organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Chloro-N,N-di­methyl­propan-1-aminium chloride

crossmark logo

aDepartment of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
*Correspondence e-mail: mbond@semo.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 30 December 2022; accepted 5 January 2023; online 10 January 2023)

The organic cation in the title mol­ecular salt, C5H13NCl+·Cl, exhibits the gauche effect with a C—H bond of the C atom β to the chloro group donating electrons to the anti­bonding orbital of the C—Cl bond to stabilize the gauche conformation [Cl—C—C—C = −68.6 (6)°], as confirmed by DFT geometry optimizations that show a lengthening of the C—Cl bond relative to that of the anti conformation. Of further inter­est is the higher point group symmetry of the crystal ([\overline{4}]), compared that of the that of the mol­ecular cation, which arises from a supra­molecular head-to-tail square arrangement of four mol­ecular cations that circulate in a counterclockwise direction when viewed down the tetra­gonal c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound, C5H13NCl+·Cl, Fig. 1[link], corresponds to expected values with an average C—C bond length of 1.497 (8), an average C—N bond length of 1.482 (6) and a C—Cl bond length of 1.781 (7) Å. The bond angles for the sp3 hybridized centers range from 108.7 (4)° to 113.5 (4)°. The Cl atom appears in a gauche conformation, with a Cl1—C1—C2—C3 torsion angle of −68.6 (6)°, rather than in the anti conformation. The structure of the chloro­ethyl analog (Muller et al., 2021[Muller, K., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 287-289.]; CSD refcode: URORUR) shows an anti conformation for the chloro group (and a disordered alkyl chain) in a lower symmetry space group than the title compound (monoclinic I2/a). We were curious if the gauche conformation was a consequence of packing in the tetra­gonal space group or a property of the isolated mol­ecule, and pursued a complementary computational study.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% level) of the formula unit of the title compound with labels for non-H atoms. H atoms are drawn as circles of arbitrary radii.

A DFT geometry optimization [B3LYP, 6311+G(d,p); GAMESS (Schmidt et al., 1993[Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.])] in vacuo of the gauche conformation similar to that found in the title structure yields a torsion angle of −63.1° and a C—Cl bond length of 1.812 Å, while geometry optimization of the other gauche position yields a torsion angle and bond length of 64.5° and 1.813 Å, respectively, with a slightly lower energy (by 0.0101 eV). In contrast, geometry optimization for the anti conformation yields a shorter C—Cl bond length (1.801 Å) and a higher energy (by 0.0944 eV). For the chloro­ethyl analog, the gauche conformations are also more stable (by 0.226 eV) than the anti with a similar C—Cl bond lengthening (1.811 Å versus 1.795 Å). These results are consistent with hyperconjugation, which places a β-H atom in an anti-periplanar arrangement with Cl, i.e. the gauche effect. This anti-periplanar arrangement allows the back donation of the β C—H bond electrons to the anti-bonding mol­ecular orbital of the C—Cl bond with resulting C—Cl bond lengthening (Wolfe, 1972[Wolfe, S. (1972). Acc. Chem. Res. 5, 102-111.]; Rodrigues Silva et al., 2021[Rodrigues Silva, D., de Azevedo Santos, L., Hamlin, T. A., Fonseca Guerra, C., Freitas, M. P. & Bickelhaupt, F. M. (2021). ChemPhysChem, 22, 641-648.]). Furthermore, the gauche conformation also places the partially negative Cl atom and formally positive N atom in proximity to enhance stability, as shown in the electrostatic potential plot of Fig. 2[link]. This agrees with calculated Cl⋯N distances of 4.60 Å [gauche, 4.638 (4) Å, experimental] versus 5.27 Å (anti) for the title compound and, likewise, 3.07 versus 4.10 Å for the chloro­ethyl analog. With the greater calculated stabilization of the gauche conformation in the chloro­ethyl analog, it is surprising to see the anti conformation in URORUR. It is worth noting, though, that a gauche conformation is found for this cation in the hexa­chloro­dioxodimolybdate(V) salt (POSWAX) with an ordered alkyl chain (Marchetti et al., 2015[Marchetti, F., Pampaloni, G. & Zacchini, S. (2015). Polyhedron, 85, 369-375.]).

[Figure 2]
Figure 2
Electrostatic potential plot of the mol­ecular cation in the title compound from the reported DFT calculation. Red represents the most negatively charged regions and blue the most positively charged regions.

