organic compounds
4-(Allyloxy)benzohydrazide
aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Science, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com
The non-H atoms of the title compound, C10H12N2O2, are approximately coplanar with the exception of those at the ends: the terminal allyl carbon atom and terminal hydrazide nitrogen atom are displaced from the mean plane by 0.67 (2) and 0.20 (2) Å, respectively. In the crystal, the molecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, which give rise a two-dimensional network propagating in the (001) plane.
Keywords: crystal structure; allyl; benzohydrazide.
CCDC reference: 2210836
Structure description
R—C(=O)—NH—NH2 may act as a pharmacophore and present biological activity (see, for example, Joshi et al. 2008). Hydrazide-containing molecules are effective ligands in coordination chemistry (see, for example, Saygıdeğer Demir et al., 2021). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1).
containing anThe X-ray and Table 1) that form a two-dimensional network propagating in the ab plane. This arrangement favours weak aromatic π–stacking interactions of the phenyl rings [centroid-to-centroid distance of 4.092 (3) Å, see Fig. 2].
revealed that the non-hydrogen atoms are approximately coplanar with the exception of the terminal atoms, which deviate by 0.67 (2) Å for C10 and 0.20 (2) Å for N2. In the crystal, the molecules are connected by N—H⋯O and N—H⋯N hydrogen bonds involving the carbohydrazide moieties of symmetry-related molecules (Fig. 2Synthesis and crystallization
A mixture of ethyl-4-hydroxybenzoate (8.3 g, 50 mmol) and allyl bromide (6.0 g, 50 mmol) in acetone (100 ml) was refluxed for 20 h over anhydrous potassium carbonate (13.8 g, 100 mmol). The filtrate was collected and the solvent removed in vacuo. The resulting colourless oily mass was treated with hydrazine hydrate (5.0 g, 100 mmol) and refluxed for 10 h in ethanol (40 ml). The reaction mixture was left overnight and colourless crystals suitable for X-ray characterization were obtained, filtered off and washed with ethanol. Yield: 7.0 g, (73%), melting point: 355–356 K.
FT–IR (KBr), (cm−1): 1650 ν (C=Oester), 1621, 1575 ν (C=C), 3328, 3280, 3183 ν (NH—NH2).
1H NMR(CDCl3, 400 MHz), δ: 7.72 (d, 2H, C-2,6, J = 8.8 Hz), 6.94 (d, 2H, C-3,5, J = 8.8 Hz), 7.65 (s, NH), 4.13 (s, 2H, NH2), 5.42 (dq, Ha, J = 16 Hz, 1.6 Hz), 5.32 (dq, Hb, J = 10.4 Hz, 1.2 Hz), 6.05 (m, Hc), 4.58 (dt, 2H, CH2O, J = 5.2 Hz, 1.2 Hz).
Refinement
Crystal data, data collection and structure . The was indeterminate in the present and the structure was refined as an inversion twin.
details are summarized in Table 2Structural data
CCDC reference: 2210836
https://doi.org/10.1107/S2414314622011956/hb4420sup1.cif
contains datablocks I, General. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622011956/hb4420Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622011956/hb4420Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 2010); cell
RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999).C10H12N2O2 | F(000) = 204 |
Mr = 192.22 | Dx = 1.286 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71075 Å |
