organic compounds
(S)-2-[(S)-2,2,2-Trifluoro-1-hydroxyethyl]-1-tetralone
aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The 12H11F3O2, was elucidated by low-temperature single-crystal X-ray diffraction. The enantiopure compound crystallizes in the Sohncke P21 and features one molecule in the The structure displays intermolecular O—H⋯O hydrogen bonding, which links the molecules into infinite chains propagating parallel to [010]. The was established from anomalous dispersion.
of the title compound, CCCDC reference: 2232401
Structure description
Dynamic II-catalyzed Noyori–Ikariya asymmetric transfer hydrogenation (ATH) has proven to be a highly efficient strategy for the stereoconvergent synthesis of secondary (Cotman, 2021). The commercial availability of a wide range of RuII catalysts, comparatively mild reaction conditions, and the ability to use racemic mixtures of as starting materials make this approach particularly attractive for the synthesis of β-substituted benzyl which have been shown to be valuable building blocks for pharmaceuticals and can crystallize as homochiral single-component mechanically responsive crystals that exhibit elastic or plastic flexibility (Cotman et al., 2019, 2022). When ATH of non-symmetric CF3-substituted 1,3-diketones was attempted, it was found that two consecutive DKR–ATH reactions can occur and that diastereo- and enantiopure 1,3-diols can be obtained in a one-pot process (Cotman et al., 2016). The use of milder reaction conditions enabled the preparation of mono-reduced which include the title compound.
(DKR) based on Ru(S)-2-[(S)-2,2,2-trifluoro-1-hydroxyethyl]-1-tetralone crystallizes in the monoclinic P21 with one molecule in the (Fig. 1). The cyclohexanone ring adopts a half-boat (envelope) conformation (Cremer & Pople, 1975), with atoms C1, C2, C4, C5, and C10 being essentially coplanar (r.m.s.d. of 0.007 Å), whereas the C3 atom is located 0.683 (2) Å below this plane. Moreover, the atoms of the planar part of the cyclohexanone ring are essentially coplanar with the aromatic ring. The dihedral angle between the planes (plane normals) is 2.01 (6)° and the r.m.s.d. of the plane defined by atoms C1, C2, C4–C10 is 0.019 Å. A similar half-boat conformation was previously observed in the structure of (±)-1-tetralone-3-carboxylic acid (CSD refcode QIJGAR), whereas the related (±)-1-tetralone-2-acetic acid (QIJGEV) exhibits a half-chair conformation (Barcon et al., 2001).
In the ), involving hydroxyl and carbonyl groups of the adjacent molecules related by the 21 screw axis, link the molecules into infinite zigzag chains propagating parallel to [010] (Figs. 2, 3). The graph-set motif of the chains is C(6) (Etter et al., 1990).
of the title compound, intermolecular O—H⋯O hydrogen bonds with an O⋯O distance of 2.7548 (16) Å (Table 1Synthesis and crystallization
The title compound was prepared from 2-trifluoroacetyl-1-tetralone (242 mg, 1.0 mmol) added to a HCO2H/Et3N 5:2 (0.5 ml) solution containing the active (S,S)-diphenylethylenediamine-based RuII catalyst with an S:C ratio of 2000:1 (Cotman et al., 2016). Upon addition of the co-solvent chlorobenzene (1 ml), the mixture was warmed to 40 °C and stirred for 23 h, while being continuously flushed with N2. The resulting mixture was partitioned between EtOAc (10 ml) and H2O (5 ml), with the organic layer later washed with H2O (5 ml) and brine (5 ml), filtered through a bed of silica gel/Na2SO4, and concentrated. The procedure resulted in the formation of a crude white product (239 mg, 98% yield), containing the title compound (d.r. = 89:11, 72% ee) and 2.5% of the corresponding diol. After purification by flash (hexane/EtOAc gradient 9:1 to 7:1), the diastereomerically pure monoalcohol was isolated (157 mg, 64% yield). The enantiomeric excess was upgraded to >99% by crystallization from cyclohexane (109 mg, 45% yield). Crystals suitable for single-crystal X-ray were grown from a chloroform solution. A suitable crystal was selected under a polarizing microscope and mounted on a MiTeGen Dual Thickness MicroLoop LD using Baysilone-Paste (Bayer-Silicone, mittelviskos).
