organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(4-Chloro­phen­yl)imino]-1,2-di­phenyl­ethanone

crossmark logo

aDépartement de Chimie, Faculté des Sciences, Université de Setif-1, El Bez, Setif, Algeria, bLaboratoire de Cristallographie, Département de Physique, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, cUnité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, dUniversité de Lyon, Centre de Diffractométrie, Henri Longchambon, Villeurbanne, France, eDepartment of Chemistry, Science College, An-Najah National University, Nablus PO Box 7, Palestinian Territories, fLaboratoire de Physicochimie Analytique et de Cristallochimie, de Matériaux Organo-métalique et Biomoléculaire, 25000 Constantine, Algeria, and gEcole Normale Supérieure de Constantine, Université Constantine 3, 25000, Algeria
*Correspondence e-mail: brihiouarda@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 21 September 2022; accepted 25 January 2023; online 31 January 2023)

The title Schiff base, C20H14ClNO, obtained from the reaction of 4-chloro aniline with benzil, has an approximate T shape. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (15)°. The extended structure features C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

There are only a few reported crystal structures of Schiff bases derived from benzil (Tabbiche et al., 2022[Tabbiche, A., Bouchama, A., Chafai, N., Zaidi, F., Chiter, C., Yahiaoui, M. & Abiza, A. (2022). J. Mol. Struct. 1261, 132865-132879.]; Bouchama et al., 2007[Bouchama, A., Bendaâs, A., Bouacida, S., Yahiaoui, M., Benard-Rocherulle, P. & Djedouani, A. (2007). Acta Cryst. E63, o1990-o1992.]; Bai et al., 2006[Bai, Y., Liu, J., Dang, D.-B. & Duan, C.-Y. (2006). Acta Cryst. E62, m1805-m1807.]). We recently synthesized the title compound and we now report its crystal structure. The asymmetric unit contains one independent mol­ecule (Fig. 1[link]). The O and the imine N atoms are trans with respect to the C7—C14 bond. The C1–C6 phenyl ring makes dihedral angles of 20.56 (6) and 74.03 (6)°with the C9–C10 and C15–C16 phenyl ring, respectively, of the benzil unit. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (5)°. The C—N iminium bond length [1.268 (3) Å] is comparable to that observed in (E)-1-[4-({4-[(4-meth­oxy­benzyl­idene)amino]­phen­yl}sulfan­yl)phen­yl]ethan-1-one [1.252 (4) Å; Hebbachi et al., 2015[Hebbachi, R., Djedouani, A., Kadri, S., Mousser, H. & Mousser, A. (2015). Acta Cryst. E71, o109-o110.]]. Atom O1 accepts two long and presumably weak intra­molecular hydrogen bonds with atoms H3 and H9 (Fig. 1[link]), which generate S(6) and S(7) rings motifs, respectively: the former is approximately planar.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids. Dashed lines indicate the intra­molecular hydrogen bonds.

In the crystal, the mol­ecules are aligned head-to-foot along the b-axis direction, forming layers that extend in zigzag parallel to the ac plane. In the extended structure, two weak C—H⋯O hydrogen bonds help to consolidate the packing (Table 1[link], Fig. 2[link]). The C18—H18⋯O1 hydrogen bonds generate a succession of infinite chains [graph set C11(7)] while C2—H2⋯O1 hydrogen bonds link the chains into layers, which are formed by a succession of R22(16) rings, parallel to the bc plane [Fig. 3[link](a)]. Together, these hydrogen bonds lead to the formation of a three-dimensional network. Aromatic ππ stacking generates inversion dimers featuring the C15–C20 phenyl rings with a centroid–centroid distance of 3.744 (3) Å [Fig. 3[link](b)]. Along the c-axis direction, weak C—H⋯π(ring) inter­actions occur.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.93 2.67 3.247 (3) 120
C9—H9⋯O1 0.93 2.64 3.231 (3) 122
C2—H2⋯O1i 0.93 2.60 3.360 (3) 139
C19—H19⋯Cg1ii 0.93 2.88 3.689 (3) 146
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Packing arrangement of the title compound viewed along the c-axis direction. C— H⋯O hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
(a) View of part of the crystal structure, showing the formation of a hydrogen-bonded C18—H18⋯O1 chain and (b) the inter­molecular C—H⋯π(ring) and ππ stacking inter­actions bonds (violet and blue dashed lines, respectively) in the ab plane.