a = 5.967 (4) Å | Cell parameters from 702 reflections |
b = 4.092 (3) Å | θ = 3.9–27.4° |
c = 20.358 (14) Å | µ = 0.09 mm−1 |
β = 93.080 (18)° | T = 263 K |
V = 496.3 (6) Å3 | Plate, colorless |
Z = 2 | 0.47 × 0.21 × 0.06 mm |
Rigaku R-AXIS RAPID CCD diffractometer | 1596 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.073 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −7→7 |
Tmin = 0.299, Tmax = 0.995 | k = −5→4 |
4612 measured reflections | l = −26→26 |
2075 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.081 | w = 1/[σ2(Fo2) + (0.1107P)2 + 0.1955P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.228 | (Δ/σ)max = 0.043 |
S = 1.05 | Δρmax = 0.30 e Å−3 |
2075 reflections | Δρmin = −0.30 e Å−3 |
139 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.5 |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component perfect inversion twin |
x | y | z | Uiso*/Ueq | ||
O1 | 1.0223 (5) | 0.0117 (11) | 0.59637 (15) | 0.0501 (10) | |
O2 | 0.6099 (6) | 0.6905 (12) | 0.84332 (16) | 0.0576 (11) | |
N1 | 0.7352 (6) | 0.0258 (13) | 0.48583 (18) | 0.0420 (10) | |
H1A | 0.810 (10) | 0.20 (2) | 0.459 (3) | 0.070 (18)* | |
H1B | 0.828 (9) | −0.162 (18) | 0.495 (3) | 0.053 (15)* | |
N2 | 0.6987 (6) | 0.1941 (12) | 0.54599 (17) | 0.0422 (10) | |
H2 | 0.568 (9) | 0.310 (17) | 0.551 (2) | 0.053 (15)* | |
C1 | 0.8432 (7) | 0.1605 (13) | 0.5991 (2) | 0.0381 (10) | |
C2 | 0.7721 (7) | 0.3101 (12) | 0.6615 (2) | 0.0368 (10) | |
C3 | 0.9130 (7) | 0.2748 (14) | 0.7179 (2) | 0.0466 (13) | |
H3 | 1.048347 | 0.163742 | 0.715485 | 0.056* | |
C4 | 0.8538 (8) | 0.4031 (15) | 0.7774 (2) | 0.0512 (14) | |
H4 | 0.948590 | 0.375286 | 0.814732 | 0.061* | |
C5 | 0.6535 (8) | 0.5734 (13) | 0.7817 (2) | 0.0450 (12) | |
C6 | 0.5104 (9) | 0.6088 (14) | 0.7266 (2) | 0.0499 (14) | |
H6 | 0.374650 | 0.718525 | 0.729247 | 0.060* | |
C7 | 0.5717 (8) | 0.4782 (15) | 0.6669 (2) | 0.0476 (13) | |
H7 | 0.475950 | 0.504343 | 0.629677 | 0.057* | |
C8 | 0.4030 (9) | 0.8680 (17) | 0.8490 (2) | 0.0558 (14) | |
H8A | 0.275903 | 0.726145 | 0.838444 | 0.067* | |
H8B | 0.396374 | 1.050785 | 0.818586 | 0.067* | |
C9 | 0.3954 (12) | 0.9884 (19) | 0.9178 (3) | 0.0743 (19) | |
H9 | 0.525899 | 1.076453 | 0.937629 | 0.089* | |
C10 | 0.2180 (15) | 0.978 (3) | 0.9519 (3) | 0.105 (3) | |
H10A | 0.084985 | 0.891368 | 0.933402 | 0.126* | |
H10B | 0.223805 | 1.057220 | 0.994739 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0359 (16) | 0.058 (2) | 0.0565 (18) | 0.0103 (18) | 0.0023 (12) | −0.0034 (17) |
O2 | 0.064 (2) | 0.064 (3) | 0.0447 (18) | −0.003 (2) | 0.0052 (14) | −0.0052 (17) |
N1 | 0.033 (2) | 0.045 (3) | 0.048 (2) | 0.0006 (19) | 0.0049 (14) | −0.0047 (19) |
N2 | 0.0352 (19) | 0.048 (3) | 0.0436 (19) | 0.007 (2) | 0.0032 (14) | −0.0050 (17) |
C1 | 0.034 (2) | 0.035 (2) | 0.046 (2) | −0.004 (2) | 0.0044 (16) | 0.0039 (19) |
C2 | 0.032 (2) | 0.031 (3) | 0.048 (2) | −0.0047 (19) | 0.0051 (15) | 0.0019 (18) |
C3 | 0.041 (2) | 0.047 (3) | 0.052 (3) | 0.001 (2) | −0.0016 (18) | 0.002 (2) |
C4 | 0.046 (3) | 0.061 (4) | 0.046 (2) | −0.005 (3) | −0.0056 (19) | 0.000 (2) |
