organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(S)-2-[(S)-2,2,2-Tri­fluoro-1-hy­dr­oxy­eth­yl]-1-tetra­lone

crossmark logo

aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 November 2022; accepted 22 December 2022; online 6 January 2023)

The crystal structure of the title compound, C12H11F3O2, was elucidated by low-temperature single-crystal X-ray diffraction. The enanti­opure compound crystallizes in the Sohncke space group P21 and features one mol­ecule in the asymmetric unit. The structure displays inter­molecular O—H⋯O hydrogen bonding, which links the mol­ecules into infinite chains propagating parallel to [010]. The absolute configuration was established from anomalous dispersion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Dynamic kinetic resolution (DKR) based on RuII-catalyzed Noyori–Ikariya asymmetric transfer hydrogenation (ATH) has proven to be a highly efficient strategy for the stereoconvergent synthesis of secondary alcohols (Cotman, 2021[Cotman, A. E. (2021). Chem. Eur. J. 27, 39-53.]). The commercial availability of a wide range of RuII catalysts, comparatively mild reaction conditions, and the ability to use racemic mixtures of ketones as starting materials make this approach particularly attractive for the synthesis of β-substituted benzyl alcohols, which have been shown to be valuable building blocks for pharmaceuticals and can crystallize as homochiral single-component mechanically responsive crystals that exhibit elastic or plastic flexibility (Cotman et al., 2019[Cotman, A. E., Lozinšek, M., Wang, B., Stephan, M. & Mohar, B. (2019). Org. Lett. 21, 3644-3648.], 2022[Cotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396-404.]). When ATH of non-symmetric CF3-substituted 1,3-diketones was attempted, it was found that two consecutive DKR–ATH reactions can occur and that diastereo- and enanti­opure 1,3-diols can be obtained in a one-pot process (Cotman et al., 2016[Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294-5298.]). The use of milder reaction conditions enabled the preparation of mono-reduced alcohols, which include the title compound.

(S)-2-[(S)-2,2,2-tri­fluoro-1-hy­droxy­eth­yl]-1-tetra­lone crystallizes in the monoclinic space group P21 with one mol­ecule in the asymmetric unit (Fig. 1[link]). The cyclo­hexa­none ring adopts a half-boat (envelope) conformation (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), with atoms C1, C2, C4, C5, and C10 being essentially coplanar (r.m.s.d. of 0.007 Å), whereas the C3 atom is located 0.683 (2) Å below this plane. Moreover, the atoms of the planar part of the cyclo­hexa­none ring are essentially coplanar with the aromatic ring. The dihedral angle between the planes (plane normals) is 2.01 (6)° and the r.m.s.d. of the plane defined by atoms C1, C2, C4–C10 is 0.019 Å. A similar half-boat conformation was previously observed in the structure of (±)-1-tetra­lone-3-carb­oxy­lic acid (CSD refcode QIJGAR), whereas the related (±)-1-tetra­lone-2-acetic acid (QIJGEV) exhibits a half-chair conformation (Barcon et al., 2001[Barcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325-328.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound and the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level and hydrogen atoms are depicted as spheres of arbitrary radius.

In the crystal structure of the title compound, inter­molecular O—H⋯O hydrogen bonds with an O⋯O distance of 2.7548 (16) Å (Table 1[link]), involving hydroxyl and carbonyl groups of the adjacent mol­ecules related by the 21 screw axis, link the mol­ecules into infinite zigzag chains propagating parallel to [010] (Figs. 2[link], 3[link]). The graph-set motif of the chains is C(6) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.79 (3) 1.97 (3) 2.7548 (16) 168 (3)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
Inter­molecular O—H⋯O=C hydrogen bonds connect the mol­ecules into infinite zigzag chains running parallel to [010].
[Figure 3]
Figure 3
Packing diagrams of the title compound viewed along [100] (top), [010] (middle), and [001] (bottom).

