organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2-Bromo­eth­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 18 January 2023; accepted 23 January 2023; online 26 January 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The imidazolidine ring in the title mol­ecule, C17H15BrN2O2, is slightly ruffled [r.m.s. deviation = 0.0192 Å], while the attached phenyl rings at the C atom at the position between the amine and carbonyl centres are rotated well out of its mean plane [dihedral angles with the imidazolidine ring = 63.60 (8) and 76.4 (1)°]. In the crystal, a three-dimensional network features N—H⋯O and C—H⋯O hydrogen bonds together with C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Phenytoine (5,5-di­phenyl­imidazolidine-2,4-dione) is a drug widely prescribed as an anti­convulsant agent and for the treatment of many other diseases, including HIV (Weichet, 1974[Weichet, B. L. (1974). Czech Patent 151,744-747.]; Havera & Strycker, 1976[Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.]; Khodair et al., 1997[Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561-567.]; Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527-1535.]). Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.],b[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.]; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]; Guerrab et al., 2019[Guerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369-376.], 2020a[Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.],b[Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425-1427.], 2022a[Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865],b[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, 8765-8782.]), the title compound (Fig. 1[link]) was prepared and its crystal structure determined.

[Figure 1]
Figure 1
The title mol­ecule showing the atom-labelling scheme and 30% probability ellipsoids.

The C1/C2/N1/C3/N2 ring is planar to within 0.0254 (13) Å (r.m.s. deviation of the fitted atoms = 0.0192 Å) with the atoms alternately disposed above and below the mean plane. The C6–C11 and C12–C17 phenyl rings are inclined at 63.60 (8) and 76.4 (1)°, respectively, to the the above plane. In the crystal, inversion dimers are formed by N2—H2⋯O2 hydrogen bonds (Table 1[link] and Fig. 2[link]) and are connected into layers parallel to (101) by C4—H4A⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]). These layers are joined into a three-dimensional network by C8—H8⋯O1 hydrogen bonds and C10—H10⋯Cg(C12–C17) inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 1.98 2.862 (3) 174
C4—H4A⋯O1ii 0.97 2.49 3.175 (3) 128
C8—H8⋯O1iii 0.93 2.56 3.387 (3) 148
C10—H10⋯Cg3iv 0.93 2.85 3.771 (5) 173
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, -y, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions viewed along the b-axis direction. N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines, while the C—H⋯π(ring) inter­actions are shown by green dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of 1,2-di­bromo­ethane (171.58 ml, 1.98 mmol), in absolute di­methyl­formamide (DMF, 15 ml), was added and the resulting solution heated under reflux for 3 h in the presence of 1.2 equivalents of K2CO3 (331.20 mg, 2.37 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless blocks (Guerrab et al., 2018[Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.]).

Refinement

Crystal and refinement details are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H15BrN2O2
Mr 359.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 13.7083 (5), 8.6500 (3), 14.1183 (5)
β (°) 99.724 (1)
V3) 1650.05 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.50
Crystal size (mm) 0.42 × 0.32 × 0.25
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.46, 0.58
No. of measured, independent and observed [I > 2σ(I)] reflections 30580, 4284, 3056
Rint 0.028
(sin θ/λ)max−1) 0.678
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.170, 1.06
No. of reflections 4284
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.67
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b).