A Hirshfeld surface (HS) analysis was performed and the associated two-dimensional fingerprint (FP) plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were generated using Crystal Explorer 3.1 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). Fig. 4[link] shows the HS mapped over dnorm (–0.11 to 1.54 a.u.) and shape-index. The red spots in Fig. 4[link](a) reflect the formation of C—H⋯O, C—H⋯π and ππ stacking inter­actions. In the shape-index map [Fig. 4[link](b)], the adjacent red and blue triangle-like patches represent concave regions that indicate C—H⋯π(ring) and ππ stacking inter­actions. The two-dimensional FP plots indicate that the most important contributions to the packing, in descending percentage contribution, are from H⋯C (37.7%), H⋯H (34.6%), H⋯Cl (14.0%), H⋯O (6.1%), H⋯N (4.0%) and C⋯C (1.9%) contacts.

[Figure 4]
Figure 4
HS mapped over (a) dnorm, showing the C—H⋯O and C—H⋯π inter­actions, and (b) shape-index.

Synthesis and crystallization

To a solution of benzil (2.1 g, 0.01 mmol) and 1 ml of acetic acid in ethanol (20 ml) was added 4-chloro aniline (0.01 mmol) dissolved in ethanol (15 ml). The mixture was stirred for 3 h under reflux. The product was isolated, recrystallized from ethanol solution and then dried in a vacuum to give the title compound (yield 59%; m.p. > 260°C). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution. IR ν, cm−1: 1594 (C=N, imine), 1660 (C=O), 3064 (aromatic C—H), 1212 (C—N) and 718 (C—Cl).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H14ClNO
Mr 320.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0982 (12), 8.2447 (11), 19.365 (3)
β (°) 98.592 (12)
V3) 1594.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.20 × 0.17 × 0.12
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini ultra
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.968, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 13558, 4026, 2805
Rint 0.045
(sin θ/λ)max−1) 0.700
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.11
No. of reflections 4026
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.58
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[(4-Chlorophenyl)imino]-1,2-diphenylethanone top
Crystal data top
C20H14ClNOF(000) = 668
Mr = 320.78Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0982 (12) ÅCell parameters from 3987 reflections
b = 8.2447 (11) Åθ = 4.3–29.1°
c = 19.365 (3) ŵ = 0.24 mm1
β = 98.592 (12)°T = 293 K
V = 1594.2 (4) Å3Block, clear pinkish yellow
Z = 40.20 × 0.17 × 0.12 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
2805 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.045
ω scansθmax = 29.9°, θmin = 2.7°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2018)
h = 1314
Tmin = 0.968, Tmax = 0.974k = 1111
13558 measured reflectionsl = 2326
4026 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0695P)2 + 1.2547P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.38 e Å3
4026 reflectionsΔρmin = 0.58 e Å3
