organic compounds
2-[(4-Chlorophenyl)imino]-1,2-diphenylethanone
aDépartement de Chimie, Faculté des Sciences, Université de Setif-1, El Bez, Setif, Algeria, bLaboratoire de Cristallographie, Département de Physique, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, cUnité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, dUniversité de Lyon, Centre de Diffractométrie, Henri Longchambon, Villeurbanne, France, eDepartment of Chemistry, Science College, An-Najah National University, Nablus PO Box 7, Palestinian Territories, fLaboratoire de Physicochimie Analytique et de Cristallochimie, de Matériaux Organo-métalique et Biomoléculaire, 25000 Constantine, Algeria, and gEcole Normale Supérieure de Constantine, Université Constantine 3, 25000, Algeria
*Correspondence e-mail: brihiouarda@gmail.com
The title Schiff base, C20H14ClNO, obtained from the reaction of 4-chloro aniline with benzil, has an approximate T shape. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (15)°. The extended structure features C—H⋯O hydrogen bonds.
CCDC reference: 2237868
Structure description
There are only a few reported crystal structures of et al., 2022; Bouchama et al., 2007; Bai et al., 2006). We recently synthesized the title compound and we now report its The contains one independent molecule (Fig. 1). The O and the imine N atoms are trans with respect to the C7—C14 bond. The C1–C6 phenyl ring makes dihedral angles of 20.56 (6) and 74.03 (6)°with the C9–C10 and C15–C16 phenyl ring, respectively, of the benzil unit. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (5)°. The C—N iminium bond length [1.268 (3) Å] is comparable to that observed in (E)-1-[4-({4-[(4-methoxybenzylidene)amino]phenyl}sulfanyl)phenyl]ethan-1-one [1.252 (4) Å; Hebbachi et al., 2015]. Atom O1 accepts two long and presumably weak intramolecular hydrogen bonds with atoms H3 and H9 (Fig. 1), which generate S(6) and S(7) rings motifs, respectively: the former is approximately planar.
derived from benzil (TabbicheIn the crystal, the molecules are aligned head-to-foot along the b-axis direction, forming layers that extend in zigzag parallel to the ac plane. In the extended structure, two weak C—H⋯O hydrogen bonds help to consolidate the packing (Table 1, Fig. 2). The C18—H18⋯O1 hydrogen bonds generate a succession of infinite chains [graph set C11(7)] while C2—H2⋯O1 hydrogen bonds link the chains into layers, which are formed by a succession of R22(16) rings, parallel to the bc plane [Fig. 3(a)]. Together, these hydrogen bonds lead to the formation of a three-dimensional network. Aromatic π–π stacking generates inversion dimers featuring the C15–C20 phenyl rings with a centroid–centroid distance of 3.744 (3) Å [Fig. 3(b)]. Along the c-axis direction, weak C—H⋯π(ring) interactions occur.
A Hirshfeld surface (HS) analysis was performed and the associated two-dimensional fingerprint (FP) plots (Spackman & Jayatilaka, 2009) were generated using Crystal Explorer 3.1 (Turner et al., 2017). Fig. 4 shows the HS mapped over dnorm (–0.11 to 1.54 a.u.) and shape-index. The red spots in Fig. 4(a) reflect the formation of C—H⋯O, C—H⋯π and π–π stacking interactions. In the shape-index map [Fig. 4(b)], the adjacent red and blue triangle-like patches represent concave regions that indicate C—H⋯π(ring) and π–π stacking interactions. The two-dimensional FP plots indicate that the most important contributions to the packing, in descending percentage contribution, are from H⋯C (37.7%), H⋯H (34.6%), H⋯Cl (14.0%), H⋯O (6.1%), H⋯N (4.0%) and C⋯C (1.9%) contacts.