Refinement
Crystal data, data collection, and structure . The positions of the hydrogen atoms were freely refined, including their isotropic displacement parameter U (Cooper et al., 2010). The was established as S,S for C2 and C11, respectively, based on the effects [Flack x = −0.07 (3); Hooft y = −0.04 (2); Parsons et al., 2013; Hooft et al., 2008].
details are summarized in Table 2Structural data
CCDC reference: 2232401
https://doi.org/10.1107/S2414314622012093/wm4178sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622012093/wm4178Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622012093/wm4178Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).C12H11F3O2 | F(000) = 252 |
Mr = 244.21 | Dx = 1.502 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 8.23147 (11) Å | Cell parameters from 11151 reflections |
b = 7.16385 (9) Å | θ = 4.8–75.9° |
c = 9.24494 (14) Å | µ = 1.18 mm−1 |
β = 97.8459 (13)° | T = 100 K |
V = 540.06 (1) Å3 | Irregular, colourless |
Z = 2 | 0.16 × 0.10 × 0.07 mm |
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M diffractometer | 2210 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2186 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 76.0°, θmin = 4.8° |
ω scans | h = −10→10 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −9→8 |
Tmin = 0.832, Tmax = 1.000 | l = −11→11 |
13577 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0312P)2 + 0.0761P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.056 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.14 e Å−3 |
2210 reflections | Δρmin = −0.14 e Å−3 |
198 parameters | Absolute structure: Flack x determined using 976 quotients [(I+)–(I–)]/[(I+)+(I–)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.07 (3) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. Standard uncertainties involving l.s. planes were estimated using ShelXL matrix (within Olex2). The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F2 | 0.26550 (14) | 0.33275 (16) | 1.13591 (11) | 0.0382 (3) | |
F1 | 0.04271 (12) | 0.42167 (17) | 1.00572 (12) | 0.0399 (3) | |
F3 | 0.18733 (16) | 0.20130 (15) | 0.92934 (12) | 0.0410 (3) | |
O1 | 0.35100 (16) | 0.86561 (17) | 0.83139 (13) | 0.0334 (3) | |
O2 | 0.44946 (14) | 0.4422 (2) | 0.91134 (13) | 0.0332 (3) | |
C10 | 0.27986 (17) | 0.8069 (2) | 0.58052 (17) | 0.0193 (3) | |
C1 | 0.28808 (18) | 0.7590 (2) | 0.73748 (16) | 0.0213 (3) | |
C5 | 0.20219 (17) | 0.6892 (2) | 0.47174 (16) | 0.0189 (3) | |
C2 | 0.21111 (17) | 0.5750 (2) | 0.77698 (16) | 0.0201 (3) | |
C9 | 0.34870 (17) | 0.9768 (2) | 0.54318 (18) | 0.0239 (3) | |
C6 | 0.19256 (18) | 0.7460 (2) | 0.32605 (17) | 0.0240 (3) | |
C12 | 0.1966 (2) | 0.3660 (2) | 0.99739 (17) | 0.0276 (3) | |
C3 | 0.21572 (18) | 0.4307 (2) | 0.65536 (16) | 0.0209 (3) | |
C11 | 0.29360 (18) | 0.5124 (2) | 0.92764 (16) | 0.0239 (3) | |
C8 | 0.33780 (18) | 1.0304 (2) | 0.3984 (2) | 0.0279 (3) | |
C4 | 0.12924 (17) | 0.5066 (2) | 0.51106 (16) | 0.0219 (3) | |
