organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(All­yl­oxy)benzohydrazide

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Science, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 16 December 2022; accepted 17 December 2022; online 6 January 2023)

The non-H atoms of the title compound, C10H12N2O2, are approximately coplanar with the exception of those at the ends: the terminal allyl carbon atom and terminal hydrazide nitro­gen atom are displaced from the mean plane by 0.67 (2) and 0.20 (2) Å, respectively. In the crystal, the mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, which give rise a two-dimensional network propagating in the (001) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazides containing an R—C(=O)—NH—NH2 functional group may act as a pharmacophore and present biological activity (see, for example, Joshi et al. 2008[Joshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989-1996.]). Hydrazide-containing mol­ecules are effective ligands in coordination chemistry (see, for example, Saygıdeğer Demir et al., 2021[Saygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygıdeğer, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

The X-ray diffraction analysis revealed that the non-hydrogen atoms are approximately coplanar with the exception of the terminal atoms, which deviate by 0.67 (2) Å for C10 and 0.20 (2) Å for N2. In the crystal, the mol­ecules are connected by N—H⋯O and N—H⋯N hydrogen bonds involving the carbohydrazide moieties of symmetry-related mol­ecules (Fig. 2[link] and Table 1[link]) that form a two-dimensional network propagating in the ab plane. This arrangement favours weak aromatic π–stacking inter­actions of the phenyl rings [centroid-to-centroid distance of 4.092 (3) Å, see Fig. 2[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 1.02 (7) 2.00 (7) 3.018 (6) 174 (6)
N1—H1B⋯O1ii 0.96 (7) 2.50 (6) 3.095 (6) 120 (4)
N2—H2⋯N1iii 0.92 (6) 2.11 (6) 2.964 (6) 153 (4)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Detail of the crystal packing showing hydrogen-bonding inter­actions as blue dashed lines.

Synthesis and crystallization

A mixture of ethyl-4-hy­droxy­benzoate (8.3 g, 50 mmol) and allyl bromide (6.0 g, 50 mmol) in acetone (100 ml) was refluxed for 20 h over anhydrous potassium carbonate (13.8 g, 100 mmol). The filtrate was collected and the solvent removed in vacuo. The resulting colourless oily mass was treated with hydrazine hydrate (5.0 g, 100 mmol) and refluxed for 10 h in ethanol (40 ml). The reaction mixture was left overnight and colourless crystals suitable for X-ray characterization were obtained, filtered off and washed with ethanol. Yield: 7.0 g, (73%), melting point: 355–356 K.

FT–IR (KBr), (cm−1): 1650 ν (C=Oester), 1621, 1575 ν (C=C), 3328, 3280, 3183 ν (NH—NH2).

1H NMR(CDCl3, 400 MHz), δ: 7.72 (d, 2H, C-2,6, J = 8.8 Hz), 6.94 (d, 2H, C-3,5, J = 8.8 Hz), 7.65 (s, NH), 4.13 (s, 2H, NH2), 5.42 (dq, Ha, J = 16 Hz, 1.6 Hz), 5.32 (dq, Hb, J = 10.4 Hz, 1.2 Hz), 6.05 (m, Hc), 4.58 (dt, 2H, CH2O, J = 5.2 Hz, 1.2 Hz).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute structure was indeterminate in the present refinement and the structure was refined as an inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C10H12N2O2
Mr 192.22
Crystal system, space group Monoclinic, P21
Temperature (K) 263
a, b, c (Å) 5.967 (4), 4.092 (3), 20.358 (14)
β (°) 93.080 (18)
V3) 496.3 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.47 × 0.21 × 0.06
 
Data collection
Diffractometer Rigaku R-AXIS RAPID CCD
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.299, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 4612, 2075, 1596
Rint 0.073
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.228, 1.05
No. of reflections 2075
No. of parameters 139
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.30
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.5
Computer programs: RAPID-AUTO (Rigaku, 2010[Rigaku (2010). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2010); cell refinement: RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999).