C5 | 0.050 (3) | 0.039 (3) | 0.046 (2) | −0.010 (2) | 0.0081 (18) | 0.000 (2) |
C6 | 0.047 (3) | 0.055 (4) | 0.048 (2) | 0.008 (3) | 0.006 (2) | 0.001 (2) |
C7 | 0.044 (3) | 0.055 (4) | 0.044 (2) | 0.009 (3) | −0.0007 (17) | 0.003 (2) |
C8 | 0.061 (3) | 0.050 (3) | 0.058 (3) | −0.004 (3) | 0.014 (2) | −0.007 (2) |
C9 | 0.094 (4) | 0.066 (5) | 0.065 (3) | −0.006 (4) | 0.020 (3) | −0.009 (3) |
C10 | 0.131 (6) | 0.117 (8) | 0.072 (4) | 0.017 (7) | 0.046 (4) | −0.006 (5) |
O1—C1 | 1.234 (6) | C4—C5 | 1.390 (7) |
O2—C5 | 1.380 (6) | C4—H4 | 0.9300 |
O2—C8 | 1.442 (7) | C5—C6 | 1.381 (7) |
N1—N2 | 1.432 (5) | C6—C7 | 1.395 (7) |
N1—H1A | 1.02 (7) | C6—H6 | 0.9300 |
N1—H1B | 0.96 (7) | C7—H7 | 0.9300 |
N2—C1 | 1.352 (6) | C8—C9 | 1.488 (8) |
N2—H2 | 0.92 (6) | C8—H8A | 0.9700 |
C1—C2 | 1.493 (6) | C8—H8B | 0.9700 |
C2—C3 | 1.393 (6) | C9—C10 | 1.297 (9) |
C2—C7 | 1.389 (6) | C9—H9 | 0.9300 |
C3—C4 | 1.383 (7) | C10—H10A | 0.9300 |
C3—H3 | 0.9300 | C10—H10B | 0.9300 |
C5—O2—C8 | 116.8 (4) | C6—C5—C4 | 119.8 (4) |
N2—N1—H1A | 102 (4) | O2—C5—C4 | 115.8 (4) |
N2—N1—H1B | 109 (3) | C5—C6—C7 | 119.2 (5) |
H1A—N1—H1B | 114 (5) | C5—C6—H6 | 120.4 |
C1—N2—N1 | 121.0 (4) | C7—C6—H6 | 120.4 |
C1—N2—H2 | 118 (3) | C2—C7—C6 | 121.7 (4) |
N1—N2—H2 | 121 (3) | C2—C7—H7 | 119.1 |
O1—C1—N2 | 122.1 (4) | C6—C7—H7 | 119.1 |
O1—C1—C2 | 121.8 (4) | O2—C8—C9 | 108.1 (5) |
N2—C1—C2 | 116.1 (4) | O2—C8—H8A | 110.1 |
C3—C2—C7 | 118.1 (4) | C9—C8—H8A | 110.1 |
C3—C2—C1 | 118.2 (4) | O2—C8—H8B | 110.1 |
C7—C2—C1 | 123.7 (4) | C9—C8—H8B | 110.1 |
C4—C3—C2 | 120.7 (5) | H8A—C8—H8B | 108.4 |
C4—C3—H3 | 119.7 | C10—C9—C8 | 124.0 (8) |
C2—C3—H3 | 119.7 | C10—C9—H9 | 118.0 |
C3—C4—C5 | 120.4 (4) | C8—C9—H9 | 118.0 |
C3—C4—H4 | 119.8 | C9—C10—H10A | 120.0 |
C5—C4—H4 | 119.8 | C9—C10—H10B | 120.0 |
C6—C5—O2 | 124.3 (5) | H10A—C10—H10B | 120.0 |
N1—N2—C1—O1 | 7.3 (8) | C8—O2—C5—C4 | 180.0 (5) |
N1—N2—C1—C2 | −171.9 (4) | C3—C4—C5—C6 | 1.4 (8) |
O1—C1—C2—C3 | −0.8 (7) | C3—C4—C5—O2 | 179.8 (5) |
N2—C1—C2—C3 | 178.5 (5) | O2—C5—C6—C7 | −179.6 (5) |
O1—C1—C2—C7 | −179.7 (5) | C4—C5—C6—C7 | −1.3 (8) |
N2—C1—C2—C7 | −0.5 (7) | C3—C2—C7—C6 | −0.1 (8) |
C7—C2—C3—C4 | 0.2 (7) | C1—C2—C7—C6 | 178.8 (5) |
C1—C2—C3—C4 | −178.8 (5) | C5—C6—C7—C2 | 0.7 (8) |
C2—C3—C4—C5 | −0.8 (8) | C5—O2—C8—C9 | −176.7 (5) |
C8—O2—C5—C6 | −1.7 (8) | O2—C8—C9—C10 | −137.3 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 1.02 (7) | 2.00 (7) | 3.018 (6) | 174 (6) |
N1—H1B···O1ii | 0.96 (7) | 2.50 (6) | 3.095 (6) | 120 (4) |
N2—H2···N1iii | 0.92 (6) | 2.11 (6) | 2.964 (6) | 153 (4) |
Symmetry codes: (i) −x+2, y+1/2, −z+1; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+1. |
Acknowledgements
MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MBHH is indebted to Rajshahi University for financial support. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.
References
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Joshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989–1996. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Saygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygıdeğer, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.