Synthesis and crystallization

The title compound was prepared from 2-tri­fluoro­acetyl-1-tetra­lone (242 mg, 1.0 mmol) added to a HCO2H/Et3N 5:2 (0.5 ml) solution containing the active (S,S)-di­phenyl­ethyl­enedi­amine-based RuII catalyst with an S:C ratio of 2000:1 (Cotman et al., 2016[Cotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294-5298.]). Upon addition of the co-solvent chloro­benzene (1 ml), the mixture was warmed to 40 °C and stirred for 23 h, while being continuously flushed with N2. The resulting mixture was partitioned between EtOAc (10 ml) and H2O (5 ml), with the organic layer later washed with H2O (5 ml) and brine (5 ml), filtered through a bed of silica gel/Na2SO4, and concentrated. The procedure resulted in the formation of a crude white product (239 mg, 98% yield), containing the title compound (d.r. = 89:11, 72% ee) and 2.5% of the corresponding diol. After purification by flash chromatography (hexa­ne/EtOAc gradient 9:1 to 7:1), the diastereomerically pure monoalcohol was isolated (157 mg, 64% yield). The enanti­omeric excess was upgraded to >99% by crystallization from cyclo­hexane (109 mg, 45% yield). Crystals suitable for single-crystal X-ray diffraction analysis were grown from a chloro­form solution. A suitable crystal was selected under a polarizing microscope and mounted on a MiTeGen Dual Thickness MicroLoop LD using Baysilone-Paste (Bayer-Silicone, mittelviskos).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The positions of the hydrogen atoms were freely refined, including their isotropic displacement parameter U (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). The absolute configuration was established as S,S for C2 and C11, respectively, based on the anomalous dispersion effects [Flack x = −0.07 (3); Hooft y = −0.04 (2); Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]; Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]].

Table 2
Experimental details

Crystal data
Chemical formula C12H11F3O2
Mr 244.21
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.23147 (11), 7.16385 (9), 9.24494 (14)
β (°) 97.8459 (13)
V3) 540.06 (1)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.18
Crystal size (mm) 0.16 × 0.10 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.832, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13577, 2210, 2186
Rint 0.025
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06
No. of reflections 2210
No. of parameters 198
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Absolute structure Flack x determined using 976 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Oxford, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