4-(Prop-2-en-1-yloxy)benzohydrazide top
Crystal data top
C10H12N2O2F(000) = 204
Mr = 192.22Dx = 1.286 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
a = 5.967 (4) ÅCell parameters from 702 reflections
b = 4.092 (3) Åθ = 3.9–27.4°
c = 20.358 (14) ŵ = 0.09 mm1
β = 93.080 (18)°T = 263 K
V = 496.3 (6) Å3Plate, colorless
Z = 20.47 × 0.21 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
1596 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.073
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 77
Tmin = 0.299, Tmax = 0.995k = 54
4612 measured reflectionsl = 2626
2075 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.081 w = 1/[σ2(Fo2) + (0.1107P)2 + 0.1955P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.228(Δ/σ)max = 0.043
S = 1.05Δρmax = 0.30 e Å3
2075 reflectionsΔρmin = 0.30 e Å3
139 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.5
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0223 (5)0.0117 (11)0.59637 (15)0.0501 (10)
O20.6099 (6)0.6905 (12)0.84332 (16)0.0576 (11)
N10.7352 (6)0.0258 (13)0.48583 (18)0.0420 (10)
H1A0.810 (10)0.20 (2)0.459 (3)0.070 (18)*
H1B0.828 (9)0.162 (18)0.495 (3)0.053 (15)*
N20.6987 (6)0.1941 (12)0.54599 (17)0.0422 (10)
H20.568 (9)0.310 (17)0.551 (2)0.053 (15)*
C10.8432 (7)0.1605 (13)0.5991 (2)0.0381 (10)
C20.7721 (7)0.3101 (12)0.6615 (2)0.0368 (10)
C30.9130 (7)0.2748 (14)0.7179 (2)0.0466 (13)
H31.0483470.1637420.7154850.056*
C40.8538 (8)0.4031 (15)0.7774 (2)0.0512 (14)
H40.9485900.3752860.8147320.061*
C50.6535 (8)0.5734 (13)0.7817 (2)0.0450 (12)
C60.5104 (9)0.6088 (14)0.7266 (2)0.0499 (14)
H60.3746500.7185250.7292470.060*
C70.5717 (8)0.4782 (15)0.6669 (2)0.0476 (13)
H70.4759500.5043430.6296770.057*
C80.4030 (9)0.8680 (17)0.8490 (2)0.0558 (14)
H8A0.2759030.7261450.8384440.067*
H8B0.3963741.0507850.8185860.067*
C90.3954 (12)0.9884 (19)0.9178 (3)0.0743 (19)
H90.5258991.0764530.9376290.089*
C100.2180 (15)0.978 (3)0.9519 (3)0.105 (3)
H10A0.0849850.8913680.9334020.126*
H10B0.2238051.0572200.9947390.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (16)0.058 (2)0.0565 (18)0.0103 (18)0.0023 (12)0.0034 (17)
O20.064 (2)0.064 (3)0.0447 (18)0.003 (2)0.0052 (14)0.0052 (17)
N10.033 (2)0.045 (3)0.048 (2)0.0006 (19)0.0049 (14)0.0047 (19)
N20.0352 (19)0.048 (3)0.0436 (19)0.007 (2)0.0032 (14)0.0050 (17)
C10.034 (2)0.035 (2)0.046 (2)0.004 (2)0.0044 (16)0.0039 (19)
C20.032 (2)0.031 (3)0.048 (2)0.0047 (19)0.0051 (15)0.0019 (18)
