. & Grochala, W. (2021). Chem. Eur. J. 27, 5536–5545.  PubMed Google Scholar
First citationOtt, H. (1926). Z. Kristallogr. 63, 222–230.  CrossRef CAS Google Scholar
First citationOtt, H. & Seyfarth, H. (1928). Z. Kristallogr. 67, 430–433.  CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationRuff, O. & Giese, M. (1934). Z. Anorg. Allg. Chem. 219, 143–148.  CrossRef CAS Google Scholar
First citationRybin, N., Chepkasov, I., Novoselov, D. Y., Anisimov, V. I. & Oganov, A. R. (2022). J. Phys. Chem. C, 126, 15057–15063.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerrey, H. & Diamond, H. (1928). J. Chem. Soc. pp. 2820–2824.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, A. (1989). J. Phys. Condens. Matter, 1, 2569–2574.  CrossRef ICSD CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŽemva, B., Lutar, K., Jesih, A., Casteel, W. J. Jr, Wilkinson, A. P., Cox, D. E., Von Dreele, R. B., Borrmann, H. & Bartlett, N. (1991). J. Am. Chem. Soc. 113, 4192–4198.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146