inorganic compounds
reinvestigation of silver(I) fluoride, AgF
aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
A Fmm) with a unit-cell parameter of 4.92171 (14) Å at 100 K, resulting in an Ag—F bond length of 2.46085 (7) Å.
reinvestigation of AgF based on a low-temperature high-resolution single-crystal X-ray diffraction data is reported. Silver(I) fluoride crystallizes in the rock salt structure type (Keywords: silver(I) fluoride; silver fluorides; crystal structure; single-crystal X-ray diffraction.
CCDC reference: 2235315
Structure description
et al., 1983; Zagorac et al., 2019): Ag2F, AgF, AgF2, AgF3, Ag2F5, and Ag3F8 (Table 1).
data of the following binary silver fluorides can be retrieved from the Inorganic Database (ICSD; BergerhoffThe 2F, was elucidated from powder and single-crystal X-ray diffraction data (Ott & Seyfarth, 1928; Terrey & Diamond, 1928; Argay & Náray-Szabó, 1966) as well as studied by powder neutron diffraction measurements from room temperature to 20 K (Williams, 1989). Silver(I) fluoride, AgF, has been investigated at ambient conditions only by powder X-ray diffraction (Ott, 1926; Bottger, & Geddes, 1972). The high-pressure structural behavior of AgF was thoroughly studied by powder X-ray diffraction (Halleck et al., 1972; Jamieson et al., 1975), powder neutron diffraction experiments to 6.5 GPa (Hull & Berastegui, 1998), and by synchrotron powder X-ray diffraction measurements up to 39 GPa (Grzelak et al., 2017a). Silver(II) fluoride, AgF2, was studied by powder X-ray diffraction (Ruff & Giese, 1934; Charpin et al., 1966; Baturina et al., 1967; Kiselev et al., 1988) and its determined from single-crystal X-ray diffraction data (Jesih et al., 1990), as well as by powder neutron diffraction (Charpin et al., 1970; Fischer et al., 1971). Moreover, the high-pressure structural behavior of AgF2 was explored employing synchrotron X-ray diffraction (Grzelak et al., 2017a,b). The of silver(III) fluoride, AgF3, was refined from powder neutron diffraction data and synchrotron powder X-ray diffraction data was also measured (Žemva et al., 1991). A mixed-valence silver(II,III) fluoride Ag2F5, or AgIIF[AgIIIF4], was structurally characterized by single-crystal X-ray diffraction (Fischer & Müller, 2002), whereas the of Ag3F8, or AgII[AgIIIF4]2, was determined by synchrotron powder X-ray diffraction (Graudejus et al., 2000). Two recent reports explored the pressure–composition phase diagram of binary silver fluorides by theoretical methods (Kurzydłowski et al., 2021; Rybin et al., 2022).
of silver subfluoride, AgHerein, a low-temperature high-resolution (0.54 Å) single-crystal X-ray diffraction measurement of AgF (rock salt structure type, Fmm) is reported (Fig. 1). The unit-cell parameter (Table 2) is in good agreement with the previously reported room-temperature value of 4.936 (1) Å (Bottger & Geddes, 1972). The Ag—F bond length determined from the current low-temperature data is 2.46085 (7) Å.
|
Synthesis and crystallization
Agglomerated single-crystals with typical dimensions of ∼50 µm were recovered from a solid-state reaction (T = 310 °C) where AgF (Thermo Scientific, 99+%) was used as a starting material. A small amount of sample was placed onto a watch glass and covered with a protective layer of perfluorodecalin (Fluorochem, 96.0%, cis and trans) inside a nitrogen-filled glovebox (Vigor, H2O < 0.1 ppm). The sample was examined under a polarizing microscope outside the glovebox, and selected crystals were mounted on a MiTeGen Dual Thickness MicroLoops with the aid of Baysilone-Paste (Bayer-Silicone, mittelviskos).