Synthesis and crystallization
To a solution of benzil (2.1 g, 0.01 mmol) and 1 ml of acetic acid in ethanol (20 ml) was added 4-chloro aniline (0.01 mmol) dissolved in ethanol (15 ml). The mixture was stirred for 3 h under reflux. The product was isolated, recrystallized from ethanol solution and then dried in a vacuum to give the title compound (yield 59%; m.p. > 260°C). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution. IR ν, cm−1: 1594 (C=N, imine), 1660 (C=O), 3064 (aromatic C—H), 1212 (C—N) and 718 (C—Cl).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2237868
https://doi.org/10.1107/S2414314623000652/hb4414sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623000652/hb4414Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623000652/hb4414Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H14ClNO | F(000) = 668 |
Mr = 320.78 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0982 (12) Å | Cell parameters from 3987 reflections |
b = 8.2447 (11) Å | θ = 4.3–29.1° |
c = 19.365 (3) Å | µ = 0.24 mm−1 |
β = 98.592 (12)° | T = 293 K |
V = 1594.2 (4) Å3 | Block, clear pinkish yellow |
Z = 4 | 0.20 × 0.17 × 0.12 mm |
Xcalibur, Atlas, Gemini ultra diffractometer | 2805 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.045 |
ω scans | θmax = 29.9°, θmin = 2.7° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2018) | h = −13→14 |
Tmin = 0.968, Tmax = 0.974 | k = −11→11 |
13558 measured reflections | l = −23→26 |
4026 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.062 | w = 1/[σ2(Fo2) + (0.0695P)2 + 1.2547P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.186 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.38 e Å−3 |
4026 reflections | Δρmin = −0.58 e Å−3 |
209 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0115 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H-atom treatment: Fixed Uiso At 1.2 times of: All C(H) groups 2.a Aromatic/amide H refined with riding coordinates: C2(H2), C3(H3), C5(H5), C6(H6), C9(H9), C10(H10), C11(H11), C12(H12), C13(H13), C16(H16), C17(H17), C18(H18), C19(H19), C20(H20) |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8370 (2) | 0.8256 (3) | 0.40271 (13) | 0.0317 (5) | |
C2 | 0.7484 (3) | 0.9348 (3) | 0.42442 (13) | 0.0329 (5) | |
H2 | 0.773837 | 0.997474 | 0.464122 | 0.040* | |
C3 | 0.6214 (3) | 0.9505 (3) | 0.38673 (13) | 0.0318 (5) | |
H3 | 0.561128 | 1.023849 | 0.401135 | 0.038* | |
C4 | 0.5837 (2) | 0.8566 (3) | 0.32725 (12) | 0.0291 (5) | |
C5 | 0.6759 (2) | 0.7494 (3) | 0.30579 (13) | 0.0335 (6) | |
H5 | 0.652069 | 0.688099 | 0.265528 | 0.040* | |
C6 | 0.8023 (2) | 0.7329 (3) | 0.34361 (13) | 0.0330 (5) | |
H6 | 0.863287 | 0.660176 | 0.329374 | 0.040* | |
C7 | 0.3486 (2) | 0.8532 (3) | 0.30665 (13) | 0.0289 (5) | |
C8 | 0.2203 (2) | 0.8607 (3) | 0.25828 (13) | 0.0322 (5) | |
C9 | 0.1038 (3) | 0.9201 (4) | 0.27901 (15) | 0.0402 (6) | |
H9 | 0.104682 | 0.955946 | 0.324621 | 0.048* | |
C10 | −0.0139 (3) | 0.9263 (4) | 0.23202 (17) | 0.0480 (8) | |
H10 | −0.091026 | 0.969215 | 0.245795 | 0.058* | |
C11 | −0.0170 (3) | 0.8691 (4) | 0.16500 (17) | 0.0521 (8) | |
H11 | −0.096307 | 0.872138 | 0.133672 | 0.062* | |
C12 | 0.0979 (3) | 0.8075 (4) | 0.14449 (18) | 0.0547 (8) | |
