metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(acetyl­acetonato-κ2O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)magnesium(II)

crossmark logo

aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 September 2022; accepted 26 October 2022; online 1 November 2022)

The title complex, [Mg(C5H7O2)2(C6H16N2)], has been synthesized from magnesium acetyl­acetonate [Mg(acac)2] and tetra­methyl­ethylenedi­amine (TMEDA) in n-hexane. The monomeric complex consists of a central magnesium(II) atom, which is surrounded nearly octa­hedrally by two chelating acetyl­acetonato ligands and one chelating TMEDA ligand. [Mg(C5H7O2)2(C6H16N2)] is isotypic with its Zn analogue.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Complexes of the type [M(acac)2(TMEDA)] (acac is acetyl­acetonate, TMEDA is tetra­methyl­ethylenedi­amine) are valuable starting materials for the preparation of coordination compounds (Kaschube et al., 1988[Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525-532.]; Nelkenbaum et al., 2005[Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645-2659.]; Albrecht et al., 2019[Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233-240.]; Halz et al., 2021[Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922-930.]). Recently, we reported on the crystal structures of three complexes [M(acac)2(TMEDA)] with M = Mn, Fe, Zn (Halz et al., 2020[Halz, J. H., Heiser, C., Wagner, C. & Merzweiler, K. (2020). Acta Cryst. E76, 66-71.]), and in the course of these studies we were inter­ested in a structure determination of the magnesium analogue from X-ray data. The crystal structure of [Mg(acac)2(TMEDA)] is isotypic to that of the recently reported zinc(II) representative [Zn(acac)2(TMEDA)] (Halz et al., 2020[Halz, J. H., Heiser, C., Wagner, C. & Merzweiler, K. (2020). Acta Cryst. E76, 66-71.]). This fits well with the observation that the related complex pairs [Mg(acac)2(2,2′-bi­pyridine)]/[Zn(acac)2(2,2′-bi­pyridine)] and [Mg(acac)2(1,10-phenanthroline)]/[Zn(acac)2(1,10-phen­anthroline)] are isostructural as well (Brahma et al., 2008[Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140-m143.], 2013[Brahma, S., Srinidhi, M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2013). J. Mol. Struct. 1035, 416-420.]).