3-(2-Bromoethyl)-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C17H15BrN2O2F(000) = 728
Mr = 359.22Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.7083 (5) ÅCell parameters from 9961 reflections
b = 8.6500 (3) Åθ = 2.3–27.3°
c = 14.1183 (5) ŵ = 2.50 mm1
β = 99.724 (1)°T = 298 K
V = 1650.05 (10) Å3Block, colourless
Z = 40.42 × 0.32 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4284 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.9°
φ and ω scansh = 1817
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.46, Tmax = 0.58l = 1919
30580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.170H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.7858P]
where P = (Fo2 + 2Fc2)/3
4284 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.97 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.89 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42103 (4)0.22083 (6)0.82606 (3)0.0970 (2)
O10.18452 (12)0.1239 (2)0.63926 (13)0.0510 (4)
O20.48438 (13)0.0886 (2)0.61836 (13)0.0529 (4)
N10.33335 (14)0.0021 (2)0.65056 (13)0.0403 (4)
N20.37878 (14)0.0634 (2)0.51316 (14)0.0424 (4)
H20.4172880.0724820.4686410.051*
C10.28014 (15)0.1311 (3)0.50632 (15)0.0361 (4)
C20.25666 (15)0.0868 (3)0.60614 (15)0.0374 (4)
C30.40774 (16)0.0157 (3)0.59400 (16)0.0395 (5)
C40.3411 (2)0.0664 (3)0.74680 (19)0.0549 (6)
H4A0.3496830.1774780.7433110.066*
H4B0.2795280.0476090.7700750.066*
C50.4249 (3)0.0010 (5)0.8179 (2)0.0752 (9)
H5A0.4871320.0318740.7994970.090*
H5B0.4225180.0443780.8807760.090*
C60.20839 (17)0.0547 (3)0.42505 (16)0.0412 (5)
C70.12239 (18)0.0173 (3)0.4386 (2)0.0513 (6)
H70.1045220.0176990.4993140.062*
C80.0619 (2)0.0895 (4)0.3625 (3)0.0659 (8)
H80.0037230.1372100.3725720.079*
C90.0871 (3)0.0910 (4)0.2741 (3)0.0803 (10)
H90.0467180.1402380.2234190.096*
C100.1722 (4)0.0197 (6)0.2595 (3)0.1016 (15)
H100.1894480.0203970.1985230.122*
C110.2333 (3)0.0538 (5)0.3343 (2)0.0772 (10)
H110.2909630.1022830.3233910.093*
C120.28154 (17)0.3076 (3)0.49925 (17)0.0406 (5)
C130.3654 (2)0.3905 (3)0.5354 (3)0.0680 (8)
H130.4228810.3387050.5624870.082*
C140.3647 (3)0.5504 (4)0.5316 (3)0.0851 (11)
H140.4217800.6051650.5561050.102*
C150.2814 (3)0.6282 (4)0.4925 (3)0.0778 (10)
H150.2814920.7356140.4894160.093*
C160.1985 (3)0.5476 (4)0.4581 (3)0.0750 (9)
H160.1410010.6006010.4325180.090*
C170.1975 (2)0.3870 (3)0.4603 (2)0.0598 (7)
H170.1400130.3334390.4354860.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1041 (4)0.0862 (3)0.0912 (3)0.0175 (2)0.0107 (2)0.0181 (2)
O10.0413 (9)0.0627 (11)0.0519 (9)0.0039 (8)0.0162 (7)0.0076 (8)
O20.0477 (9)0.0542 (10)0.0584 (10)0.0179 (8)0.0137 (8)0.0165 (8)
N10.0412 (9)0.0405 (10)0.0407 (9)0.0009 (7)0.0112 (7)0.0045 (8)
N20.0378 (9)0.0478 (11)0.0440 (10)0.0112 (8)0.0138 (7)0.0076 (8)
C10.0328 (9)0.0361 (10)0.0399 (10)0.0045 (8)0.0074 (8)0.0002 (8)
C20.0359 (10)0.0365 (11)0.0402 (10)0.0016 (8)0.0076 (8)0.0051 (8)
C30.0393 (11)0.0347 (11)0.0458 (11)0.0024 (8)0.0108 (9)0.0030 (9)
C40.0610 (15)0.0567 (15)0.0492 (13)0.0017 (12)0.0155 (11)0.0142 (12)
C50.080 (2)0.088 (3)0.0543 (16)0.0110 (17)0.0019 (15)0.0095 (16)
C60.0456 (11)0.0348 (11)0.0421 (11)0.0037 (9)0.0038 (9)0.0017 (9)
C70.0402 (11)0.0536 (14)0.0587 (14)0.0015 (10)0.0038 (10)0.0107 (12)
C80.0479 (14)0.0576 (17)0.086 (2)0.0004 (12)0.0069 (13)0.0180 (15)
C90.089 (2)0.072 (2)0.069 (2)0.0047 (18)0.0169 (17)0.0243 (17)
C100.127 (3)0.131 (4)0.0463 (17)0.038 (3)0.0114 (19)0.022 (2)
C110.095 (2)0.092 (2)0.0469 (15)0.032 (2)0.0203 (15)0.0127 (16)
C120.0421 (11)0.0354 (11)0.0438 (11)0.0011 (8)0.0055 (9)0.0012 (9)
C130.0529 (15)0.0466 (15)0.095 (2)0.0047 (12)0.0158 (14)0.0038 (14)
C140.077 (2)0.0505 (17)0.117 (3)0.0192 (16)0.015 (2)0.0067 (18)
C150.094 (2)0.0365 (14)0.100 (3)0.0010 (15)0.007 (2)0.0063 (15)
C160.0706 (19)0.0417 (15)0.107 (3)0.0166 (14)0.0011 (18)0.0032 (16)
C170.0461 (13)0.0425 (13)0.085 (2)0.0069 (10)0.0042 (13)0.0032 (13)