H12 | 0.095682 | 0.767683 | 0.099394 | 0.066* | |
C13 | 0.2163 (3) | 0.8044 (4) | 0.19061 (15) | 0.0458 (7) | |
H13 | 0.293727 | 0.764354 | 0.176137 | 0.055* | |
C14 | 0.3371 (2) | 0.8150 (3) | 0.38222 (12) | 0.0292 (5) | |
C15 | 0.3471 (2) | 0.6436 (3) | 0.40449 (12) | 0.0268 (5) | |
C16 | 0.3846 (2) | 0.5223 (3) | 0.36134 (12) | 0.0306 (5) | |
H16 | 0.403267 | 0.548117 | 0.317048 | 0.037* | |
C17 | 0.3940 (3) | 0.3635 (3) | 0.38435 (14) | 0.0359 (6) | |
H17 | 0.420029 | 0.282786 | 0.355635 | 0.043* | |
C18 | 0.3652 (3) | 0.3243 (3) | 0.44943 (14) | 0.0377 (6) | |
H18 | 0.370854 | 0.216977 | 0.464414 | 0.045* | |
C19 | 0.3277 (3) | 0.4438 (3) | 0.49268 (14) | 0.0363 (6) | |
H19 | 0.308420 | 0.416916 | 0.536746 | 0.044* | |
C20 | 0.3191 (2) | 0.6030 (3) | 0.47047 (12) | 0.0311 (5) | |
H20 | 0.294378 | 0.683342 | 0.499741 | 0.037* | |
Cl1 | 0.99595 (7) | 0.80122 (10) | 0.45011 (4) | 0.0468 (3) | |
N1 | 0.4585 (2) | 0.8715 (3) | 0.28342 (10) | 0.0312 (5) | |
O1 | 0.31698 (19) | 0.9261 (2) | 0.42112 (10) | 0.0386 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0287 (12) | 0.0394 (13) | 0.0268 (12) | −0.0027 (10) | 0.0034 (9) | 0.0037 (10) |
C2 | 0.0341 (13) | 0.0343 (13) | 0.0306 (12) | −0.0052 (11) | 0.0054 (10) | −0.0028 (10) |
C3 | 0.0315 (12) | 0.0310 (12) | 0.0339 (13) | 0.0012 (10) | 0.0081 (10) | −0.0001 (10) |
C4 | 0.0277 (12) | 0.0333 (12) | 0.0261 (11) | −0.0009 (10) | 0.0036 (9) | 0.0052 (9) |
C5 | 0.0303 (12) | 0.0443 (14) | 0.0262 (12) | 0.0002 (11) | 0.0047 (10) | −0.0041 (10) |
C6 | 0.0273 (12) | 0.0423 (14) | 0.0299 (12) | 0.0022 (11) | 0.0063 (10) | −0.0026 (10) |
C7 | 0.0305 (12) | 0.0253 (11) | 0.0310 (12) | 0.0026 (10) | 0.0051 (10) | 0.0018 (9) |
C8 | 0.0312 (12) | 0.0317 (12) | 0.0329 (13) | −0.0005 (10) | 0.0019 (10) | 0.0048 (10) |
C9 | 0.0323 (13) | 0.0520 (16) | 0.0369 (14) | 0.0013 (12) | 0.0077 (11) | 0.0126 (12) |
C10 | 0.0293 (13) | 0.0615 (19) | 0.0535 (18) | 0.0031 (13) | 0.0069 (13) | 0.0206 (15) |
C11 | 0.0379 (16) | 0.0588 (19) | 0.0537 (19) | −0.0061 (14) | −0.0123 (14) | 0.0087 (15) |
C12 | 0.0476 (18) | 0.064 (2) | 0.0466 (18) | 0.0059 (15) | −0.0120 (14) | −0.0122 (15) |
C13 | 0.0417 (16) | 0.0536 (17) | 0.0396 (16) | 0.0099 (13) | −0.0026 (12) | −0.0083 (13) |
C14 | 0.0240 (11) | 0.0337 (12) | 0.0298 (12) | 0.0020 (10) | 0.0040 (9) | −0.0024 (9) |
C15 | 0.0231 (11) | 0.0344 (12) | 0.0222 (11) | −0.0005 (9) | 0.0007 (8) | −0.0010 (9) |
C16 | 0.0338 (13) | 0.0320 (12) | 0.0253 (11) | −0.0010 (10) | 0.0022 (9) | 0.0002 (9) |
C17 | 0.0425 (15) | 0.0315 (12) | 0.0318 (13) | 0.0036 (11) | −0.0007 (11) | −0.0031 (10) |
C18 | 0.0384 (14) | 0.0354 (13) | 0.0372 (14) | −0.0040 (11) | −0.0010 (11) | 0.0063 (11) |
C19 | 0.0353 (13) | 0.0434 (15) | 0.0296 (13) | −0.0062 (11) | 0.0036 (10) | 0.0081 (10) |
C20 | 0.0302 (12) | 0.0364 (13) | 0.0274 (12) | −0.0008 (10) | 0.0060 (10) | −0.0010 (9) |
Cl1 | 0.0312 (4) | 0.0681 (5) | 0.0381 (4) | 0.0023 (3) | −0.0047 (3) | −0.0040 (3) |
N1 | 0.0274 (10) | 0.0365 (11) | 0.0290 (10) | 0.0012 (9) | 0.0022 (8) | 0.0043 (8) |
O1 | 0.0460 (11) | 0.0336 (9) | 0.0378 (10) | 0.0018 (8) | 0.0115 (8) | −0.0051 (8) |
C1—C6 | 1.377 (4) | C10—H10 | 0.9300 |
C1—C2 | 1.379 (4) | C11—C12 | 1.378 (5) |
