organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-4,5-Di­bromo-3,3,6,6-tetra­methyl-2,3,6,7-tetra­hydro­thiepine-1,1-dione

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 January 2023; accepted 17 January 2023; online 31 January 2023)

The crystal of the title compound, C10H16Br2O2S, is formed from layers built from centrosymmetric pairs of mol­ecules. The mol­ecule adopts a twist conformation with the carbon atoms next to sulfur above or below the mean plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our studies on the reactivity of angle-strained compounds (Krämer et al., 2009[Krämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810-4812.]; Detert 2011[Detert, H. (2011). Targets in Heterocyclic Systems, vol. 15, edited by O. A. Attanasi & D. Spinelli, pp. 1-49. Rome: Italian Society of Chemistry.]), the addition of bromine appeared to be a challenging project (Chiappe et al., 2002[Chiappe, C., De Rubertis, A., Detert, H., Lenoir, D., Wannere, C. S. & Schleyer, P. von R. (2002). Chem. Eur. J. 8, 967-978.]; Detert et al. 1992[Detert, H., Anthony-Mayer, C. & Meier, H. (1992). Angew. Chem. Int. Ed. Engl. 31, 791-792.]). Whereas the addition of bromine to alkynes generally leads via bridged bromo­nium ions to trans-di­bromo­alkenes, the bromination of cyclo­octyne gives cis-1,2-di­bromo­cyclo­octene (Wittig & Dorsch, 1968[Wittig, G. & Dorsch, H.-L. (1968). Justus Liebigs Ann. Chem. 711, 46-54.]). While this can proceed via isomerization of the initially formed trans isomer, the addition of bromine to cyclo­heptynes avoids cationic inter­mediates (Herges et al. 2005[Herges, R., Papafilippopoulos, A., Hess, K., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. Int. Ed. 44, 2-6.]). The title compound (Fig. 1[link]) was obtained within these studies via addition of bromine to tetra­methyl­thia­cyclo­heptyne-S,S-dioxide (Krebs et al. 1979[Krebs, A., Colberg, H., Höpfner, U., Kimling, H. & Odenthal, J. (1979). Heterocycles, 12, 1153-1156.]). Two identical, non-symmetrical mol­ecules comprise the unit cell. The conformation of the seven-membered ring is similar to a twist form. The atoms C7,C1,C3,S5 are nearly coplanar with the largest deviation from planarity at C1 [0.056 (3) Å]. The atoms vicinal to sulfur adopt positions below [−0.789 (3) Å, C4] and above [0.785 (3) Å, C6] this plane. The tetra­substituted olefin is twisted, torsion angle C7—C1—C2—C3 is −13.7 (6)° and Br1—C1—C2—Br2 at −15.3 (3)° is even larger. Two mol­ecules are connected by a center of inversion, the packing appears as a layer structure (Fig. 2[link]). Layers are parallel to the a axis, the minimal distance between bromine atoms (Br1⋯Br1′) of different layers is 3.4168 (6) Å.

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram. View along the a-axis.

Synthesis and crystallization

The title compound C10H16O2Br2S was prepared from the cyclic alkyne (Krebs et al., 1979[Krebs, A., Colberg, H., Höpfner, U., Kimling, H. & Odenthal, J. (1979). Heterocycles, 12, 1153-1156.]; Krebs & Colberg 1980[Krebs, A. & Colberg, H. (1980). Chem. Ber. 113, 2007-2014.]) by addition of bromine at 203 K according to the procedure given by Herges et al. (2005[Herges, R., Papafilippopoulos, A., Hess, K., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. Int. Ed. 44, 2-6.]). After evaporation of the solvent, the oily compound crystallized after standing for 15 years at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C10H16Br2O2S
Mr 360.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 5.9685 (4), 8.9642 (6), 12.4927 (9)
α, β, γ (°) 94.804 (6), 102.448 (5), 99.356 (5)
V3) 639.09 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.49
Crystal size (mm) 0.67 × 0.39 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe et al., 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.088, 0.553
No. of measured, independent and observed [I > 2σ(I)] reflections 8129, 3038, 2686
Rint 0.023
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.14
No. of reflections 3038
No. of parameters 140
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.89
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA WinXpose 2.0.22.0 (Stoe & Cie, 2019); cell refinement: X-AREA Recipe 1.36.0.0 (Stoe & Cie, 2019); data reduction: X-AREA Integrate 1.77.0.0 (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); software used to prepare material for publication: PLATON (Spek, 2020).