C30.041 (2)0.047 (3)0.052 (3)0.001 (2)0.0016 (18)0.002 (2)
C40.046 (3)0.061 (4)0.046 (2)0.005 (3)0.0056 (19)0.000 (2)
C50.050 (3)0.039 (3)0.046 (2)0.010 (2)0.0081 (18)0.000 (2)
C60.047 (3)0.055 (4)0.048 (2)0.008 (3)0.006 (2)0.001 (2)
C70.044 (3)0.055 (4)0.044 (2)0.009 (3)0.0007 (17)0.003 (2)
C80.061 (3)0.050 (3)0.058 (3)0.004 (3)0.014 (2)0.007 (2)
C90.094 (4)0.066 (5)0.065 (3)0.006 (4)0.020 (3)0.009 (3)
C100.131 (6)0.117 (8)0.072 (4)0.017 (7)0.046 (4)0.006 (5)
Geometric parameters (Å, º) top
O1—C11.234 (6)C4—C51.390 (7)
O2—C51.380 (6)C4—H40.9300
O2—C81.442 (7)C5—C61.381 (7)
N1—N21.432 (5)C6—C71.395 (7)
N1—H1A1.02 (7)C6—H60.9300
N1—H1B0.96 (7)C7—H70.9300
N2—C11.352 (6)C8—C91.488 (8)
N2—H20.92 (6)C8—H8A0.9700
C1—C21.493 (6)C8—H8B0.9700
C2—C31.393 (6)C9—C101.297 (9)
C2—C71.389 (6)C9—H90.9300
C3—C41.383 (7)C10—H10A0.9300
C3—H30.9300C10—H10B0.9300
C5—O2—C8116.8 (4)C6—C5—C4119.8 (4)
N2—N1—H1A102 (4)O2—C5—C4115.8 (4)
N2—N1—H1B109 (3)C5—C6—C7119.2 (5)
H1A—N1—H1B114 (5)C5—C6—H6120.4
C1—N2—N1121.0 (4)C7—C6—H6120.4
C1—N2—H2118 (3)C2—C7—C6121.7 (4)
N1—N2—H2121 (3)C2—C7—H7119.1
O1—C1—N2122.1 (4)C6—C7—H7119.1
O1—C1—C2121.8 (4)O2—C8—C9108.1 (5)
N2—C1—C2116.1 (4)O2—C8—H8A110.1
C3—C2—C7118.1 (4)C9—C8—H8A110.1
C3—C2—C1118.2 (4)O2—C8—H8B110.1
C7—C2—C1123.7 (4)C9—C8—H8B110.1
C4—C3—C2120.7 (5)H8A—C8—H8B108.4
C4—C3—H3119.7C10—C9—C8124.0 (8)
C2—C3—H3119.7C10—C9—H9118.0
C3—C4—C5120.4 (4)C8—C9—H9118.0
C3—C4—H4119.8C9—C10—H10A120.0
C5—C4—H4119.8C9—C10—H10B120.0
C6—C5—O2124.3 (5)H10A—C10—H10B120.0
N1—N2—C1—O17.3 (8)C8—O2—C5—C4180.0 (5)
N1—N2—C1—C2171.9 (4)C3—C4—C5—C61.4 (8)
O1—C1—C2—C30.8 (7)C3—C4—C5—O2179.8 (5)
N2—C1—C2—C3178.5 (5)O2—C5—C6—C7179.6 (5)
O1—C1—C2—C7179.7 (5)C4—C5—C6—C71.3 (8)
N2—C1—C2—C70.5 (7)C3—C2—C7—C60.1 (8)
C7—C2—C3—C40.2 (7)C1—C2—C7—C6178.8 (5)
C1—C2—C3—C4178.8 (5)C5—C6—C7—C20.7 (8)
C2—C3—C4—C50.8 (8)C5—O2—C8—C9176.7 (5)
C8—O2—C5—C61.7 (8)O2—C8—C9—C10137.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i1.02 (7)2.00 (7)3.018 (6)174 (6)
N1—H1B···O1ii0.96 (7)2.50 (6)3.095 (6)120 (4)
N2—H2···N1iii0.92 (6)2.11 (6)2.964 (6)153 (4)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MBHH is indebted to Rajshahi University for financial support. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJoshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989–1996.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygıdeğer, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146