The extended structure of the title compound can be envisioned as layers of ion-pair formula units lying parallel to ab, shown in Fig. 3[link], with the structure built up by offset stacking of these layers along c due to the I centering translation. Within the layer, two motifs catch the eye as representative of [\overline{4}] symmetry. One is a pinwheel structure in which the ends of the propyl chains of four organic cations meet at the center. Chloro groups at the center are directed above or below the layer plane with alternating orientations as one progresses around the pinwheel (Fig. 4[link]). The other motif is a square with a formula unit on each edge in a head-to-tail arrangement with the chloride ion close to the ammonium head group on each edge (Fig. 5[link]). The head-to-tail arrangement circulates in a counterclockwise direction looking down c. Application of a twofold rotation perpendicular to c generates the other twin component in which the sense of circulation is reversed. The square motif contains a void in the center about which the chloro groups from pinwheel motifs of neighboring layers, a pair from each arranged in a distorted tetra­hedron, fit. The H atom of the ammonium group has the opposite orientation to the chloro group and hydrogen bonds to a chloride ion of the other neighbor layer (Table 1[link]). Thus the only classical hydrogen bonding is inter­layer. A packing diagram with unit cell axes is shown in Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl01 0.98 2.05 3.032 (3) 177
[Figure 3]
Figure 3
Ball-and-stick diagram of a portion of the layer in the ab plane. The three-dimensional structure is generated by offset stacking of these layers in the c-axis direction.
[Figure 4]
Figure 4
Ball-and-stick diagram of the pinwheel structural motif found in the layer depicted in Fig. 3[link].
[Figure 5]
Figure 5
Ball-and-stick diagram of the square structural motif found in the layer depicted in Fig. 3[link].
[Figure 6]
Figure 6
Capped-stick packing diagram for the title compound showing the sequential offset stacking of three layers and the inter­layer hydrogen bonding that connects neighboring layers.

Synthesis and crystallization

Crystalline 3-chloro-N,N-di­methyl­propan-1-aminium chlor­ide, 99% (CAS 5407–04-5) was purchased from Acros Organics and used as received.

Refinement

All non-H atoms were found during initial structure solution and refined anisotropically. A check using the PLATON routine TwinRotMat (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) suggested merohedral twinning about a twofold axis in the higher symmetry tetra­gonal point group [\overline{4}]2m. Refinement of the twin model [BASF = 0.358 (2) for the minor component] resulted in a substantial drop in R-factor values, rectification of highly anomalous displacement ellipsoids, and the appearance of H atoms in the electron-density difference map. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H13NCl+·Cl
Mr 158.06
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 295
a, c (Å) 15.9302 (8), 6.9779 (4)
V3) 1770.8 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.33 × 0.33 × 0.28
 