The mol­ecular structure of the title compound consists of a magnesium(II) atom, which is nearly octa­hedrally coordinated by two acetyl­acetonato ligands and a TMEDA ligand (Fig. 1[link]). The Mg—O distances range from 2.0314 (10)– 2.0368 (10) Å, and comparable separations have been observed in [Mg(acac)2(H2O)2] [2.0299 (7)–2.0419 (7) Å; Janczak, 2018[Janczak, J. (2018). Inorg. Chim. Acta, 478, 88-103.]]. Currently, the CSD database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) comprises two entries for mixed [Mg(acac)2L] complexes with bidentate N-donor ligands L. In the case of L = 1,10-phenanthroline, the Mg—O distances are 2.019 (2)–2.049 (2) Å and similar values [2.020 (3) – 2.044 (4) Å] have been reported for the 2,2′-bi­pyridine complex (Brahma et al., 2013[Brahma, S., Srinidhi, M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2013). J. Mol. Struct. 1035, 416-420.]). Both reference complexes exhibit a slight elongation of the Mg—O bonds trans to the acac units [2.038 (4) Å–2.049 (2) Å] compared to the remaining Mg—O bonds trans to the nitro­gen atoms [2.019 (2)–2.024 (4) Å]. There is no comparable effect in the case of the title compound, and from this aspect [Mg(acac)2(TMEDA)] resembles the isotypic [Zn(acac)2(TMEDA)]. The Mg—N distances in [Mg(acac)2(TMEDA)] [2.3048 (11)–2.3132 (12) Å] are roughly comparable to those in [Mg(thd)2(TMEDA)] [thd = 2,2,6,6-tetra­methyl-3,5-hepta­nedionate, 2.261 (2)–2.292 (3) Å; Hatanpää et al., 2001[Hatanpää, T., Kansikas, J., Mutikainen, I. & Leskelä, M. (2001). Inorg. Chem. 40, 788-794.]] and expectedly larger than in the 1,10-phenanthroline [2.238 (2) Å] and 2,2′-bi­pyridine derivatives [2.232 (4)–2.249 (4) Å]. [Mg(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate) and [Mg(tfa)2(TMEDA)] (tfa = 1,1,1-tri­fluoro­pentane-2,4-dionate) exhibit shorter Mg—N distances [2.227 (2) Å and 2.262 (2)–2.287 (2) Å, respectively], obviously due to the electron-withdrawing effect of the hfa and tfa ligands (Wang et al., 2005[Wang, L., Yang, Y., Ni, J., Stern, C. L. & Marks, T. J. (2005). Chem. Mater. 17, 5697-5704.]; Vikulova et al., 2017[Vikulova, E. S., Zherikova, K. V., Piryazev, D. A., Korol'kov, I. V., Morozova, N. B. & Igumenov, I. K. (2017). J. Struct. Chem. 58, 1681-1684.]). Regarding the trans O—Mg—O and O—Mg—N angles, the deviations from linearity are minor [O2—Mg—O4 = 177.16 (4)°] to medium [O3—Mg—N1 = 166.40 (4)°]. The acac bite angles [86.67 (4) and 86.98 (4)°] are comparable to those found in [Mg(acac)2(2,2′-bi­pyridine)] and [Mg(acac)2(1,10-phenanthroline)] [87.06 (7)–87.7 (2)°]. The TMEDA bite angle [78.77 (4)°] is slightly smaller. Both the acac-Mg six-membered chelate rings are nearly planar with a maximum deviation of 0.054 (1) Å from the mean C3O2Mg plane for O2. The five-membered C2N2Mg ring adopts a nearly C2-symmetric twist conformation with the non-crystallographic C2 axis running through the center of the C11—C12 bond and the magnesium atom. Fig. 1[link] displays the C2N2Mg chelate ring in λ conformation. As a result of the centrosymmetric crystal structure, the enanti­omeric λ and δ conformers are present in an equal ratio.

[Figure 1]
Figure 1
The mol­ecular structure of [Mg(acac)2TMEDA in the crystal. Displacement ellipsoids are drawn at the 50% probability level; H atoms are omitted for clarity.

The crystal packing of [Mg(acac)2TMEDA] (Fig. 2[link]) is governed by van der Waals inter­actions and displays no particular supra­molecular features.

[Figure 2]
Figure 2
Packing diagram for [Mg(acac)2TMEDA] in a view along [010] with a polyhedral representation around the magnesium(II) atom.

Synthesis and crystallization

A mixture of [Mg(acac)2] (2.08 g, 9.35 mmol), TMEDA (2.4 ml, 19 mmol) and 5 ml of n-hexane was gently heated to give a clear solution. After cooling down to room temperature, the solution was stored at 248 K to precipitate clear colorless crystals of [Mg(acac)2(TMEDA)]. The crystals were separated by filtration, washed with a few ml of cold n-hexane and carefully dried in vacuum. Yield: 2.5 g (83%). On exposure to air the crystals slowly turn turbid due to the loss of TMEDA.

