organic compounds
Methyl 1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-7-carboxylate: a combined X-ray and DFT study
aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
The title compound, C16H16N4O3, was obtained as a side product during the synthesis of the previously reported antitubercular agent N-(2-fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-4-carboxamide and structurally characterized by X-ray crystallography and computational methods. In the crystal (space group P21/n, Z = 4), the title compound adopts a twisted conformation with a dihedral angle between the benzimidazole and pyrimidine mean planes of 84.11 (3)°. The carboxylate group and the 5-methyl group on the pyrimidine ring exhibit partial disorder. The DFT-optimized molecular structure resembles the structure of the minor component in the crystal.
Keywords: crystal structure; DFT calculations; benzimidazole; pyrimidine; tuberculosis.
CCDC reference: 2235406
Structure description
In the course of our studies on antimycobacterial agents, we synthesized and studied the compound N-(2-fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-4-carboxamide (Richter et al., 2022), a benzimidazole analogue of the 1,4-azaindole-based antituberculosis clinical drug candidate TBA-7371 (Shirude et al., 2013, 2014), following the route published by Manjunatha et al. (2019). Therein, methyl 1H-benzo[d]imidazole-4-carboxylate (1) is N-alkylated with 4-(chloromethyl)-6-methoxy-5-methylpyrimidine to yield the desired methyl 1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-4-carboxylate (2) and its structural isomer methyl 1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-7-carboxylate (3), the title compound, as a side product (Fig. 1). After separation by flash the ratio of 2 and 3 was approximately 3.75:1 (Richter et al., 2022). We have now structurally characterized compound 3 by X-ray crystallography and computational methods.
Fig. 2 shows the molecular structure of 3 in the crystal. The molecule exhibits an angular shape, similar to the aforementioned N-(2-fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-4-carboxamide in the crystal (CSD refcode: DEVGEU; Richter et al., 2022). In 3, the angle between the mean planes through the benzimidazole moiety and the pyrimidine ring is 84.11 (3)°. The C2—N1—C10—C11 torsion angle is −87.61 (6)° in the chosen but the oppositely handed conformer is present in the centrosymmetric The methyl group on the pyrimidine ring and the carbonyl oxygen atom of the carboxylate group each were found to be partially disordered over two positions. The two orientations taken up by the methyl group of C16 may cause the carboxylate group to move slightly, hence the minor component O2′. To gain insight into the structural features of 3, we optimized the structure of an isolated molecule by DFT calculations. An overlay of the molecular structures from X-ray crystallography and DFT structure optimization (Fig. 3) reveals that the conformation of the minor-disorder component in the is very similar to the DFT-optimized structure. The latter exhibits a relatively short intramolecular C—H⋯O contact between oxygen atom of the carbonyl group and one of the hydrogen atoms of the bridging methylene group (O⋯H = 2.13 Å).
The solid-state structure of 3 appears to be governed by close packing. The packing index calculated with PLATON (Spek, 2020) for the major disorder part is 73.8%, indicating a dense crystal packing (Kitaigorodskii, 1973). As shown in Fig. 4, face-to-face π–π stacking each between the benzimidazole and pyrimidine systems of adjacent molecules is a dominating structural motif. It is interesting to note that, in contrast to DEVGEU, the benzimidazole C2—H2 group does not form short C—H⋯X (X = N, O) contacts in the of 3.
Synthesis and crystallization
We obtained compound 3 as a side product in the deliberate synthesis of its structural isomer 2, following the route published by Manjunatha et al. (2019). The isomers were separated by flash (Richter et al., 2022). Crystals of 3 suitable for X-ray crystallography were obtained as follows: Slow evaporation of a solution of the compound in chloroform-d to dryness yielded a powder, which was redissolved in methanol. The solution thus obtained was again set aside at room temperature, and the solvent was allowed to evaporate slowly. Colourless crystals appeared after the vessel had been left undisturbed for a couple of weeks.
