metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of the crystal structure of di-μ2-hydroxido-bis­­[di-tert-butyl­chlorido­tin(IV)] at 100 K

crossmark logo

aChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 9 January 2023; accepted 23 January 2023; online 26 January 2023)

The structure of the dimeric title compound, [Sn2(C4H9)4Cl2(OH)2], was redetermined at 100 K by use of an area detector to provide new data to improve the structural parameters for detailed analysis. Noteworthy is the folding of the central, non-symmetric, four-membered [SnO]2 ring [dihedral angle about the O⋯O axis = 1.09 (3)°], as well as the elongation of the Sn—Cl bonds [mean value = 2.5096 (4) Å], as a result of inter­molecular O—H⋯Cl hydrogen bonds; the latter lead to a chain-like arrangement of dimeric mol­ecules along [101].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, [tBu2Sn(OH)Cl]2, belongs to the class of dimeric diorganotin(IV)-hydroxides-halides, [R2Sn(OH)X]2, the first hydrolysis products of diorganotin(IV) dihalides, R2SnX2. The structure of the title compound has been determined previously at room temperature using point detector data as part of a paper describing the series of dimeric di-tert-butyl­tin(IV) hydroxide halides, [tBu2Sn(OH)X]2 with X = F, Cl and Br (Puff et al., 1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]). This series was completed when a second modification of the title compound was reported (Di Nicola et al., 2011[Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2011). Inorg. Chem. Commun. 14, 133-136.]) and more recently, when the crystal structures of the pure iodide compound, [tBu2Sn(OH)I]2 (Reuter, 2022[Reuter, H. (2022). Acta Cryst. E78, 633-637.]) and its DMSO-adduct (Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.]) were published. With two well-resolved, low-temperature crystal-structure determinations of the iodide derivative, it seemed reasonable to redetermine the structure of the chloride derivative using similar experimental conditions to enable a more valid comparison between structures.

As a result of the low-temperature measurement and the high data redundancy, combined with a multi-scan absorption correction, the new data improve the structural parameters of the title compound (Fig. 1[link]) by an order of magnitude. In particular, the new data enable the confirmation of the exceptionally long Sn—C bonds [range: 2.180 (1) to 2.184 (1) Å; mean value: 2.182 (2) Å] in accord with comparable values found in related [tBu2Sn(OH)I]2 compounds [pure state: d(Sn—C)mean = 2.190 (3) Å (Reuter, 2022[Reuter, H. (2022). Acta Cryst. E78, 633-637.]), and DMSO-adduct: d(Sn—C)mean = 2.193 (10) Å (Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.])].

[Figure 1]
Figure 1
A representation of the dimeric, non-symmetric mol­ecule found in the crystal of [tBu2Sn(OH)Cl]2, showing the atom numbering. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level. Inter­molecular O—H⋯Cl hydrogen bonds are indicated by dashed sticks in green.

The other structural features of note relate to the tert-butyl groups, which are characterized by C—C bond lengths in the range from 1.521 (2) to 1.532 (2) Å [mean value: 1.527 (4) Å], Cmeth­yl—C—Cmeth­yl angles in the range 107.1 (1) to 111.1 (1)° [mean value: 109.5 (11)°] and Sn—C—C angles of 107.1 (1) to 111.1 (1)° [mean value: 108.9 (12)°]. These new data are of the same precision and absolute values as those found in the iodide compound both in the pure state [d(C—C) = 1.529 (4) Å, 〈(Cmeth­yl—C—Cmeth­yl) = 109.9 (4)°, d(Sn—C) = 2.193 (10) Å and 〈(Sn—C—C) = 109.4 (7)° (Reuter, 2022[Reuter, H. (2022). Acta Cryst. E78, 633-637.])], and in the DMSO-adduct [d(C—C) = 1.529 (4) Å, 〈(Cmeth­yl—C—Cmeth­yl) = 109.9 (4)° and 〈(Sn—C—C) = 109.4 (7)° (Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.])].