209 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0115 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H-atom treatment: Fixed Uiso At 1.2 times of: All C(H) groups 2.a Aromatic/amide H refined with riding coordinates: C2(H2), C3(H3), C5(H5), C6(H6), C9(H9), C10(H10), C11(H11), C12(H12), C13(H13), C16(H16), C17(H17), C18(H18), C19(H19), C20(H20)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8370 (2)0.8256 (3)0.40271 (13)0.0317 (5)
C20.7484 (3)0.9348 (3)0.42442 (13)0.0329 (5)
H20.7738370.9974740.4641220.040*
C30.6214 (3)0.9505 (3)0.38673 (13)0.0318 (5)
H30.5611281.0238490.4011350.038*
C40.5837 (2)0.8566 (3)0.32725 (12)0.0291 (5)
C50.6759 (2)0.7494 (3)0.30579 (13)0.0335 (6)
H50.6520690.6880990.2655280.040*
C60.8023 (2)0.7329 (3)0.34361 (13)0.0330 (5)
H60.8632870.6601760.3293740.040*
C70.3486 (2)0.8532 (3)0.30665 (13)0.0289 (5)
C80.2203 (2)0.8607 (3)0.25828 (13)0.0322 (5)
C90.1038 (3)0.9201 (4)0.27901 (15)0.0402 (6)
H90.1046820.9559460.3246210.048*
C100.0139 (3)0.9263 (4)0.23202 (17)0.0480 (8)
H100.0910260.9692150.2457950.058*
C110.0170 (3)0.8691 (4)0.16500 (17)0.0521 (8)
H110.0963070.8721380.1336720.062*
C120.0979 (3)0.8075 (4)0.14449 (18)0.0547 (8)
H120.0956820.7676830.0993940.066*
C130.2163 (3)0.8044 (4)0.19061 (15)0.0458 (7)
H130.2937270.7643540.1761370.055*
C140.3371 (2)0.8150 (3)0.38222 (12)0.0292 (5)
C150.3471 (2)0.6436 (3)0.40449 (12)0.0268 (5)
C160.3846 (2)0.5223 (3)0.36134 (12)0.0306 (5)
H160.4032670.5481170.3170480.037*
C170.3940 (3)0.3635 (3)0.38435 (14)0.0359 (6)
H170.4200290.2827860.3556350.043*
C180.3652 (3)0.3243 (3)0.44943 (14)0.0377 (6)
H180.3708540.2169770.4644140.045*
C190.3277 (3)0.4438 (3)0.49268 (14)0.0363 (6)
H190.3084200.4169160.5367460.044*
C200.3191 (2)0.6030 (3)0.47047 (12)0.0311 (5)
H200.2943780.6833420.4997410.037*
Cl10.99595 (7)0.80122 (10)0.45011 (4)0.0468 (3)
N10.4585 (2)0.8715 (3)0.28342 (10)0.0312 (5)
O10.31698 (19)0.9261 (2)0.42112 (10)0.0386 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (12)0.0394 (13)0.0268 (12)0.0027 (10)0.0034 (9)0.0037 (10)
C20.0341 (13)0.0343 (13)0.0306 (12)0.0052 (11)0.0054 (10)0.0028 (10)
C30.0315 (12)0.0310 (12)0.0339 (13)0.0012 (10)0.0081 (10)0.0001 (10)
C40.0277 (12)0.0333 (12)0.0261 (11)0.0009 (10)0.0036 (9)0.0052 (9)
C50.0303 (12)0.0443 (14)0.0262 (12)0.0002 (11)0.0047 (10)0.0041 (10)
C60.0273 (12)0.0423 (14)0.0299 (12)0.0022 (11)0.0063 (10)0.0026 (10)
C70.0305 (12)0.0253 (11)0.0310 (12)0.0026 (10)0.0051 (10)0.0018 (9)
C80.0312 (12)0.0317 (12)0.0329 (13)0.0005 (10)0.0019 (10)0.0048 (10)
C90.0323 (13)0.0520 (16)0.0369 (14)0.0013 (12)0.0077 (11)0.0126 (12)
C100.0293 (13)0.0615 (19)0.0535 (18)0.0031 (13)0.0069 (13)0.0206 (15)
C110.0379 (16)0.0588 (19)0.0537 (19)0.0061 (14)0.0123 (14)0.0087 (15)
C120.0476 (18)0.064 (2)0.0466 (18)0.0059 (15)0.0120 (14)0.0122 (15)
C130.0417 (16)0.0536 (17)0.0396 (16)0.0099 (13)0.0026 (12)0.0083 (13)
C140.0240 (11)0.0337 (12)0.0298 (12)0.0020 (10)0.0040 (9)0.0024 (9)
C150.0231 (11)0.0344 (12)0.0222 (11)0.0005 (9)0.0007 (8)0.0010 (9)
C160.0338 (13)0.0320 (12)0.0253 (11)0.0010 (10)0.0022 (9)0.0002 (9)
C170.0425 (15)0.0315 (12)0.0318 (13)0.0036 (11)0.0007 (11)0.0031 (10)
C180.0384 (14)0.0354 (13)0.0372 (14)0.0040 (11)0.0010 (11)0.0063 (11)