Refinement
Crystal data, data collection and structure . Initial independent-atom model was carried out with SHELXL2018 (Sheldrick, 2015b). The final structure was carried out by Hirshfeld atom with non-spherical atomic form factors factors using NoSpherA2 (Kleemiss et al., 2021; Midgley et al., 2021) partitioning in OLEX2 (Dolomanov et al., 2009) based on electron density from iterative single-determinant SCF single-point DFT calculations using ORCA (version 4.1.1; Neese et al., 2020) with a B3LYP functional (Becke, 1993; Lee et al., 1988) and a def2-TZVPP basis set (Weigend & Ahlrichs, 2005). The carbonyl oxygen atom (O2) and the methyl hydrogen atoms on C16 were found to be disordered over two positions in each case. Standard similar distance restraints were applied to the C8—O2 and C8—O2′ distances as well as on the 1,2- and 1,3-distances of the disordered methyl hydrogen atoms. The ratio of occupancy was refined by means of a free variable for each disordered group to give 0.63 (4):0.37 (4) for the carbonyl oxygen atom and 0.646 (12):0.354 (12) for the hydrogen atoms of the methyl group. Uiso values of hydrogen atoms were refined freely, except for those affected by disorder, for which Uiso(H) = 1.5Ueq(C) was set.
details are listed in Table 1DFT structure optimization of an isolated molecule of 3 was undertaken using ORCA (version 5.0; Neese et al., 2020) with a B3LYP(G) (VWN1) hybrid functional (20% HF exchange) (Becke, 1993; Lee et al., 1988; Hertwig & Koch, 1997), using a def2-TZVPP basis set (Weigend & Ahlrichs, 2005) utilizing the auxiliary basis def2/J (Weigend, 2006). The input structure was generated from the major disorder component in the Optimization of the structures used the BFGS method from an initial Hessian according to Almoef's model with a very tight self-consistent field convergence threshold (Fletcher, 2000). The optimized local minimum-energy structure exhibited only positive frequencies.
Structural data
CCDC reference: 2235406
https://doi.org/10.1107/S2414314623000251/bt4130sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623000251/bt4130Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623000251/bt4130Isup3.cdx
ATR-FT-IR spectrum of compound 3. DOI: https://doi.org/10.1107/S2414314623000251/bt4130sup4.pdf
Cartesian coordinates of the DFT-calculated molecular structure of compound 3. DOI: https://doi.org/10.1107/S2414314623000251/bt4130sup4.txt
Supporting information file. DOI: https://doi.org/10.1107/S2414314623000251/bt4130Isup6.cml