As the mol­ecule belongs to point group C1, the central, four-membered, rhombic [SnO]2 ring is not exactly planar but folded along the O⋯O axis with an inter­planar angle of 1.09 (3)°. As usual, the bond lengths and angles within the inorganic part of the mol­ecule (Fig. 2[link]) are characteristic of tin(IV) in trigonal–bipyramidal coordination (ax/eq), and the size of the tert-butyl groups. A special feature of the title compound relates to the Sn—Cl distances [mean value: 2.5096 (4) Å], which are considerably longer in comparison with other Brønstedt-Base (BB) stabilized diorganotin(IV)-hydroxide-chlorides [R = Ph, BB = EtOH: d(Sn—Cl) = 2.4748 (6) Å (Barba et al., 2007[Barba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731-739.]); R = Ph, BB = quinoline: d(Sn—Cl) = 2.4648 (11)/2.4353 (12) Å (Anacona et al., 2003[Anacona, J. R., Rivas, C. & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245-252.])].

[Figure 2]
Figure 2
Ball-and-stick model of the inorganic framework of the [tBu2Sn(OH)Cl]2 mol­ecule highlighting selected bond lengths (Å) and angles (°). Positions of oxygen and chloride atoms within the trigonal–biypramidal coordination of the tin atoms are labelled by use of the abbreviation ax (= axial) and eq (= equatorial). For clarity, tBu groups are stripped down to the Sn—C bonds drawn as shortened sticks. Inter­molecular O—H⋯Cl hydrogen bonds are indicated by dashed sticks in green.

These unusually long Sn—Cl bonds in the title compound arise from the fact that the chloride atoms are involved in inter­molecular O—H⋯Cl hydrogen bonds (Table 1[link]), resulting in a chain-like arrangement of the [tBu2Sn(OH)Cl]2 mol­ecules along [101], Fig. 3[link], a feature that had been recognized previously but now is confirmed unambiguously.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.96 2.30 3.2469 (10) 169
O2—H2⋯Cl1ii 0.96 2.31 3.2482 (10) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Space-filling model of the chain-like arrangement of the [tBu2Sn(OH)Cl)]2 mol­ecules along [101] encompassing intra­molecular O—H⋯Cl hydrogen bonding. The image shows three complete mol­ecules with their hydrogen bonds to neighbouring mol­ecules. The corresponding atoms are visualized as truncated, two-coloured spheres and the hydrogen bonds are indicated by dashed sticks in green. Colour code of the atoms: Cl = green, H = white, C = grey, O = red, Sn = brass.

Synthesis and crystallization

For the synthesis of the title compound, see Puff et al. (1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Six reflections were omitted from the final cycles of refinement owing to poor agreement; details are given in the CIF.

Table 2
Experimental details

Crystal data
Chemical formula [Sn2(C4H9)4Cl2(OH)2]
Mr 570.74
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.0632 (3), 16.9135 (5), 13.4178 (3)
β (°) 110.442 (1)
V3) 2352.60 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.36
Crystal size (mm) 0.17 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.515, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 114387, 5668, 5148
Rint 0.031
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.06
No. of reflections 5668
No. of parameters 224
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.94, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ2-hydroxido-bis[di-tert-butylchloridotin(IV)] top
Crystal data top
[Sn2(C4H9)4Cl2(OH)2]F(000) = 1136
Mr = 570.74Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0632 (3) ÅCell parameters from 9559 reflections
b = 16.9135 (5) Åθ = 3.0–28.0°
c = 13.4178 (3) ŵ = 2.36 mm1
β = 110.442 (1)°T = 100 K
V = 2352.60 (11) Å3Bloc, colourless
Z = 40.17 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5148 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 3.1°
Tmin = 0.515, Tmax = 0.745h = 1414
114387 measured reflectionsk = 2222
5668 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.014Only H-atom displacement parameters refined
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0158P)2 + 1.0738P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5668 reflectionsΔρmax = 0.94 e Å3
224 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Six reflections, i.e. (-1 1 1), (1 1 0), (0 2 1), (0 1 1), (1 0 1) and (0 0 2), were omitted from the final cycles of refinement owing to poor agreement.