Data collection
Diffractometer Bruker D8 Quest Eco
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.96, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 27888, 2028, 1731
Rint 0.045
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.085, 1.09
No. of reflections 2028
No. of parameters 77
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.21
Absolute structure Flack x determined using 668 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.14 (3)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (MacCrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker,2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011), ORTEP-3 for Windows (Farrugia, 2012), Mercury (MacCrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Chloro-N,N-dimethylpropan-1-aminium chloride top
Crystal data top
C5H13NCl+·ClDx = 1.186 Mg m3
Mr = 158.06Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 9912 reflections
a = 15.9302 (8) Åθ = 3.2–24.4°
c = 6.9779 (4) ŵ = 0.65 mm1
V = 1770.8 (2) Å3T = 295 K
Z = 8Gem, colourless
F(000) = 6720.33 × 0.33 × 0.28 mm
Data collection top
Bruker D8 Quest Eco
diffractometer
1731 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.045
φ and ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.96, Tmax = 1.00k = 2020
27888 measured reflectionsl = 99
2028 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0448P)2 + 0.267P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.085Δρmax = 0.17 e Å3
S = 1.09Δρmin = 0.21 e Å3
2028 reflectionsExtinction correction: SHELXL2016/6 (Sheldrick 2015b)
77 parametersExtinction coefficient: 0.0065 (14)
0 restraintsAbsolute structure: Flack x determined using 668 quotients [(I+)-(I-)]/[(I+)+(I-)] [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: dualAbsolute structure parameter: 0.14 (3)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl010.65850 (7)0.63178 (7)0.29014 (15)0.0535 (3)
Cl10.56868 (10)0.87927 (9)0.9901 (3)0.0929 (5)
N10.6590 (2)0.6289 (2)0.7246 (4)0.0438 (6)
H1A0.6607110.63020.5842280.053*
C10.5994 (4)0.8605 (3)0.7485 (9)0.0787 (18)
H90.5637040.8930860.6639440.094*
H100.6566650.8798640.7309520.094*
C20.5942 (3)0.7698 (3)0.6928 (9)0.0630 (12)
H2A0.5386660.7487190.7231860.076*
H2B0.6020980.764850.5553870.076*
C30.6582 (3)0.7171 (3)0.7925 (9)0.0560 (10)
H3A0.7133280.7414370.7723390.067*
H3B0.6469580.7177180.9290630.067*
C40.5832 (3)0.5807 (3)0.7811 (9)0.0567 (11)
H40.5769690.5823650.9178640.085*
H10.5890260.5234410.7400450.085*
H50.5345410.6050020.7218530.085*
C50.7342 (3)0.5829 (4)0.7906 (9)0.0758 (15)
H70.7837830.6126190.7514820.114*
H80.7345770.5276860.7354020.114*
H60.7332410.5784830.9277970.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl010.0658 (7)0.0641 (7)0.0305 (3)0.0131 (6)0.0017 (5)0.0007 (5)
Cl10.0831 (9)0.0854 (9)0.1101 (12)0.0024 (7)0.0101 (11)0.0249 (10)
N10.0472 (19)0.056 (2)0.0280 (12)0.0004 (19)0.0029 (17)0.0020 (15)
C10.076 (3)0.061 (3)0.099 (5)0.004 (2)0.008 (3)0.019 (3)
C20.071 (3)0.065 (3)0.053 (3)0.001 (2)0.009 (3)0.005 (3)
C30.064 (2)0.057 (2)0.0471 (19)0.009 (2)0.003 (2)0.006 (2)
C40.058 (3)0.053 (2)0.060 (2)0.0108 (19)0.002 (3)0.004 (3)
C50.059 (3)0.112 (4)0.056 (2)0.024 (3)0.002 (3)0.003 (4)
Geometric parameters (Å, º) top
Cl1—C11.781 (7)C2—H2B0.97
N1—C51.479 (6)C3—H3A0.97
N1—C31.483 (6)C3—H3B0.97
N1—C41.484 (6)C4—H40.96
N1—H1A0.98C4—H10.96
C1—C21.500 (8)C4—H50.96
C1—H90.97C5—H70.96
C1—H100.97C5—H80.96
C2—C31.493 (7)C5—H60.96
C2—H2A0.97
C5—N1—C3112.1 (4)N1—C3—C2112.9 (4)
C5—N1—C4108.7 (4)N1—C3—H3A109.0
C3—N1—C4113.5 (4)C2—C3—H3A109.0
C5—N1—H1A107.4N1—C3—H3B109.0
C3—N1—H1A107.4C2—C3—H3B109.0
C4—N1—H1A107.4H3A—C3—H3B107.8
C2—C1—Cl1113.1 (4)N1—C4—H4109.5
C2—C1—H9109.0N1—C4—H1109.5
Cl1—C1—H9109.0H4—C4—H1109.5
C2—C1—H10109.0N1—C4—H5109.5
Cl1—C1—H10109.0H4—C4—H5109.5
H9—C1—H10107.8H1—C4—H5109.5
C3—C2—C1112.6 (5)N1—C5—H7109.5
C3—C2—H2A109.1N1—C5—H8109.5
C1—C2—H2A109.1H7—C5—H8109.5
C3—C2—H2B109.1N1—C5—H6109.5
C1—C2—H2B109.1H7—C5—H6109.5
H2A—C2—H2B107.8H8—C5—H6109.5
Cl1—C1—C2—C368.6 (6)C4—N1—C3—C269.5 (6)
C5—N1—C3—C2166.9 (5)C1—C2—C3—N1174.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl010.982.053.032 (3)177
 

References

First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarchetti, F., Pampaloni, G. & Zacchini, S. (2015). Polyhedron, 85, 369–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, K., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 287–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodrigues Silva, D., de Azevedo Santos, L., Hamlin, T. A., Fonseca Guerra, C., Freitas, M. P. & Bickelhaupt, F. M. (2021). ChemPhysChem, 22, 641–648.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolfe, S. (1972). Acc. Chem. Res. 5, 102–111.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146