Data collection: APEX4 (Bruker, 2017); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: DIAMOND (Brandenburg, 2018) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C16H16N4O3 | F(000) = 656.464 |
Mr = 312.33 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3758 (7) Å | Cell parameters from 9856 reflections |
b = 4.7862 (3) Å | θ = 2.2–34.0° |
c = 32.764 (2) Å | µ = 0.10 mm−1 |
β = 96.340 (3)° | T = 100 K |
V = 1461.28 (18) Å3 | Needle |
Z = 4 | 0.19 × 0.10 × 0.02 mm |
Bruker AXS D8 VENTURE diffractometer | 6375 independent reflections |
Radiation source: IµS DIAMOND | 5698 reflections with I ≥ 2u(I) |
Incoatec multilayer optics monochromator | Rint = 0.047 |
Detector resolution: 7.391 pixels mm-1 | θmax = 35.4°, θmin = 2.2° |
φ– and ω–scans | h = −15→15 |
Absorption correction: gaussian (SADABS; Krause et al., 2015) | k = −7→7 |
Tmin = 0.986, Tmax = 0.998 | l = −53→52 |
125687 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0015P)2 + 0.4692P] where P = (Fo2 + 2Fc2)/3 |
6375 reflections | (Δ/σ)max = 0.001 |
289 parameters | Δρmax = 0.41 e Å−3 |
20 restraints | Δρmin = −0.40 e Å−3 |
8 constraints |
Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C2 | 0.41793 (7) | 0.30578 (14) | 0.347562 (19) | 0.01418 (11) | |
H2 | 0.3810 (9) | 0.143 (2) | 0.3663 (3) | 0.030 (2)* | |
C3A | 0.43336 (6) | 0.62087 (13) | 0.302844 (18) | 0.01290 (10) | |
C4 | 0.40396 (7) | 0.80361 (15) | 0.269895 (19) | 0.01730 (12) | |
H4 | 0.2991 (10) | 0.811 (2) | 0.2534 (3) | 0.036 (3)* | |
C5 | 0.51499 (8) | 0.96871 (15) | 0.25906 (2) | 0.01903 (12) | |
H5 | 0.4962 (10) | 1.114 (2) | 0.2346 (3) | 0.041 (3)* | |
C6 | 0.65157 (7) | 0.95258 (14) | 0.280843 (19) | 0.01600 (11) | |
H6 | 0.7336 (10) | 1.083 (2) | 0.2723 (3) | 0.038 (3)* | |
C7 | 0.68523 (6) | 0.77003 (13) | 0.313947 (17) | 0.01144 (10) | |
C7A | 0.57230 (6) | 0.59893 (12) | 0.324773 (17) | 0.00994 (9) | |
C8 | 0.83210 (7) | 0.77743 (14) | 0.336015 (19) | 0.01473 (11) | |
C9 | 1.06327 (8) | 0.9716 (2) | 0.33753 (3) | 0.02662 (16) | |
H9a | 1.1186 (11) | 0.774 (2) | 0.3367 (3) | 0.046 (3)* | |
H9b | 1.1135 (12) | 1.129 (3) | 0.3209 (3) | 0.057 (3)* | |
H9c | 1.0648 (12) | 1.029 (3) | 0.3683 (4) | 0.054 (3)* | |
C10 | 0.65713 (7) | 0.27497 (13) | 0.385944 (18) | 0.01206 (10) | |
H10a | 0.7645 (9) | 0.270 (2) | 0.3765 (3) | 0.024 (2)* | |
H10b | 0.6245 (10) | 0.064 (2) | 0.3908 (3) | 0.031 (2)* | |
C11 | 0.65753 (6) | 0.43198 (12) | 0.426058 (17) | 0.01067 (10) | |
C12 | 0.75223 (6) | 0.35346 (13) | 0.459654 (18) | 0.01303 (10) | |