The positions of all H atoms were clearly identified in difference Fourier syntheses. Those of the tert-butyl groups were refined with calculated positions (C—H = 0.98 Å) and common Uiso(H) parameters for each of the methyl groups. The position of the H atoms of the OH groups were refined with a fixed O—H distance of 0.96 Å before they were fixed and allowed to ride on their parent atoms with a common Uiso(H) parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.73501 (2)0.26288 (2)0.64133 (2)0.00989 (3)
Sn20.42676 (2)0.22975 (2)0.65688 (2)0.01001 (3)
Cl10.92792 (3)0.29807 (2)0.80086 (3)0.01622 (7)
Cl20.23245 (3)0.20159 (2)0.49523 (3)0.01753 (7)
O10.63487 (9)0.25652 (6)0.74333 (7)0.01351 (19)
H10.67480.26740.81790.039 (4)*
O20.52774 (9)0.23420 (6)0.55544 (8)0.0136 (2)
H20.48390.22390.48120.039 (4)*
C1110.72855 (13)0.37640 (8)0.56249 (11)0.0143 (3)
C1120.61905 (14)0.37644 (9)0.45494 (11)0.0203 (3)
H11A0.62060.42600.41770.025 (3)*
H11B0.53630.37150.46580.025 (3)*
H11C0.62990.33180.41230.025 (3)*
C1130.85829 (14)0.38736 (9)0.54696 (12)0.0201 (3)
H11D0.87040.34490.50170.027 (3)*
H11E0.92810.38570.61620.027 (3)*
H11F0.85930.43850.51300.027 (3)*
C1140.70965 (15)0.44211 (9)0.63384 (12)0.0202 (3)
H11G0.71030.49350.60040.033 (3)*
H11H0.77970.44020.70300.033 (3)*
H11I0.62680.43470.64390.033 (3)*
C1210.81282 (13)0.15162 (8)0.60755 (11)0.0149 (3)
C1220.94120 (15)0.16949 (10)0.59347 (14)0.0267 (4)
H12A0.97780.12040.57740.025 (3)*
H12B1.00110.19250.65920.025 (3)*
H12C0.92710.20700.53480.025 (3)*
C1230.71987 (15)0.11464 (9)0.50566 (12)0.0217 (3)
H12D0.70400.15200.44670.030 (3)*
H12E0.63820.10210.51530.030 (3)*
H12F0.75780.06610.48960.030 (3)*
C1240.83528 (16)0.09618 (9)0.70159 (13)0.0252 (3)
H12G0.75320.08600.71180.034 (3)*
H12H0.89580.12060.76590.034 (3)*
H12I0.87130.04620.68770.034 (3)*
C2110.35215 (13)0.34122 (8)0.69386 (11)0.0148 (3)
C2120.32310 (15)0.39629 (9)0.59874 (12)0.0224 (3)
H21A0.26270.37040.53550.031 (3)*
H21B0.40330.40870.58650.031 (3)*
H21C0.28450.44520.61290.031 (3)*
C2130.44854 (15)0.37962 (9)0.79313 (12)0.0216 (3)
H21D0.52820.39220.78010.027 (3)*
H21E0.46790.34300.85330.027 (3)*
H21F0.41130.42830.80970.027 (3)*
C2140.22696 (15)0.32214 (10)0.71335 (14)0.0248 (3)
H21G0.16630.29640.65020.036 (3)*
H21H0.18880.37120.72770.036 (3)*
H21I0.24570.28660.77460.036 (3)*
C2210.42891 (13)0.11423 (8)0.72947 (11)0.0153 (3)
C2220.29620 (15)0.10024 (10)0.73817 (13)0.0255 (4)
H22A0.22960.10340.66730.037 (3)*
H22B0.27990.14060.78430.037 (3)*
H22C0.29420.04780.76850.037 (3)*
C2230.53316 (14)0.11266 (9)0.84006 (11)0.0199 (3)
H22D0.61810.11920.83350.025 (3)*
H22E0.53010.06200.87440.025 (3)*
H22F0.51810.15580.88310.025 (3)*
C2240.45453 (16)0.05138 (9)0.65775 (13)0.0241 (3)
H22G0.38850.05480.58670.031 (3)*
H22H0.45180.00110.68770.031 (3)*
H22I0.53980.06010.65280.031 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00886 (5)0.01220 (5)0.00797 (5)0.00117 (3)0.00212 (3)0.00024 (3)