C7 | 0.25885 (19) | 0.9149 (3) | 0.28981 (18) | 0.0277 (3) | |
H2A | 0.099 (2) | 0.599 (3) | 0.786 (2) | 0.020 (4)* | |
H3A | 0.332 (2) | 0.396 (3) | 0.6443 (19) | 0.019 (4)* | |
H4B | 0.140 (2) | 0.413 (3) | 0.432 (2) | 0.024 (4)* | |
H11 | 0.298 (2) | 0.619 (3) | 0.993 (2) | 0.024 (5)* | |
H9 | 0.406 (2) | 1.054 (3) | 0.620 (2) | 0.028 (5)* | |
H4A | 0.010 (2) | 0.524 (3) | 0.519 (2) | 0.020 (4)* | |
H3B | 0.165 (2) | 0.314 (3) | 0.680 (2) | 0.030 (5)* | |
H6 | 0.138 (2) | 0.665 (3) | 0.247 (2) | 0.026 (5)* | |
H7 | 0.253 (2) | 0.948 (3) | 0.188 (2) | 0.034 (5)* | |
H8 | 0.385 (3) | 1.146 (3) | 0.374 (2) | 0.033 (5)* | |
H2 | 0.501 (3) | 0.433 (4) | 0.990 (3) | 0.051 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F2 | 0.0466 (6) | 0.0452 (6) | 0.0231 (5) | 0.0074 (5) | 0.0064 (4) | 0.0138 (4) |
F1 | 0.0298 (5) | 0.0523 (7) | 0.0399 (6) | 0.0069 (5) | 0.0137 (4) | 0.0133 (5) |
F3 | 0.0648 (7) | 0.0252 (5) | 0.0356 (6) | −0.0015 (5) | 0.0162 (5) | 0.0049 (4) |
O1 | 0.0438 (7) | 0.0273 (6) | 0.0248 (5) | −0.0048 (5) | −0.0104 (5) | −0.0034 (5) |
O2 | 0.0229 (5) | 0.0555 (8) | 0.0204 (5) | 0.0102 (5) | 0.0001 (4) | 0.0107 (5) |
C10 | 0.0154 (6) | 0.0193 (7) | 0.0221 (7) | 0.0025 (5) | −0.0008 (5) | 0.0012 (5) |
C1 | 0.0201 (6) | 0.0207 (7) | 0.0212 (7) | 0.0022 (5) | −0.0039 (5) | −0.0006 (6) |
C5 | 0.0156 (6) | 0.0211 (7) | 0.0197 (7) | 0.0016 (5) | 0.0011 (5) | 0.0002 (5) |
C2 | 0.0189 (7) | 0.0222 (7) | 0.0184 (7) | 0.0012 (6) | −0.0007 (5) | 0.0025 (6) |
C9 | 0.0179 (6) | 0.0201 (7) | 0.0322 (8) | 0.0009 (5) | −0.0017 (6) | 0.0021 (6) |
C6 | 0.0219 (7) | 0.0296 (8) | 0.0206 (7) | 0.0026 (6) | 0.0028 (5) | 0.0005 (6) |
C12 | 0.0304 (8) | 0.0305 (9) | 0.0226 (7) | 0.0066 (6) | 0.0064 (6) | 0.0045 (6) |
C3 | 0.0232 (7) | 0.0173 (6) | 0.0216 (7) | −0.0021 (6) | 0.0009 (5) | 0.0017 (6) |
C11 | 0.0236 (7) | 0.0290 (8) | 0.0186 (7) | 0.0038 (6) | 0.0012 (5) | 0.0032 (6) |
C8 | 0.0202 (6) | 0.0260 (8) | 0.0377 (9) | −0.0009 (6) | 0.0041 (6) | 0.0093 (7) |
C4 | 0.0233 (7) | 0.0211 (7) | 0.0200 (7) | −0.0037 (6) | −0.0011 (5) | −0.0009 (6) |
C7 | 0.0244 (7) | 0.0339 (8) | 0.0257 (8) | 0.0048 (7) | 0.0072 (6) | 0.0086 (7) |
F2—C12 | 1.3490 (18) | C9—C8 | 1.383 (2) |
F1—C12 | 1.3405 (19) | C9—H9 | 0.97 (2) |
F3—C12 | 1.335 (2) | C6—C7 | 1.387 (2) |
O1—C1 | 1.2176 (19) | C6—H6 | 0.99 (2) |
O2—C11 | 1.4053 (18) | C12—C11 | 1.514 (2) |
O2—H2 | 0.79 (3) | C3—C4 | 1.5241 (19) |
C10—C1 | 1.484 (2) | C3—H3A | 1.006 (18) |
C10—C5 | 1.398 (2) | C3—H3B | 0.97 (2) |
C10—C9 | 1.405 (2) | C11—H11 | 0.98 (2) |
C1—C2 | 1.528 (2) | C8—C7 | 1.392 (3) |
C5—C6 | 1.399 (2) | C8—H8 | 0.95 (2) |
C5—C4 | 1.505 (2) | C4—H4B | 1.00 (2) |
C2—C3 | 1.531 (2) | C4—H4A | 1.005 (19) |
C2—C11 | 1.531 (2) | C7—H7 | 0.96 (2) |
C2—H2A | 0.956 (19) | ||
C11—O2—H2 | 108 (2) | F3—C12—F1 | 107.23 (14) |
C5—C10—C1 | 121.31 (13) | F3—C12—C11 | 114.29 (13) |
C5—C10—C9 | 120.36 (14) | C2—C3—H3A | 111.1 (11) |
C9—C10—C1 | 118.31 (13) | C2—C3—H3B | 110.7 (12) |