C13 | 0.73550 (7) | 0.49763 (15) | 0.496289 (18) | 0.01579 (12) | |
C14 | 0.55770 (7) | 0.76028 (14) | 0.464026 (19) | 0.01531 (11) | |
H14 | 0.4812 (10) | 0.925 (2) | 0.4657 (3) | 0.034 (2)* | |
C15 | 0.80160 (9) | 0.5572 (3) | 0.56782 (2) | 0.0335 (2) | |
H15a | 0.8874 (11) | 0.483 (2) | 0.5890 (3) | 0.048 (3)* | |
H15b | 0.8061 (12) | 0.782 (3) | 0.5644 (3) | 0.053 (3)* | |
H15c | 0.7008 (12) | 0.496 (3) | 0.5774 (3) | 0.053 (3)* | |
C16 | 0.86532 (7) | 0.13435 (16) | 0.45806 (2) | 0.02042 (13) | |
H16a | 0.8658 (17) | −0.003 (3) | 0.4854 (4) | 0.03063 (19)* | 0.646 (12) |
H16b | 0.8514 (16) | 0.001 (3) | 0.4320 (4) | 0.03063 (19)* | 0.646 (12) |
H16c | 0.9698 (13) | 0.230 (3) | 0.4614 (5) | 0.03063 (19)* | 0.646 (12) |
H16d | 0.932 (3) | 0.191 (5) | 0.4335 (7) | 0.03063 (19)* | 0.354 (12) |
H16e | 0.815 (2) | −0.059 (4) | 0.4467 (8) | 0.03063 (19)* | 0.354 (12) |
H16f | 0.934 (3) | 0.101 (6) | 0.4846 (6) | 0.03063 (19)* | 0.354 (12) |
N1 | 0.55809 (5) | 0.38936 (11) | 0.353175 (15) | 0.01077 (9) | |
N3 | 0.33883 (6) | 0.43622 (13) | 0.318270 (17) | 0.01624 (10) | |
N4 | 0.56045 (6) | 0.63817 (11) | 0.427757 (15) | 0.01239 (9) | |
N5 | 0.63968 (6) | 0.69880 (13) | 0.498873 (16) | 0.01738 (11) | |
O1 | 0.91869 (5) | 0.94660 (12) | 0.318121 (17) | 0.02457 (11) | |
O2 | 0.8667 (4) | 0.6788 (12) | 0.36899 (8) | 0.0202 (7) | 0.63 (4) |
O2' | 0.8822 (11) | 0.606 (5) | 0.3628 (6) | 0.040 (3) | 0.37 (4) |
O3 | 0.82283 (5) | 0.42339 (13) | 0.529660 (14) | 0.02307 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0136 (2) | 0.0155 (3) | 0.0133 (2) | −0.0044 (2) | 0.00101 (19) | 0.0002 (2) |
C3A | 0.0127 (2) | 0.0141 (2) | 0.0112 (2) | 0.0007 (2) | −0.00191 (18) | −0.0002 (2) |
C4 | 0.0193 (3) | 0.0185 (3) | 0.0128 (3) | 0.0042 (2) | −0.0039 (2) | 0.0019 (2) |
C5 | 0.0263 (3) | 0.0176 (3) | 0.0127 (3) | 0.0036 (3) | 0.0002 (2) | 0.0053 (2) |
C6 | 0.0215 (3) | 0.0139 (3) | 0.0131 (2) | −0.0006 (2) | 0.0042 (2) | 0.0028 (2) |
C7 | 0.0132 (2) | 0.0112 (2) | 0.0101 (2) | −0.0013 (2) | 0.00209 (18) | −0.00018 (19) |
C7A | 0.0108 (2) | 0.0104 (2) | 0.0083 (2) | −0.00019 (19) | −0.00006 (17) | −0.00010 (18) |
C8 | 0.0137 (2) | 0.0185 (3) | 0.0121 (2) | −0.0046 (2) | 0.00212 (19) | −0.0016 (2) |
C9 | 0.0180 (3) | 0.0330 (4) | 0.0292 (4) | −0.0117 (3) | 0.0044 (3) | −0.0039 (3) |
C10 | 0.0158 (2) | 0.0102 (2) | 0.0099 (2) | 0.0013 (2) | −0.00020 (19) | 0.00046 (19) |
C11 | 0.0137 (2) | 0.0097 (2) | 0.0083 (2) | −0.00153 (19) | −0.00023 (18) | 0.00081 (18) |