Sn20.00854 (5)0.01264 (5)0.00809 (5)0.00064 (3)0.00195 (3)0.00097 (3)
Cl10.01183 (14)0.02417 (18)0.00977 (14)0.00356 (13)0.00015 (12)0.00008 (13)
Cl20.01190 (14)0.02750 (19)0.00997 (15)0.00395 (13)0.00023 (12)0.00079 (13)
O10.0099 (4)0.0218 (5)0.0079 (4)0.0028 (4)0.0021 (4)0.0015 (4)
O20.0107 (4)0.0209 (5)0.0085 (4)0.0024 (4)0.0025 (4)0.0011 (4)
C1110.0147 (6)0.0146 (7)0.0125 (6)0.0035 (5)0.0031 (5)0.0011 (5)
C1120.0209 (7)0.0215 (8)0.0138 (7)0.0043 (6)0.0000 (6)0.0042 (6)
C1130.0190 (7)0.0229 (8)0.0198 (7)0.0036 (6)0.0087 (6)0.0044 (6)
C1140.0228 (7)0.0156 (7)0.0213 (7)0.0016 (6)0.0063 (6)0.0013 (6)
C1210.0125 (6)0.0151 (7)0.0159 (7)0.0001 (5)0.0034 (5)0.0020 (5)
C1220.0184 (7)0.0250 (8)0.0406 (10)0.0003 (6)0.0153 (7)0.0069 (7)
C1230.0201 (7)0.0223 (8)0.0199 (7)0.0015 (6)0.0036 (6)0.0080 (6)
C1240.0274 (8)0.0190 (8)0.0243 (8)0.0044 (6)0.0030 (7)0.0037 (6)
C2110.0132 (6)0.0162 (7)0.0147 (7)0.0016 (5)0.0042 (5)0.0001 (5)
C2120.0239 (8)0.0178 (7)0.0229 (8)0.0038 (6)0.0047 (6)0.0042 (6)
C2130.0192 (7)0.0228 (8)0.0197 (7)0.0031 (6)0.0028 (6)0.0066 (6)
C2140.0189 (7)0.0253 (8)0.0343 (9)0.0009 (6)0.0143 (7)0.0034 (7)
C2210.0134 (6)0.0156 (7)0.0156 (7)0.0016 (5)0.0037 (5)0.0036 (5)
C2220.0182 (7)0.0295 (9)0.0288 (9)0.0037 (6)0.0082 (7)0.0122 (7)
C2230.0190 (7)0.0218 (8)0.0163 (7)0.0012 (6)0.0029 (6)0.0070 (6)
C2240.0277 (8)0.0172 (7)0.0247 (8)0.0019 (6)0.0059 (7)0.0017 (6)
Geometric parameters (Å, º) top
Sn1—O12.0424 (10)C123—H12D0.9800
Sn1—C1112.1813 (14)C123—H12E0.9800
Sn1—C1212.1818 (14)C123—H12F0.9800
Sn1—O22.2306 (9)C124—H12G0.9800
Sn1—Cl12.5100 (3)C124—H12H0.9800
Sn2—O22.0416 (10)C124—H12I0.9800
Sn2—C2212.1796 (14)C211—C2121.521 (2)
Sn2—C2112.1836 (14)C211—C2131.5301 (19)
Sn2—O12.2329 (9)C211—C2141.531 (2)
Sn2—Cl22.5092 (3)C212—H21A0.9800
O1—H10.9600C212—H21B0.9800
O2—H20.9600C212—H21C0.9800
C111—C1121.5261 (19)C213—H21D0.9800
C111—C1141.528 (2)C213—H21E0.9800
C111—C1131.532 (2)C213—H21F0.9800
C112—H11A0.9800C214—H21G0.9800
C112—H11B0.9800C214—H21H0.9800
C112—H11C0.9800C214—H21I0.9800
C113—H11D0.9800C221—C2241.525 (2)
C113—H11E0.9800C221—C2231.5289 (19)
C113—H11F0.9800C221—C2221.531 (2)
C114—H11G0.9800C222—H22A0.9800
C114—H11H0.9800C222—H22B0.9800
C114—H11I0.9800C222—H22C0.9800
C121—C1241.521 (2)C223—H22D0.9800
C121—C1221.527 (2)C223—H22E0.9800
C121—C1231.5283 (19)C223—H22F0.9800
C122—H12A0.9800C224—H22G0.9800
C122—H12B0.9800C224—H22H0.9800
C122—H12C0.9800C224—H22I0.9800
O1—Sn1—C111115.96 (5)H12B—C122—H12C109.5
O1—Sn1—C121116.07 (5)C121—C123—H12D109.5
C111—Sn1—C121127.37 (5)C121—C123—H12E109.5
O1—Sn1—O268.55 (4)H12D—C123—H12E109.5
C111—Sn1—O295.00 (4)C121—C123—H12F109.5
C121—Sn1—O296.55 (4)H12D—C123—H12F109.5
O1—Sn1—Cl186.54 (3)H12E—C123—H12F109.5
C111—Sn1—Cl194.53 (4)C121—C124—H12G109.5
C121—Sn1—Cl195.86 (4)C121—C124—H12H109.5
O2—Sn1—Cl1155.04 (3)H12G—C124—H12H109.5
O2—Sn2—C221114.07 (5)C121—C124—H12I109.5
O2—Sn2—C211117.25 (5)H12G—C124—H12I109.5