(Z)-4,5-Dibromo-3,3,6,6-tetramethyl-2,3,6,7-tetrahydrothiepine-1,1-dione top
Crystal data top
C10H16Br2O2SZ = 2
Mr = 360.11F(000) = 356
Triclinic, P1Dx = 1.871 Mg m3
a = 5.9685 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9642 (6) ÅCell parameters from 18448 reflections
c = 12.4927 (9) Åθ = 2.7–28.4°
α = 94.804 (6)°µ = 6.49 mm1
β = 102.448 (5)°T = 193 K
γ = 99.356 (5)°Plate, colourless
V = 639.09 (8) Å30.67 × 0.39 × 0.08 mm
Data collection top
Stoe IPDS 2T
diffractometer
3038 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2686 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.023
rotation method, ω scansθmax = 28.1°, θmin = 2.7°
Absorption correction: integration
(XRED; Stoe et al., 2019)
h = 77
Tmin = 0.088, Tmax = 0.553k = 1111
8129 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0307P)2 + 1.4492P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3038 reflectionsΔρmax = 1.28 e Å3
140 parametersΔρmin = 0.89 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15368 (7)0.46873 (4)0.40230 (3)0.03826 (12)
Br20.21628 (8)0.13145 (5)0.44057 (3)0.04584 (13)
C10.2846 (5)0.3563 (4)0.3004 (2)0.0251 (6)
C20.2791 (5)0.2074 (4)0.3085 (3)0.0265 (6)
C30.3191 (6)0.0802 (4)0.2281 (3)0.0281 (7)
C40.2643 (5)0.1158 (4)0.1074 (3)0.0266 (6)
H4A0.1158770.1547280.0944090.032*
H4B0.2355880.0182730.0588830.032*
S50.46965 (15)0.24522 (9)0.06328 (7)0.02945 (18)
C60.5605 (5)0.3987 (3)0.1695 (3)0.0254 (6)
H6A0.6749230.3680720.2296200.031*
H6B0.6454650.4844100.1403560.031*
C70.3767 (5)0.4610 (3)0.2221 (3)0.0226 (6)
C80.5636 (6)0.0428 (5)0.2667 (4)0.0401 (9)
H8A0.5866670.0369090.2137290.060*
H8B0.5786090.0069940.3395000.060*
H8C0.6816430.1345370.2716940.060*
C90.1385 (7)0.0676 (4)0.2226 (4)0.0396 (8)
H9A0.1550640.1443300.1656290.059*
H9B0.0196750.0450630.2043740.059*
H9C0.1659830.1065870.2943480.059*
O100.6724 (5)0.1800 (3)0.0569 (3)0.0434 (7)
O110.3486 (5)0.2945 (3)0.0361 (2)0.0416 (6)
C120.1749 (6)0.4981 (4)0.1357 (3)0.0300 (7)
H12A0.2381090.5616930.0850590.045*
H12B0.0783190.5530610.1728970.045*
H12C0.0793070.4032560.0938700.045*
C130.5228 (6)0.6125 (4)0.2895 (3)0.0315 (7)
H13A0.5933380.6750140.2403330.047*
H13B0.6461600.5898990.3480920.047*
H13C0.4208810.6681460.3224570.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0480 (2)0.0446 (2)0.03061 (19)0.01935 (16)0.02005 (15)0.00268 (15)
Br20.0666 (3)0.0435 (2)0.0296 (2)0.00595 (19)0.01546 (18)0.01398 (16)
C10.0262 (14)0.0332 (16)0.0169 (13)0.0094 (12)0.0058 (11)0.0003 (12)
C20.0254 (15)0.0331 (16)0.0230 (15)0.0073 (12)0.0064 (12)0.0086 (13)
C30.0255 (15)0.0251 (15)0.0356 (18)0.0066 (12)0.0088 (13)0.0062 (13)
C40.0242 (14)0.0244 (15)0.0296 (16)0.0013 (12)0.0075 (12)0.0034 (12)
S50.0316 (4)0.0281 (4)0.0289 (4)0.0004 (3)0.0151 (3)0.0049 (3)
C60.0250 (14)0.0226 (14)0.0285 (16)0.0033 (11)0.0083 (12)0.0011 (12)
C70.0267 (14)0.0217 (14)0.0209 (14)0.0066 (11)0.0079 (11)0.0008 (11)
C80.0314 (18)0.0378 (19)0.055 (2)0.0150 (15)0.0094 (16)0.0136 (17)
C90.041 (2)0.0278 (17)0.052 (2)0.0009 (15)0.0191 (17)0.0054 (16)
O100.0377 (14)0.0372 (14)0.0587 (18)0.0019 (11)0.0290 (13)0.0124 (12)
O110.0546 (16)0.0428 (15)0.0247 (12)0.0024 (12)0.0133 (11)0.0007 (11)
C120.0280 (16)0.0327 (17)0.0300 (17)0.0070 (13)0.0052 (13)0.0087 (13)