C12 | 0.0137 (2) | 0.0140 (3) | 0.0106 (2) | −0.0028 (2) | −0.00208 (19) | 0.0020 (2) |
C13 | 0.0158 (3) | 0.0217 (3) | 0.0094 (2) | −0.0077 (2) | −0.00081 (19) | 0.0008 (2) |
C14 | 0.0178 (3) | 0.0158 (3) | 0.0128 (2) | −0.0021 (2) | 0.0038 (2) | −0.0032 (2) |
C15 | 0.0198 (3) | 0.0690 (7) | 0.0109 (3) | −0.0133 (4) | −0.0013 (2) | −0.0033 (4) |
C16 | 0.0153 (3) | 0.0203 (3) | 0.0242 (3) | 0.0007 (2) | −0.0044 (2) | 0.0051 (3) |
N1 | 0.0120 (2) | 0.0113 (2) | 0.00872 (19) | −0.00109 (17) | 0.00008 (15) | 0.00024 (17) |
N3 | 0.0110 (2) | 0.0203 (3) | 0.0166 (2) | −0.0027 (2) | −0.00210 (18) | −0.0011 (2) |
N4 | 0.0158 (2) | 0.0115 (2) | 0.0099 (2) | 0.00026 (18) | 0.00143 (17) | −0.00015 (17) |
N5 | 0.0189 (2) | 0.0234 (3) | 0.0101 (2) | −0.0071 (2) | 0.00264 (18) | −0.0043 (2) |
O1 | 0.0175 (2) | 0.0267 (3) | 0.0297 (3) | −0.0083 (2) | 0.00328 (19) | 0.0061 (2) |
O2 | 0.0140 (6) | 0.0305 (12) | 0.0153 (9) | −0.0053 (6) | −0.0022 (4) | 0.0069 (6) |
O2' | 0.0159 (15) | 0.054 (5) | 0.047 (3) | −0.014 (2) | −0.0119 (19) | 0.030 (4) |
O3 | 0.0194 (2) | 0.0376 (3) | 0.01085 (19) | −0.0088 (2) | −0.00411 (16) | 0.0020 (2) |
C2—H2 | 1.071 (9) | C10—H10b | 1.074 (10) |
C2—N1 | 1.3666 (8) | C10—C11 | 1.5136 (8) |
C2—N3 | 1.3052 (8) | C10—N1 | 1.4472 (7) |
C3A—C4 | 1.3931 (9) | C11—C12 | 1.3876 (8) |
C3A—C7A | 1.4204 (8) | C11—N4 | 1.3478 (8) |
C3A—N3 | 1.3860 (8) | C12—C13 | 1.4082 (9) |
C4—H4 | 1.069 (9) | C12—C16 | 1.4963 (10) |
C4—C5 | 1.3841 (10) | C13—N5 | 1.3259 (9) |
C5—H5 | 1.062 (10) | C13—O3 | 1.3395 (8) |
C5—C6 | 1.3975 (10) | C14—H14 | 1.073 (10) |
C6—H6 | 1.051 (10) | C14—N4 | 1.3271 (8) |
C6—C7 | 1.4013 (8) | C14—N5 | 1.3368 (8) |
C7—C7A | 1.4143 (8) | C15—H15a | 1.064 (11) |
C7—C8 | 1.4834 (9) | C15—H15b | 1.084 (13) |
C7A—N1 | 1.3846 (7) | C15—H15c | 1.070 (11) |
C8—O1 | 1.3280 (8) | C15—O3 | 1.4381 (10) |
C8—O2 | 1.191 (4) | C16—H16a | 1.111 (11) |
C8—O2' | 1.255 (8) | C16—H16b | 1.060 (11) |
C9—H9a | 1.080 (12) | C16—H16c | 1.076 (11) |
C9—H9b | 1.069 (12) | C16—H16d | 1.105 (15) |
C9—H9c | 1.043 (11) | C16—H16e | 1.085 (15) |
C9—O1 | 1.4374 (9) | C16—H16f | 1.035 (15) |
C10—H10a | 1.085 (9) | ||
N1—C2—H2 | 120.2 (5) | C16—C12—C11 | 123.78 (6) |
N3—C2—H2 | 125.1 (5) | C16—C12—C13 | 121.28 (6) |
N3—C2—N1 | 114.76 (6) | N5—C13—C12 | 123.39 (6) |
C7A—C3A—C4 | 122.03 (6) | O3—C13—C12 | 116.75 (6) |
N3—C3A—C4 | 127.10 (6) | O3—C13—N5 | 119.86 (6) |
N3—C3A—C7A | 110.86 (5) | N4—C14—H14 | 116.8 (5) |
H4—C4—C3A | 120.3 (5) | N5—C14—H14 | 116.2 (5) |
C5—C4—C3A | 117.85 (6) | N5—C14—N4 | 126.99 (6) |