C221—Sn2—C211128.20 (5)H12H—C124—H12I109.5
O2—Sn2—O168.52 (4)C212—C211—C213110.44 (12)
C221—Sn2—O195.82 (4)C212—C211—C214109.50 (12)
C211—Sn2—O196.31 (4)C213—C211—C214109.74 (12)
O2—Sn2—Cl286.21 (3)C212—C211—Sn2108.90 (10)
C221—Sn2—Cl295.07 (4)C213—C211—Sn2111.13 (9)
C211—Sn2—Cl294.74 (4)C214—C211—Sn2107.05 (10)
O1—Sn2—Cl2154.72 (3)C211—C212—H21A109.5
Sn1—O1—Sn2111.39 (4)C211—C212—H21B109.5
Sn1—O1—H1121.9H21A—C212—H21B109.5
Sn2—O1—H1126.6C211—C212—H21C109.5
Sn2—O2—Sn1111.52 (4)H21A—C212—H21C109.5
Sn2—O2—H2119.3H21B—C212—H21C109.5
Sn1—O2—H2129.2C211—C213—H21D109.5
C112—C111—C114110.79 (12)C211—C213—H21E109.5
C112—C111—C113110.09 (12)H21D—C213—H21E109.5
C114—C111—C113109.69 (12)C211—C213—H21F109.5
C112—C111—Sn1109.86 (9)H21D—C213—H21F109.5
C114—C111—Sn1108.95 (9)H21E—C213—H21F109.5
C113—C111—Sn1107.39 (9)C211—C214—H21G109.5
C111—C112—H11A109.5C211—C214—H21H109.5
C111—C112—H11B109.5H21G—C214—H21H109.5
H11A—C112—H11B109.5C211—C214—H21I109.5
C111—C112—H11C109.5H21G—C214—H21I109.5
H11A—C112—H11C109.5H21H—C214—H21I109.5
H11B—C112—H11C109.5C224—C221—C223110.91 (12)
C111—C113—H11D109.5C224—C221—C222109.56 (13)
C111—C113—H11E109.5C223—C221—C222109.98 (12)
H11D—C113—H11E109.5C224—C221—Sn2108.55 (10)
C111—C113—H11F109.5C223—C221—Sn2109.63 (9)
H11D—C113—H11F109.5C222—C221—Sn2108.15 (10)
H11E—C113—H11F109.5C221—C222—H22A109.5
C111—C114—H11G109.5C221—C222—H22B109.5
C111—C114—H11H109.5H22A—C222—H22B109.5
H11G—C114—H11H109.5C221—C222—H22C109.5
C111—C114—H11I109.5H22A—C222—H22C109.5
H11G—C114—H11I109.5H22B—C222—H22C109.5
H11H—C114—H11I109.5C221—C223—H22D109.5
C124—C121—C122109.58 (13)C221—C223—H22E109.5
C124—C121—C123110.72 (12)H22D—C223—H22E109.5
C122—C121—C123109.55 (13)C221—C223—H22F109.5
C124—C121—Sn1108.74 (10)H22D—C223—H22F109.5
C122—C121—Sn1107.84 (10)H22E—C223—H22F109.5
C123—C121—Sn1110.35 (9)C221—C224—H22G109.5
C121—C122—H12A109.5C221—C224—H22H109.5
C121—C122—H12B109.5H22G—C224—H22H109.5
H12A—C122—H12B109.5C221—C224—H22I109.5
C121—C122—H12C109.5H22G—C224—H22I109.5
H12A—C122—H12C109.5H22H—C224—H22I109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.962.303.2469 (10)169
O2—H2···Cl1ii0.962.313.2482 (10)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Funding information

The Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony are thanked for the funding of the diffractometer. Additional support by the Deutsche Forschungsgemeinschaft (DFG) is also acknowledged.

References

First citationAnacona, J. R., Rivas, C. & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2011). Inorg. Chem. Commun. 14, 133–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163–178.  CSD CrossRef CAS Web of Science Google Scholar
First citationReuter, H. (2022). Acta Cryst. E78, 633–637.  CSD CrossRef IUCr Journals Google Scholar
First citationReuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496–507.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146