Structural data
CCDC reference: 2235315
https://doi.org/10.1107/S2414314623000184/wm4179sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623000184/wm4179Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: olex2.solve 1.5 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL 2019/2 (Sheldrick, 2015); molecular graphics: OLEX2 1.5 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: OLEX2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, 2010).AgF | Ag Kα radiation, λ = 0.56087 Å |
Mr = 126.87 | Cell parameters from 689 reflections |
Cubic, Fm3m | θ = 5.7–31.2° |
a = 4.92171 (14) Å | µ = 8.51 mm−1 |
V = 119.22 (1) Å3 | T = 100 K |
Z = 4 | Irregular, colourless |
F(000) = 224 | 0.06 × 0.05 × 0.05 mm |
Dx = 7.068 Mg m−3 |
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M diffractometer | 37 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Ag) X-ray Source | 37 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.050 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 31.3°, θmin = 5.7° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −9→8 |
Tmin = 0.724, Tmax = 1.000 | l = −8→8 |
730 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: iterative |
R[F2 > 2σ(F2)] = 0.011 | w = 1/[σ2(Fo2) + 0.2914P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.020 | (Δ/σ)max < 0.001 |
S = 1.28 | Δρmax = 0.59 e Å−3 |
37 reflections | Δρmin = −0.55 e Å−3 |
3 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.000000 | 0.000000 | 0.000000 | 0.01650 (12) | |
F1 | 0.500000 | 0.000000 | 0.000000 | 0.0199 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01650 (12) | 0.01650 (12) | 0.01650 (12) | 0.000 | 0.000 | 0.000 |
F1 | 0.0199 (8) | 0.0199 (8) | 0.0199 (8) | 0.000 | 0.000 | 0.000 |
Ag1—F1i | 2.4609 (1) | Ag1—F1iii | 2.4609 (1) |
Ag1—F1ii | 2.4609 (1) | Ag1—F1iv | 2.4609 (1) |
Ag1—F1 | 2.4609 (1) | Ag1—F1v | 2.4609 (1) |
F1i—Ag1—F1 | 90.0 | Ag1vi—F1—Ag1 | 90.0 |
F1v—Ag1—F1iii | 180.0 | Ag1vii—F1—Ag1viii | 180.0 |
F1v—Ag1—F1ii | 90.0 | Ag1vii—F1—Ag1ix | 90.0 |
F1iv—Ag1—F1iii | 90.0 | Ag1x—F1—Ag1viii | 90.0 |
F1—Ag1—F1ii | 90.0 | Ag1—F1—Ag1ix | 90.0 |
F1iv—Ag1—F1ii | 90.0 | Ag1x—F1—Ag1ix | 90.0 |
F1i—Ag1—F1v | 90.0 | Ag1—F1—Ag1viii | 90.0 |
F1i—Ag1—F1iv | 90.0 | Ag1vi—F1—Ag1x | 90.0 |
F1—Ag1—F1v | 90.0 | Ag1—F1—Ag1vii | 90.0 |
F1i—Ag1—F1ii | 180.0 | Ag1vi—F1—Ag1ix | 180.0 |
F1iv—Ag1—F1v | 90.0 | Ag1x—F1—Ag1vii | 90.0 |
F1—Ag1—F1iv | 180.0 | Ag1—F1—Ag1x | 180.0 |
F1i—Ag1—F1iii | 90.0 | Ag1vi—F1—Ag1viii | 90.0 |
F1—Ag1—F1iii | 90.0 | Ag1viii—F1—Ag1ix | 90.0 |
F1iii—Ag1—F1ii | 90.0 | Ag1vi—F1—Ag1vii | 90.0 |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y, z+1/2; (iv) x−1, y, z; (v) x−1/2, y, z−1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y, z−1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1, y, z. |
PND = powder neutron diffraction; PXRD = powder X-ray diffraction; SCXRD = single-crystal X-ray diffraction. |
Compound | Space group | Unit-cell parameters | Method, conditions | Reference |
Ag2F | P3m1 | a = 2.99877 (5) Å, c = 5.6950 (2) Å | PND, 300 K | Williams (1989) |
AgF | Fm3m | a = 4.92 Å | PXRD | Ott (1926) |
AgF2 | P21/n | a = 3.34 Å, b = 4.57 Å, c = 4.65 Å, β = 84.5° | PXRD, 123 K / 195 K | Baturina et al. (1967) |
AgF2 | Pbca | a = 5.568 (1) Å, b = 5.831 (1) Å, c = 5.101 (1) Å | SCXRD | Jesih et al. (1990) |
AgF2 | Pbcn | a = 5.476 (10) Å, b = 8.331 (15) Å, c = 5.787 (7) Å | Synchrotron PXRD, 14.8 GPa | Grzelak et al. (2017b) |
AgF2 | Pca21 | a = 5.475 (7) Å, b = 4.704 (6) Å, c = 5.564 (6) Å | Synchrotron PXRD, 10 GPa | Grzelak et al. (2017a) |
AgF3 | P6122 | a = 5.0782 (2) Å, c = 15.4523 (8) Å | PND | Žemva et al. (1991) |
Ag2F5 | P1 | a = 4.999 (2) Å, b = 11.087 (5) Å, c = 7.357 (3) Å, α = 90.05 (3)°, β = 106.54 (4)°, γ = 90.18 (4)° | SCXRD | Fischer & Müller (2002) |
Ag3F8 | P21/n | a = 5.04664 (8) Å, b = 11.0542 (2) Å, c = 5.44914 (9) Å, β = 97.170 (2)° | Synchrotron PXRD, 299 K | Graudejus et al. (2000) |
Funding information
Funding for this research was provided by: Slovenian Research Agency (grant Nos. J2-2496 and P2-0105); European Research Council (ERC) and Marie Skłodowska-Curie Individual Fellowship (MSCA-IF) under the European Union's Horizon 2020 research and innovation programme (grant Nos. 950625 and 101031415); Jožef Stefan Institute Director's Fund.