C5—C4—H4 | 121.9 (5) | H15b—C15—H15a | 111.3 (9) |
H5—C5—C4 | 120.1 (5) | H15c—C15—H15a | 110.2 (8) |
C6—C5—C4 | 120.68 (6) | H15c—C15—H15b | 110.5 (9) |
C6—C5—H5 | 119.2 (5) | O3—C15—H15a | 104.5 (6) |
H6—C6—C5 | 119.1 (5) | O3—C15—H15b | 109.9 (6) |
C7—C6—C5 | 123.02 (6) | O3—C15—H15c | 110.2 (6) |
C7—C6—H6 | 117.9 (5) | H16a—C16—C12 | 109.1 (8) |
C7A—C7—C6 | 116.38 (5) | H16b—C16—C12 | 115.1 (8) |
C8—C7—C6 | 118.68 (6) | H16b—C16—H16a | 106.4 (10) |
C8—C7—C7A | 124.88 (5) | H16c—C16—C12 | 109.8 (8) |
C7—C7A—C3A | 120.03 (5) | H16c—C16—H16a | 104.3 (10) |
N1—C7A—C3A | 104.04 (5) | H16c—C16—H16b | 111.6 (10) |
N1—C7A—C7 | 135.91 (5) | H16d—C16—C12 | 108.1 (13) |
O1—C8—C7 | 112.29 (6) | H16d—C16—H16a | 141.4 (15) |
O2—C8—C7 | 125.30 (16) | H16d—C16—H16b | 65.9 (14) |
O2—C8—O1 | 121.60 (15) | H16d—C16—H16c | 52.4 (13) |
O2'—C8—C7 | 125.5 (3) | H16e—C16—C12 | 109.2 (13) |
O2'—C8—O1 | 120.6 (3) | H16e—C16—H16a | 74.6 (14) |
H9b—C9—H9a | 111.2 (8) | H16e—C16—H16c | 138.8 (16) |
H9c—C9—H9a | 107.4 (9) | H16e—C16—H16d | 102.6 (15) |
H9c—C9—H9b | 110.5 (9) | H16f—C16—C12 | 117.2 (13) |
O1—C9—H9a | 110.4 (6) | H16f—C16—H16b | 126.2 (16) |
O1—C9—H9b | 106.2 (6) | H16f—C16—H16c | 60.3 (14) |
O1—C9—H9c | 111.2 (6) | H16f—C16—H16d | 107.5 (15) |
H10b—C10—H10a | 108.2 (7) | H16f—C16—H16e | 111.2 (17) |
C11—C10—H10a | 110.1 (5) | C7A—N1—C2 | 106.50 (5) |
C11—C10—H10b | 108.1 (5) | C10—N1—C2 | 121.18 (5) |
N1—C10—H10a | 109.6 (5) | C10—N1—C7A | 132.16 (5) |
N1—C10—H10b | 107.3 (5) | C3A—N3—C2 | 103.82 (5) |
N1—C10—C11 | 113.34 (5) | C14—N4—C11 | 116.07 (5) |
C12—C11—C10 | 119.63 (5) | C14—N5—C13 | 115.79 (5) |
N4—C11—C10 | 117.55 (5) | C9—O1—C8 | 116.61 (6) |
N4—C11—C12 | 122.78 (5) | C15—O3—C13 | 117.44 (7) |
C13—C12—C11 | 114.94 (6) | ||
C2—N1—C7A—C3A | −1.20 (5) | C6—C7—C8—O2 | 163.8 (3) |
C2—N1—C7A—C7 | −179.47 (5) | C6—C7—C8—O2' | −171.1 (18) |
C2—N1—C10—C11 | −87.61 (6) | C7—C7A—N1—C10 | 5.16 (9) |
C2—N3—C3A—C4 | 177.48 (5) | C7—C8—O1—C9 | 179.13 (6) |
C2—N3—C3A—C7A | −1.12 (6) | C7A—N1—C10—C11 | 87.20 (7) |
C3A—C4—C5—C6 | −0.44 (8) | C10—C11—C12—C13 | −174.93 (6) |
C3A—C7A—C7—C6 | −0.92 (7) | C10—C11—C12—C16 | 5.43 (7) |
C3A—C7A—C7—C8 | 176.33 (5) | C10—C11—N4—C14 | 176.03 (5) |
C3A—C7A—N1—C10 | −176.57 (4) | C11—C12—C13—N5 | −1.68 (7) |
C4—C5—C6—C7 | 0.90 (8) | C11—C12—C13—O3 | 178.54 (5) |
C5—C6—C7—C7A | −0.18 (8) | C11—N4—C14—N5 | −0.65 (7) |
C5—C6—C7—C8 | −177.62 (6) | C12—C13—N5—C14 | −0.16 (7) |
C6—C7—C7A—N1 | 177.14 (5) | C12—C13—O3—C15 | −176.49 (6) |
C6—C7—C8—O1 | −5.89 (6) | C13—N5—C14—N4 | 1.46 (7) |