(S)-2-[(S)-2,2,2-Trifluoro-1-hydroxyethyl]-1-tetralone top
Crystal data top
C12H11F3O2F(000) = 252
Mr = 244.21Dx = 1.502 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.23147 (11) ÅCell parameters from 11151 reflections
b = 7.16385 (9) Åθ = 4.8–75.9°
c = 9.24494 (14) ŵ = 1.18 mm1
β = 97.8459 (13)°T = 100 K
V = 540.06 (1) Å3Irregular, colourless
Z = 20.16 × 0.10 × 0.07 mm
Data collection top
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
diffractometer
2210 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2186 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 13.3333 pixels mm-1θmax = 76.0°, θmin = 4.8°
ω scansh = 1010
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 98
Tmin = 0.832, Tmax = 1.000l = 1111
13577 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.0761P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.14 e Å3
2210 reflectionsΔρmin = 0.14 e Å3
198 parametersAbsolute structure: Flack x determined using 976 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.07 (3)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. Standard uncertainties involving l.s. planes were estimated using ShelXL matrix (within Olex2). The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.26550 (14)0.33275 (16)1.13591 (11)0.0382 (3)
F10.04271 (12)0.42167 (17)1.00572 (12)0.0399 (3)
F30.18733 (16)0.20130 (15)0.92934 (12)0.0410 (3)
O10.35100 (16)0.86561 (17)0.83139 (13)0.0334 (3)
O20.44946 (14)0.4422 (2)0.91134 (13)0.0332 (3)
C100.27986 (17)0.8069 (2)0.58052 (17)0.0193 (3)
C10.28808 (18)0.7590 (2)0.73748 (16)0.0213 (3)
C50.20219 (17)0.6892 (2)0.47174 (16)0.0189 (3)
C20.21111 (17)0.5750 (2)0.77698 (16)0.0201 (3)
C90.34870 (17)0.9768 (2)0.54318 (18)0.0239 (3)
C60.19256 (18)0.7460 (2)0.32605 (17)0.0240 (3)
C120.1966 (2)0.3660 (2)0.99739 (17)0.0276 (3)
C30.21572 (18)0.4307 (2)0.65536 (16)0.0209 (3)
C110.29360 (18)0.5124 (2)0.92764 (16)0.0239 (3)
C80.33780 (18)1.0304 (2)0.3984 (2)0.0279 (3)
C40.12924 (17)0.5066 (2)0.51106 (16)0.0219 (3)
C70.25885 (19)0.9149 (3)0.28981 (18)0.0277 (3)
H2A0.099 (2)0.599 (3)0.786 (2)0.020 (4)*
H3A0.332 (2)0.396 (3)0.6443 (19)0.019 (4)*
H4B0.140 (2)0.413 (3)0.432 (2)0.024 (4)*
H110.298 (2)0.619 (3)0.993 (2)0.024 (5)*
H90.406 (2)1.054 (3)0.620 (2)0.028 (5)*
H4A0.010 (2)0.524 (3)0.519 (2)0.020 (4)*
H3B0.165 (2)0.314 (3)0.680 (2)0.030 (5)*
H60.138 (2)0.665 (3)0.247 (2)0.026 (5)*
H70.253 (2)0.948 (3)0.188 (2)0.034 (5)*
H80.385 (3)1.146 (3)0.374 (2)0.033 (5)*
H20.501 (3)0.433 (4)0.990 (3)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0466 (6)0.0452 (6)0.0231 (5)0.0074 (5)0.0064 (4)0.0138 (4)
F10.0298 (5)0.0523 (7)0.0399 (6)0.0069 (5)0.0137 (4)0.0133 (5)
F30.0648 (7)0.0252 (5)0.0356 (6)0.0015 (5)0.0162 (5)0.0049 (4)
O10.0438 (7)0.0273 (6)0.0248 (5)0.0048 (5)0.0104 (5)0.0034 (5)
O20.0229 (5)0.0555 (8)0.0204 (5)0.0102 (5)0.0001 (4)0.0107 (5)
C100.0154 (6)0.0193 (7)0.0221 (7)0.0025 (5)0.0008 (5)0.0012 (5)
C10.0201 (6)0.0207 (7)0.0212 (7)0.0022 (5)0.0039 (5)0.0006 (6)
C50.0156 (6)0.0211 (7)0.0197 (7)0.0016 (5)0.0011 (5)0.0002 (5)
C20.0189 (7)0.0222 (7)0.0184 (7)0.0012 (6)0.0007 (5)0.0025 (6)
C90.0179 (6)0.0201 (7)0.0322 (8)0.0009 (5)0.0017 (6)0.0021 (6)
C60.0219 (7)0.0296 (8)0.0206 (7)0.0026 (6)0.0028 (5)0.0005 (6)
C120.0304 (8)0.0305 (9)0.0226 (7)0.0066 (6)0.0064 (6)0.0045 (6)
C30.0232 (7)0.0173 (6)0.0216 (7)0.0021 (6)0.0009 (5)0.0017 (6)
C110.0236 (7)0.0290 (8)0.0186 (7)0.0038 (6)0.0012 (5)0.0032 (6)