Geometric parameters (Å, º) top
Br1—C51.923 (4)C7—H70.9300
O1—C21.207 (3)C8—C91.351 (5)
O2—C31.223 (3)C8—H80.9300
N1—C21.366 (3)C9—C101.366 (6)
N1—C31.402 (3)C9—H90.9300
N1—C41.455 (3)C10—C111.386 (5)
N2—C31.333 (3)C10—H100.9300
N2—C11.461 (3)C11—H110.9300
N2—H20.8899C12—C171.374 (3)
C1—C61.529 (3)C12—C131.378 (4)
C1—C121.530 (3)C13—C141.384 (5)
C1—C21.546 (3)C13—H130.9300
C4—C51.502 (5)C14—C151.360 (5)
C4—H4A0.9700C14—H140.9300
C4—H4B0.9700C15—C161.352 (5)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700C16—C171.389 (4)
C6—C71.375 (4)C16—H160.9300
C6—C111.381 (4)C17—H170.9300
C7—C81.390 (4)
C2—N1—C3111.28 (18)C6—C7—C8120.6 (3)
C2—N1—C4125.0 (2)C6—C7—H7119.7
C3—N1—C4123.6 (2)C8—C7—H7119.7
C3—N2—C1113.63 (18)C9—C8—C7120.5 (3)
C3—N2—H2121.6C9—C8—H8119.8
C1—N2—H2124.8C7—C8—H8119.8
N2—C1—C6110.32 (18)C8—C9—C10119.5 (3)
N2—C1—C12112.45 (18)C8—C9—H9120.2
C6—C1—C12113.30 (17)C10—C9—H9120.2
N2—C1—C299.99 (16)C9—C10—C11120.9 (3)
C6—C1—C2111.75 (18)C9—C10—H10119.5
C12—C1—C2108.26 (17)C11—C10—H10119.5
O1—C2—N1126.1 (2)C6—C11—C10119.8 (3)
O1—C2—C1126.7 (2)C6—C11—H11120.1
N1—C2—C1107.18 (17)C10—C11—H11120.1
O2—C3—N2128.5 (2)C17—C12—C13118.6 (2)
O2—C3—N1123.8 (2)C17—C12—C1120.4 (2)
N2—C3—N1107.71 (18)C13—C12—C1120.9 (2)
N1—C4—C5114.0 (2)C12—C13—C14120.4 (3)
N1—C4—H4A108.8C12—C13—H13119.8
C5—C4—H4A108.8C14—C13—H13119.8
N1—C4—H4B108.8C15—C14—C13120.7 (3)
C5—C4—H4B108.8C15—C14—H14119.6
H4A—C4—H4B107.7C13—C14—H14119.6
C4—C5—Br1113.0 (2)C16—C15—C14119.2 (3)
C4—C5—H5A109.0C16—C15—H15120.4
Br1—C5—H5A109.0C14—C15—H15120.4
C4—C5—H5B109.0C15—C16—C17121.2 (3)
Br1—C5—H5B109.0C15—C16—H16119.4
H5A—C5—H5B107.8C17—C16—H16119.4
C7—C6—C11118.6 (2)C12—C17—C16119.9 (3)
C7—C6—C1123.3 (2)C12—C17—H17120.1
C11—C6—C1118.0 (2)C16—C17—H17120.1
C3—N2—C1—C6113.5 (2)N2—C1—C6—C1154.9 (3)
C3—N2—C1—C12119.0 (2)C12—C1—C6—C1172.1 (3)
C3—N2—C1—C24.3 (2)C2—C1—C6—C11165.2 (3)
C3—N1—C2—O1176.7 (2)C11—C6—C7—C80.0 (4)
C4—N1—C2—O10.6 (4)C1—C6—C7—C8177.7 (2)
C3—N1—C2—C13.1 (2)C6—C7—C8—C90.4 (5)
C4—N1—C2—C1179.1 (2)C7—C8—C9—C100.6 (6)
N2—C1—C2—O1175.5 (2)C8—C9—C10—C110.2 (7)
C6—C1—C2—O167.8 (3)C7—C6—C11—C100.4 (6)
C12—C1—C2—O157.7 (3)C1—C6—C11—C10177.4 (4)
N2—C1—C2—N14.3 (2)C9—C10—C11—C60.3 (7)
C6—C1—C2—N1112.5 (2)N2—C1—C12—C17157.7 (2)
C12—C1—C2—N1122.08 (19)C6—C1—C12—C1731.7 (3)
C1—N2—C3—O2177.4 (2)C2—C1—C12—C1792.8 (3)
C1—N2—C3—N12.8 (3)N2—C1—C12—C1325.2 (3)
C2—N1—C3—O2179.4 (2)C6—C1—C12—C13151.1 (3)
C4—N1—C3—O23.3 (4)C2—C1—C12—C1384.3 (3)
C2—N1—C3—N20.4 (3)C17—C12—C13—C140.5 (5)
C4—N1—C3—N2176.5 (2)C1—C12—C13—C14177.7 (3)
C2—N1—C4—C5113.9 (3)C12—C13—C14—C150.1 (7)
C3—N1—C4—C561.7 (4)C13—C14—C15—C160.8 (7)
N1—C4—C5—Br155.0 (3)C14—C15—C16—C171.3 (7)
N2—C1—C6—C7122.8 (2)C13—C12—C17—C160.0 (5)
C12—C1—C6—C7110.1 (3)C1—C12—C17—C16177.2 (3)
C2—C1—C6—C712.5 (3)C15—C16—C17—C120.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.891.982.862 (3)174
C4—H4A···O1ii0.972.493.175 (3)128
C8—H8···O1iii0.932.563.387 (3)148
C10—H10···Cg3iv0.932.853.771 (5)173
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z+1; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, YR; methodology, WG and AA; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865  Google Scholar
First citationGuerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, 8765–8782.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.  CSD CrossRef Google Scholar
First citationGuerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427.  CSD CrossRef CAS Google Scholar
First citationGuerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.  Google Scholar
First citationHavera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.  Google Scholar
First citationKhodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.  CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeichet, B. L. (1974). Czech Patent 151,744-747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146