O1—C1—C10 | 120.71 (15) | C4—C3—C2 | 110.27 (12) |
O1—C1—C2 | 121.37 (14) | C4—C3—H3A | 109.6 (10) |
C10—C1—C2 | 117.90 (12) | C4—C3—H3B | 110.3 (12) |
C10—C5—C6 | 118.53 (14) | H3A—C3—H3B | 104.7 (16) |
C10—C5—C4 | 120.58 (12) | O2—C11—C2 | 107.78 (12) |
C6—C5—C4 | 120.89 (13) | O2—C11—C12 | 109.84 (13) |
C1—C2—C3 | 110.74 (12) | O2—C11—H11 | 113.2 (12) |
C1—C2—C11 | 108.84 (12) | C2—C11—H11 | 108.1 (12) |
C1—C2—H2A | 107.6 (12) | C12—C11—C2 | 113.33 (12) |
C3—C2—H2A | 107.9 (11) | C12—C11—H11 | 104.8 (12) |
C11—C2—C3 | 114.71 (12) | C9—C8—C7 | 119.65 (15) |
C11—C2—H2A | 106.8 (11) | C9—C8—H8 | 119.7 (13) |
C10—C9—H9 | 118.9 (12) | C7—C8—H8 | 120.7 (13) |
C8—C9—C10 | 120.21 (14) | C5—C4—C3 | 111.57 (12) |
C8—C9—H9 | 120.8 (12) | C5—C4—H4B | 109.4 (11) |
C5—C6—H6 | 120.1 (12) | C5—C4—H4A | 109.5 (11) |
C7—C6—C5 | 120.92 (15) | C3—C4—H4B | 108.6 (11) |
C7—C6—H6 | 118.9 (12) | C3—C4—H4A | 109.1 (11) |
F2—C12—C11 | 110.43 (13) | H4B—C4—H4A | 108.5 (15) |
F1—C12—F2 | 106.02 (12) | C6—C7—C8 | 120.31 (15) |
F1—C12—C11 | 112.07 (13) | C6—C7—H7 | 118.7 (13) |
F3—C12—F2 | 106.31 (13) | C8—C7—H7 | 120.9 (13) |
F2—C12—C11—O2 | 66.50 (16) | C1—C2—C11—O2 | −75.25 (16) |
F2—C12—C11—C2 | −172.89 (13) | C1—C2—C11—C12 | 162.99 (13) |
F1—C12—C11—O2 | −175.54 (13) | C5—C10—C1—O1 | −177.41 (14) |
F1—C12—C11—C2 | −54.93 (18) | C5—C10—C1—C2 | 0.9 (2) |
F3—C12—C11—O2 | −53.29 (17) | C5—C10—C9—C8 | 1.0 (2) |
F3—C12—C11—C2 | 67.31 (18) | C5—C6—C7—C8 | 0.6 (2) |
O1—C1—C2—C3 | −153.04 (14) | C2—C3—C4—C5 | 56.14 (16) |
O1—C1—C2—C11 | −26.05 (19) | C9—C10—C1—O1 | 1.0 (2) |
C10—C1—C2—C3 | 28.63 (17) | C9—C10—C1—C2 | 179.31 (12) |
C10—C1—C2—C11 | 155.61 (13) | C9—C10—C5—C6 | −1.0 (2) |
C10—C5—C6—C7 | 0.2 (2) | C9—C10—C5—C4 | 179.61 (13) |
C10—C5—C4—C3 | −26.80 (19) | C9—C8—C7—C6 | −0.5 (2) |
C10—C9—C8—C7 | −0.3 (2) | C6—C5—C4—C3 | 153.81 (14) |
C1—C10—C5—C6 | 177.35 (14) | C3—C2—C11—O2 | 49.43 (17) |
C1—C10—C5—C4 | −2.1 (2) | C3—C2—C11—C12 | −72.34 (16) |
C1—C10—C9—C8 | −177.34 (14) | C11—C2—C3—C4 | 179.52 (12) |
C1—C2—C3—C4 | −56.81 (15) | C4—C5—C6—C7 | 179.58 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.79 (3) | 1.97 (3) | 2.7548 (16) | 168 (3) |
Symmetry code: (i) −x+1, y−1/2, −z+2. |
Funding information
Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant Nos. P1-0208, N1-0189 and N1-0225).
References
Barcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325–328. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cotman, A. E. (2021). Chem. Eur. J. 27, 39–53. Web of Science CrossRef CAS PubMed Google Scholar
Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294–5298. Web of Science CSD CrossRef CAS Google Scholar
Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396–404. CSD CrossRef CAS PubMed Google Scholar
Cotman, A. E., Lozinšek, M., Wang, B., Stephan, M. & Mohar, B. (2019). Org. Lett. 21, 3644–3648. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Oxford, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.