C190.0353 (13)0.0434 (15)0.0296 (13)0.0062 (11)0.0036 (10)0.0081 (10)
C200.0302 (12)0.0364 (13)0.0274 (12)0.0008 (10)0.0060 (10)0.0010 (9)
Cl10.0312 (4)0.0681 (5)0.0381 (4)0.0023 (3)0.0047 (3)0.0040 (3)
N10.0274 (10)0.0365 (11)0.0290 (10)0.0012 (9)0.0022 (8)0.0043 (8)
O10.0460 (11)0.0336 (9)0.0378 (10)0.0018 (8)0.0115 (8)0.0051 (8)
Geometric parameters (Å, º) top
C1—C61.377 (4)C10—H100.9300
C1—C21.379 (4)C11—C121.378 (5)
C1—Cl11.737 (3)C11—H110.9300
C2—C31.384 (3)C12—C131.382 (4)
C2—H20.9300C12—H120.9300
C3—C41.393 (3)C13—H130.9300
C3—H30.9300C14—O11.222 (3)
C4—C51.392 (4)C14—C151.477 (3)
C4—N11.419 (3)C15—C201.390 (3)
C5—C61.380 (3)C15—C161.391 (3)
C5—H50.9300C16—C171.382 (4)
C6—H60.9300C16—H160.9300
C7—N11.268 (3)C17—C181.374 (4)
C7—C81.482 (3)C17—H170.9300
C7—C141.518 (3)C18—C191.382 (4)
C8—C131.385 (4)C18—H180.9300
C8—C91.388 (4)C19—C201.380 (4)
C9—C101.385 (4)C19—H190.9300
C9—H90.9300C20—H200.9300
C10—C111.377 (5)
C6—C1—C2121.3 (2)C10—C11—H11120.1
C6—C1—Cl1118.4 (2)C12—C11—H11120.1
C2—C1—Cl1120.3 (2)C11—C12—C13120.3 (3)
C1—C2—C3119.5 (2)C11—C12—H12119.8
C1—C2—H2120.2C13—C12—H12119.8
C3—C2—H2120.2C12—C13—C8120.4 (3)
C2—C3—C4120.1 (2)C12—C13—H13119.8
C2—C3—H3120.0C8—C13—H13119.8
C4—C3—H3120.0O1—C14—C15123.2 (2)
C5—C4—C3119.2 (2)O1—C14—C7118.9 (2)
C5—C4—N1116.9 (2)C15—C14—C7117.9 (2)
C3—C4—N1123.7 (2)C20—C15—C16119.3 (2)
C6—C5—C4120.7 (2)C20—C15—C14119.0 (2)
C6—C5—H5119.6C16—C15—C14121.7 (2)
C4—C5—H5119.6C17—C16—C15119.9 (2)
C1—C6—C5119.1 (2)C17—C16—H16120.0
C1—C6—H6120.4C15—C16—H16120.0
C5—C6—H6120.4C18—C17—C16120.3 (2)
N1—C7—C8120.0 (2)C18—C17—H17119.8
N1—C7—C14124.3 (2)C16—C17—H17119.8
C8—C7—C14115.6 (2)C17—C18—C19120.2 (2)
C13—C8—C9119.1 (2)C17—C18—H18119.9
C13—C8—C7118.9 (2)C19—C18—H18119.9
C9—C8—C7122.0 (2)C20—C19—C18120.0 (2)
C10—C9—C8120.3 (3)C20—C19—H19120.0
C10—C9—H9119.9C18—C19—H19120.0
C8—C9—H9119.9C19—C20—C15120.2 (2)
C11—C10—C9120.2 (3)C19—C20—H20119.9
C11—C10—H10119.9C15—C20—H20119.9
C9—C10—H10119.9C7—N1—C4121.8 (2)
C10—C11—C12119.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.673.247 (3)120
C9—H9···O10.932.643.231 (3)122
C2—H2···O1i0.932.603.360 (3)139
C19—H19···Cg1ii0.932.883.689 (3)146
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Funding information

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate for Scientific Research and Technological Development and Setif 1 University for financial support.

References

First citationBai, Y., Liu, J., Dang, D.-B. & Duan, C.-Y. (2006). Acta Cryst. E62, m1805–m1807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouchama, A., Bendaâs, A., Bouacida, S., Yahiaoui, M., Benard-Rocherulle, P. & Djedouani, A. (2007). Acta Cryst. E63, o1990–o1992.  CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHebbachi, R., Djedouani, A., Kadri, S., Mousser, H. & Mousser, A. (2015). Acta Cryst. E71, o109–o110.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTabbiche, A., Bouchama, A., Chafai, N., Zaidi, F., Chiter, C., Yahiaoui, M. & Abiza, A. (2022). J. Mol. Struct. 1261, 132865–132879.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146