C130.0373 (18)0.0261 (16)0.0291 (17)0.0066 (13)0.0053 (14)0.0034 (13)
Geometric parameters (Å, º) top
Br1—C11.927 (3)C6—H6B0.9900
Br2—C21.923 (3)C7—C121.536 (4)
C1—C21.343 (5)C7—C131.556 (4)
C1—C71.536 (4)C8—H8A0.9800
C2—C31.538 (5)C8—H8B0.9800
C3—C81.535 (5)C8—H8C0.9800
C3—C41.543 (5)C9—H9A0.9800
C3—C91.552 (5)C9—H9B0.9800
C4—S51.758 (3)C9—H9C0.9800
C4—H4A0.9900C12—H12A0.9800
C4—H4B0.9900C12—H12B0.9800
S5—O111.438 (3)C12—H12C0.9800
S5—O101.441 (3)C13—H13A0.9800
S5—C61.758 (3)C13—H13B0.9800
C6—C71.547 (4)C13—H13C0.9800
C6—H6A0.9900
C2—C1—C7132.0 (3)C1—C7—C12111.0 (3)
C2—C1—Br1117.5 (2)C1—C7—C6112.8 (2)
C7—C1—Br1110.4 (2)C12—C7—C6112.6 (3)
C1—C2—C3130.6 (3)C1—C7—C13109.7 (3)
C1—C2—Br2118.0 (2)C12—C7—C13108.7 (3)
C3—C2—Br2111.4 (2)C6—C7—C13101.5 (2)
C8—C3—C2110.8 (3)C3—C8—H8A109.5
C8—C3—C4113.7 (3)C3—C8—H8B109.5
C2—C3—C4112.0 (3)H8A—C8—H8B109.5
C8—C3—C9107.6 (3)C3—C8—H8C109.5
C2—C3—C9110.2 (3)H8A—C8—H8C109.5
C4—C3—C9102.1 (3)H8B—C8—H8C109.5
C3—C4—S5119.1 (2)C3—C9—H9A109.5
C3—C4—H4A107.5C3—C9—H9B109.5
S5—C4—H4A107.5H9A—C9—H9B109.5
C3—C4—H4B107.5C3—C9—H9C109.5
S5—C4—H4B107.5H9A—C9—H9C109.5
H4A—C4—H4B107.0H9B—C9—H9C109.5
O11—S5—O10116.84 (18)C7—C12—H12A109.5
O11—S5—C4107.11 (16)C7—C12—H12B109.5
O10—S5—C4110.42 (17)H12A—C12—H12B109.5
O11—S5—C6109.96 (16)C7—C12—H12C109.5
O10—S5—C6106.90 (16)H12A—C12—H12C109.5
C4—S5—C6105.01 (15)H12B—C12—H12C109.5
C7—C6—S5119.5 (2)C7—C13—H13A109.5
C7—C6—H6A107.4C7—C13—H13B109.5
S5—C6—H6A107.4H13A—C13—H13B109.5
C7—C6—H6B107.4C7—C13—H13C109.5
S5—C6—H6B107.4H13A—C13—H13C109.5
H6A—C6—H6B107.0H13B—C13—H13C109.5
C7—C1—C2—C313.7 (6)C3—C4—S5—O1070.2 (3)
Br1—C1—C2—C3165.7 (3)C3—C4—S5—C644.7 (3)
C7—C1—C2—Br2165.3 (3)O11—S5—C6—C771.3 (3)
Br1—C1—C2—Br215.3 (3)O10—S5—C6—C7161.0 (3)
C1—C2—C3—C8102.4 (4)C4—S5—C6—C743.7 (3)
Br2—C2—C3—C876.6 (3)C2—C1—C7—C12105.5 (4)
C1—C2—C3—C425.7 (5)Br1—C1—C7—C1273.9 (3)
Br2—C2—C3—C4155.3 (2)C2—C1—C7—C621.9 (5)
C1—C2—C3—C9138.6 (4)Br1—C1—C7—C6158.6 (2)
Br2—C2—C3—C942.4 (3)C2—C1—C7—C13134.3 (4)
C8—C3—C4—S548.3 (4)Br1—C1—C7—C1346.3 (3)
C2—C3—C4—S578.3 (3)S5—C6—C7—C174.8 (3)
C9—C3—C4—S5163.9 (2)S5—C6—C7—C1251.8 (3)
C3—C4—S5—O11161.6 (2)S5—C6—C7—C13167.8 (2)
 

References

First citationChiappe, C., De Rubertis, A., Detert, H., Lenoir, D., Wannere, C. S. & Schleyer, P. von R. (2002). Chem. Eur. J. 8, 967–978.  CrossRef PubMed CAS Google Scholar
First citationDetert, H. (2011). Targets in Heterocyclic Systems, vol. 15, edited by O. A. Attanasi & D. Spinelli, pp. 1–49. Rome: Italian Society of Chemistry.  Google Scholar
First citationDetert, H., Anthony-Mayer, C. & Meier, H. (1992). Angew. Chem. Int. Ed. Engl. 31, 791–792.  CrossRef Google Scholar
First citationHerges, R., Papafilippopoulos, A., Hess, K., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. Int. Ed. 44, 2–6.  CrossRef Google Scholar
First citationKrämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810–4812.  Google Scholar
First citationKrebs, A. & Colberg, H. (1980). Chem. Ber. 113, 2007–2014.  CrossRef CAS Google Scholar
First citationKrebs, A., Colberg, H., Höpfner, U., Kimling, H. & Odenthal, J. (1979). Heterocycles, 12, 1153–1156.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWittig, G. & Dorsch, H.-L. (1968). Justus Liebigs Ann. Chem. 711, 46–54.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146