References
Argay, G. & Náray-Szabó, I. (1966). Acta Chim. Acad. Sci. Hung. 49, 329–337. CAS Google Scholar
Baturina, É. A., Luk'yanychev, Y. A. & Rastorguev, L. N. (1967). J. Struct. Chem. 7, 591–592. CrossRef Google Scholar
Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66–69. CrossRef CAS Web of Science Google Scholar
Bottger, G. L. & Geddes, A. L. (1972). J. Chem. Phys. 56, 3735–3739. CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Charpin, P., Dianoux, A.-J., Marquet-Ellis, H. & Nguyen-Nghi (1966). C. R. Seances Acad. Sci., Ser. C, 263, 1359–1361. Google Scholar
Charpin, P., Plurien, P. & Mériel, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 7–13. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, P., Schwarzenbach, D. & Rietveld, H. M. (1971). J. Phys. Chem. Solids, 32, 543–550. CrossRef ICSD CAS Web of Science Google Scholar
Fischer, R. & Müller, B. G. (2002). Z. Anorg. Allg. Chem. 628, 2592–2596. CrossRef CAS Google Scholar
Graudejus, O., Wilkinson, A. P. & Bartlett, N. (2000). Inorg. Chem. 39, 1545–1548. CrossRef ICSD PubMed CAS Google Scholar
Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651–14661. CrossRef ICSD CAS PubMed Google Scholar
Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017b). Dalton Trans. 46, 14742–14745. CrossRef CAS PubMed Google Scholar
Halleck, P. M., Jamieson, J. C. & Pistorius, C. W. F. T. (1972). J. Phys. Chem. Solids, 33, 769–773. CrossRef CAS Google Scholar
Hull, S. & Berastegui, P. (1998). J. Phys.: Condens. Matter, 10, 7945–7955. CrossRef CAS Google Scholar
Jamieson, J. C., Halleck, P. M., Roof, R. B. & Pistorius, C. W. F. T. (1975). J. Phys. Chem. Solids, 36, 939–944. CrossRef CAS Google Scholar
Jesih, A., Lutar, K., Žemva, B., Bachmann, B., Becker, S., Müller, B. G. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 588, 77–83. CrossRef ICSD CAS Google Scholar
Kiselev, Yu. M., Popov, A. I., Timakov, A. A., Bukharin, K. V. & Sukhoverkhov, V. F. (1988). Russ. J. Inorg. Chem 33, 708–710. Google Scholar
Kurzydłowski, D., Derzsi, M., Zurek, E. & Grochala, W. (2021). Chem. Eur. J. 27, 5536–5545. PubMed Google Scholar
Ott, H. (1926). Z. Kristallogr. 63, 222–230. CrossRef CAS Google Scholar
Ott, H. & Seyfarth, H. (1928). Z. Kristallogr. 67, 430–433. CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Ruff, O. & Giese, M. (1934). Z. Anorg. Allg. Chem. 219, 143–148. CrossRef CAS Google Scholar
Rybin, N., Chepkasov, I., Novoselov, D. Y., Anisimov, V. I. & Oganov, A. R. (2022). J. Phys. Chem. C, 126, 15057–15063. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terrey, H. & Diamond, H. (1928). J. Chem. Soc. pp. 2820–2824. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, A. (1989). J. Phys. Condens. Matter, 1, 2569–2574. CrossRef ICSD CAS Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Žemva, B., Lutar, K., Jesih, A., Casteel, W. J. Jr, Wilkinson, A. P., Cox, D. E., Von Dreele, R. B., Borrmann, H. & Bartlett, N. (1991). J. Am. Chem. Soc. 113, 4192–4198. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.