Acknowledgements
We would like to thank Professor Christian W. Lehmann for providing access to the X-ray diffraction facility and Heike Schucht for technical assistance.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 432291016 to Adrian Richter); Mukoviszidose Institut gGmbH (Bonn, Germany), the research and development arm of the German Cystic Fibrosis Association Mukoviszidose e.V.; Open Access Publishing by the DFG.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fletcher, R. (2000). Practical Methods of Optimization, 2nd ed. Chichester: John Wiley & Sons. Google Scholar
Hertwig, R. H. & Koch, W. (1997). Chem. Phys. Lett. 268, 345–351. CrossRef CAS Web of Science Google Scholar
Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press. Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480–1485. Web of Science PubMed Google Scholar
Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. Web of Science CrossRef IUCr Journals Google Scholar
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108. Web of Science CrossRef PubMed Google Scholar
Richter, A., Goddard, R., Schönefeld, R., Imming, P. & Seidel, R. W. (2022). Acta Cryst. E78, 1184–1188. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shirude, P. S., Shandil, R., Sadler, C., Naik, M., Hosagrahara, V., Hameed, S., Shinde, V., Bathula, C., Humnabadkar, V., Kumar, N., Reddy, J., Panduga, V., Sharma, S., Ambady, A., Hegde, N., Whiteaker, J., McLaughlin, R. E., Gardner, H., Madhavapeddi, P., Ramachandran, V., Kaur, P., Narayan, A., Guptha, S., Awasthy, D., Narayan, C., Mahadevaswamy, J., Vishwas, K. G., Ahuja, V., Srivastava, A., Prabhakar, K. R., Bharath, S., Kale, R., Ramaiah, M., Choudhury, N. R., Sambandamurthy, V. K., Solapure, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2013). J. Med. Chem. 56, 9701–9708. Web of Science CrossRef CAS PubMed Google Scholar
Shirude, P. S., Shandil, R. K., Manjunatha, M. R., Sadler, C., Panda, M., Panduga, V., Reddy, J., Saralaya, R., Nanduri, R., Ambady, A., Ravishankar, S., Sambandamurthy, V. K., Humnabadkar, V., Jena, L. K., Suresh, R. S., Srivastava, A., Prabhakar, K. R., Whiteaker, J., McLaughlin, R. E., Sharma, S., Cooper, C. B., Mdluli, K., Butler, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2014). J. Med. Chem. 57, 5728–5737. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Weigend, F. (2006). Phys. Chem. Chem. Phys. 8, 1057–1065. Web of Science CrossRef PubMed CAS Google Scholar
Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.