C80.0202 (6)0.0260 (8)0.0377 (9)0.0009 (6)0.0041 (6)0.0093 (7)
C40.0233 (7)0.0211 (7)0.0200 (7)0.0037 (6)0.0011 (5)0.0009 (6)
C70.0244 (7)0.0339 (8)0.0257 (8)0.0048 (7)0.0072 (6)0.0086 (7)
Geometric parameters (Å, º) top
F2—C121.3490 (18)C9—C81.383 (2)
F1—C121.3405 (19)C9—H90.97 (2)
F3—C121.335 (2)C6—C71.387 (2)
O1—C11.2176 (19)C6—H60.99 (2)
O2—C111.4053 (18)C12—C111.514 (2)
O2—H20.79 (3)C3—C41.5241 (19)
C10—C11.484 (2)C3—H3A1.006 (18)
C10—C51.398 (2)C3—H3B0.97 (2)
C10—C91.405 (2)C11—H110.98 (2)
C1—C21.528 (2)C8—C71.392 (3)
C5—C61.399 (2)C8—H80.95 (2)
C5—C41.505 (2)C4—H4B1.00 (2)
C2—C31.531 (2)C4—H4A1.005 (19)
C2—C111.531 (2)C7—H70.96 (2)
C2—H2A0.956 (19)
C11—O2—H2108 (2)F3—C12—F1107.23 (14)
C5—C10—C1121.31 (13)F3—C12—C11114.29 (13)
C5—C10—C9120.36 (14)C2—C3—H3A111.1 (11)
C9—C10—C1118.31 (13)C2—C3—H3B110.7 (12)
O1—C1—C10120.71 (15)C4—C3—C2110.27 (12)
O1—C1—C2121.37 (14)C4—C3—H3A109.6 (10)
C10—C1—C2117.90 (12)C4—C3—H3B110.3 (12)
C10—C5—C6118.53 (14)H3A—C3—H3B104.7 (16)
C10—C5—C4120.58 (12)O2—C11—C2107.78 (12)
C6—C5—C4120.89 (13)O2—C11—C12109.84 (13)
C1—C2—C3110.74 (12)O2—C11—H11113.2 (12)
C1—C2—C11108.84 (12)C2—C11—H11108.1 (12)
C1—C2—H2A107.6 (12)C12—C11—C2113.33 (12)
C3—C2—H2A107.9 (11)C12—C11—H11104.8 (12)
C11—C2—C3114.71 (12)C9—C8—C7119.65 (15)
C11—C2—H2A106.8 (11)C9—C8—H8119.7 (13)
C10—C9—H9118.9 (12)C7—C8—H8120.7 (13)
C8—C9—C10120.21 (14)C5—C4—C3111.57 (12)
C8—C9—H9120.8 (12)C5—C4—H4B109.4 (11)
C5—C6—H6120.1 (12)C5—C4—H4A109.5 (11)
C7—C6—C5120.92 (15)C3—C4—H4B108.6 (11)
C7—C6—H6118.9 (12)C3—C4—H4A109.1 (11)
F2—C12—C11110.43 (13)H4B—C4—H4A108.5 (15)
F1—C12—F2106.02 (12)C6—C7—C8120.31 (15)
F1—C12—C11112.07 (13)C6—C7—H7118.7 (13)
F3—C12—F2106.31 (13)C8—C7—H7120.9 (13)
F2—C12—C11—O266.50 (16)C1—C2—C11—O275.25 (16)
F2—C12—C11—C2172.89 (13)C1—C2—C11—C12162.99 (13)
F1—C12—C11—O2175.54 (13)C5—C10—C1—O1177.41 (14)
F1—C12—C11—C254.93 (18)C5—C10—C1—C20.9 (2)
F3—C12—C11—O253.29 (17)C5—C10—C9—C81.0 (2)
F3—C12—C11—C267.31 (18)C5—C6—C7—C80.6 (2)
O1—C1—C2—C3153.04 (14)C2—C3—C4—C556.14 (16)
O1—C1—C2—C1126.05 (19)C9—C10—C1—O11.0 (2)
C10—C1—C2—C328.63 (17)C9—C10—C1—C2179.31 (12)
C10—C1—C2—C11155.61 (13)C9—C10—C5—C61.0 (2)
C10—C5—C6—C70.2 (2)C9—C10—C5—C4179.61 (13)
C10—C5—C4—C326.80 (19)C9—C8—C7—C60.5 (2)
C10—C9—C8—C70.3 (2)C6—C5—C4—C3153.81 (14)
C1—C10—C5—C6177.35 (14)C3—C2—C11—O249.43 (17)
C1—C10—C5—C42.1 (2)C3—C2—C11—C1272.34 (16)
C1—C10—C9—C8177.34 (14)C11—C2—C3—C4179.52 (12)
C1—C2—C3—C456.81 (15)C4—C5—C6—C7179.58 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.79 (3)1.97 (3)2.7548 (16)168 (3)
Symmetry code: (i) x+1, y1/2, z+2.
 

Funding information

Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant Nos. P1-0208, N1-0189 and N1-0225).

References

First citationBarcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325–328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCotman, A. E. (2021). Chem. Eur. J. 27, 39–53.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCotman, A. E., Cahard, D. & Mohar, B. (2016). Angew. Chem. Int. Ed. 55, 5294–5298.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotman, A. E., Dub, P. A., Sterle, M., Lozinšek, M., Dernovšek, J., Zajec, Ž., Zega, A., Tomašič, T. & Cahard, D. (2022). ACS Org. Inorg. Au, 2, 396–404.  CSD CrossRef CAS PubMed Google Scholar
First citationCotman, A. E., Lozinšek, M., Wang, B., Stephan, M. & Mohar, B. (2019). Org. Lett. 21, 3644–3648.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146