C1—Cl1 | 1.737 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.384 (3) | C12—C13 | 1.382 (4) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.393 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—O1 | 1.222 (3) |
C4—C5 | 1.392 (4) | C14—C15 | 1.477 (3) |
C4—N1 | 1.419 (3) | C15—C20 | 1.390 (3) |
C5—C6 | 1.380 (3) | C15—C16 | 1.391 (3) |
C5—H5 | 0.9300 | C16—C17 | 1.382 (4) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—N1 | 1.268 (3) | C17—C18 | 1.374 (4) |
C7—C8 | 1.482 (3) | C17—H17 | 0.9300 |
C7—C14 | 1.518 (3) | C18—C19 | 1.382 (4) |
C8—C13 | 1.385 (4) | C18—H18 | 0.9300 |
C8—C9 | 1.388 (4) | C19—C20 | 1.380 (4) |
C9—C10 | 1.385 (4) | C19—H19 | 0.9300 |
C9—H9 | 0.9300 | C20—H20 | 0.9300 |
C10—C11 | 1.377 (5) | ||
C6—C1—C2 | 121.3 (2) | C10—C11—H11 | 120.1 |
C6—C1—Cl1 | 118.4 (2) | C12—C11—H11 | 120.1 |
C2—C1—Cl1 | 120.3 (2) | C11—C12—C13 | 120.3 (3) |
C1—C2—C3 | 119.5 (2) | C11—C12—H12 | 119.8 |
C1—C2—H2 | 120.2 | C13—C12—H12 | 119.8 |
C3—C2—H2 | 120.2 | C12—C13—C8 | 120.4 (3) |
C2—C3—C4 | 120.1 (2) | C12—C13—H13 | 119.8 |
C2—C3—H3 | 120.0 | C8—C13—H13 | 119.8 |
C4—C3—H3 | 120.0 | O1—C14—C15 | 123.2 (2) |
C5—C4—C3 | 119.2 (2) | O1—C14—C7 | 118.9 (2) |
C5—C4—N1 | 116.9 (2) | C15—C14—C7 | 117.9 (2) |
C3—C4—N1 | 123.7 (2) | C20—C15—C16 | 119.3 (2) |
C6—C5—C4 | 120.7 (2) | C20—C15—C14 | 119.0 (2) |
C6—C5—H5 | 119.6 | C16—C15—C14 | 121.7 (2) |
C4—C5—H5 | 119.6 | C17—C16—C15 | 119.9 (2) |
C1—C6—C5 | 119.1 (2) | C17—C16—H16 | 120.0 |
C1—C6—H6 | 120.4 | C15—C16—H16 | 120.0 |
C5—C6—H6 | 120.4 | C18—C17—C16 | 120.3 (2) |
N1—C7—C8 | 120.0 (2) | C18—C17—H17 | 119.8 |
N1—C7—C14 | 124.3 (2) | C16—C17—H17 | 119.8 |
C8—C7—C14 | 115.6 (2) | C17—C18—C19 | 120.2 (2) |
C13—C8—C9 | 119.1 (2) | C17—C18—H18 | 119.9 |
C13—C8—C7 | 118.9 (2) | C19—C18—H18 | 119.9 |
C9—C8—C7 | 122.0 (2) | C20—C19—C18 | 120.0 (2) |
C10—C9—C8 | 120.3 (3) | C20—C19—H19 | 120.0 |
C10—C9—H9 | 119.9 | C18—C19—H19 | 120.0 |
C8—C9—H9 | 119.9 | C19—C20—C15 | 120.2 (2) |
C11—C10—C9 | 120.2 (3) | C19—C20—H20 | 119.9 |
C11—C10—H10 | 119.9 | C15—C20—H20 | 119.9 |
C9—C10—H10 | 119.9 | C7—N1—C4 | 121.8 (2) |
C10—C11—C12 | 119.8 (3) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.93 | 2.67 | 3.247 (3) | 120 |
C9—H9···O1 | 0.93 | 2.64 | 3.231 (3) | 122 |
C2—H2···O1i | 0.93 | 2.60 | 3.360 (3) | 139 |
C19—H19···Cg1ii | 0.93 | 2.88 | 3.689 (3) | 146 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Funding information
The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate for Scientific Research and Technological Development and Setif 1 University for financial support.
References
Bai, Y., Liu, J., Dang, D.-B. & Duan, C.-Y. (2006). Acta Cryst. E62, m1805–m1807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouchama, A., Bendaâs, A., Bouacida, S., Yahiaoui, M., Benard-Rocherulle, P. & Djedouani, A. (2007). Acta Cryst. E63, o1990–o1992. CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hebbachi, R., Djedouani, A., Kadri, S., Mousser, H. & Mousser, A. (2015). Acta Cryst. E71, o109–o110. CrossRef IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tabbiche, A., Bouchama, A., Chafai, N., Zaidi, F., Chiter, C., Yahiaoui, M. & Abiza, A. (2022). J. Mol. Struct. 1261, 132865–132879. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.