[Mg(acac)2TMEDA] (338.73) C16H30N2O4Mg, Mg (complexometric) 7.17%, calc. 7.18%; TGA: 34.33% mass loss between 333 K and 398 K, calc. 34.31% for [Mg(acac)2(TMEDA)] - TMEDA, 1H NMR (C6D6, 399.962 MHz) δ = 5.27 [s, 2H, C(O)CHC(O)], 2.16 (s, 4H, Me2N—CH2), 2.03 (s, 12H, (CH3)2N), 1.76 [s, 12H, CH3C(O)]; 13C NMR (C6D6,100.581 MHz) δ = 190.3 [C(O)], 99.2 [C(O)CHC(O)], 56.1 (NCH2), 45.9 [(CH3)2N], 27.7 [C(O)CH3] p.p.m.; IR (ATR): ν = 2972 w, 2765 w, 1670 w, 1602 m, 1517 s, 1468 s, 1397 vs, 1354 m, 1288 m, 1259 m, 1188 w, 1127 w, 1099 w, 1062 w, 1015 s, 953 w, 919 w, 798 w, 766 w, 660 w, 583 w, 435 w, 405 m, 311 m, 247 m, 220 w cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Mg(C5H7O2)2(C6H16N2)]
Mr 338.73
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 10.3036 (3), 14.1907 (5), 13.6808 (7)
β (°) 101.967 (2)
V3) 1956.87 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.50 × 0.30 × 0.30
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 10632, 4259, 3462
Rint 0.027
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.03
No. of reflections 4259
No. of parameters 216
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.16
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')magnesium(II) top
Crystal data top
[Mg(C5H7O2)2(C6H16N2)]F(000) = 736
Mr = 338.73Dx = 1.150 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3036 (3) ÅCell parameters from 10102 reflections
b = 14.1907 (5) Åθ = 1.4–29.6°
c = 13.6808 (7) ŵ = 0.11 mm1
β = 101.967 (2)°T = 170 K
V = 1956.87 (14) Å3Block, colorless
Z = 40.50 × 0.30 × 0.30 mm
Data collection top
Stoe IPDS2
diffractometer
Rint = 0.027
rotation scansθmax = 27.0°, θmin = 2.1°
10632 measured reflectionsh = 1213
4259 independent reflectionsk = 1816
3462 reflections with I > 2σ(I)l = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4259 reflectionsΔρmax = 0.21 e Å3
216 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.73539 (4)0.26603 (3)0.54050 (3)0.03160 (12)
O30.57619 (9)0.17878 (7)0.50564 (7)0.0406 (2)
O40.61060 (8)0.36201 (6)0.58213 (7)0.0352 (2)
O10.73219 (9)0.33737 (7)0.41083 (7)0.0407 (2)
O20.85612 (9)0.17168 (7)0.49172 (7)0.0397 (2)
N20.78681 (11)0.19671 (8)0.69609 (8)0.0380 (3)
N10.91223 (11)0.35780 (9)0.61862 (9)0.0413 (3)
C60.36376 (16)0.11102 (13)0.48657 (12)0.0555 (4)
H6A0.3729790.0842810.4223180.083*
H6B0.2723630.1326870.4818850.083*
H6C0.3849780.0627530.5386760.083*
C70.45770 (13)0.19322 (10)0.51253 (9)0.0385 (3)
C80.40896 (12)0.27786 (11)0.54250 (10)0.0396 (3)
H80.3166810.2815650.5416940.048*
C90.48651 (12)0.35783 (9)0.57373 (9)0.0342 (3)
C100.41890 (14)0.44581 (11)0.59948 (12)0.0466 (3)
H10A0.4775380.4787640.6544270.070*
H10B0.3362410.4287600.6198900.070*
H10C0.3989360.4871310.5408880.070*
C10.76348 (16)0.38372 (11)0.25150 (11)0.0487 (3)
H1A0.6700050.4023330.2330310.073*
H1B0.7901490.3539580.1940860.073*
H1C0.8183650.4396160.2716840.073*
C20.78188 (12)0.31474 (10)0.33739 (9)0.0369 (3)
C30.85356 (14)0.23238 (10)0.33053 (10)0.0415 (3)
H30.8811220.2203250.2696210.050*
C40.88733 (13)0.16657 (10)0.40757 (10)0.0380 (3)
C50.97013 (17)0.08251 (12)0.39097 (12)0.0537 (4)
H5A1.0492810.0791540.4447860.081*
H5B0.9969780.0890600.3266500.081*
H5C0.9178460.0247870.3907100.081*
C120.91892 (14)0.23291 (13)0.74428 (11)0.0529 (4)
H12A0.9879020.1988670.7175470.063*
H12B0.9344790.2209310.8170660.063*
C110.93036 (16)0.33683 (14)0.72627 (11)0.0554 (4)
H11A0.8624640.3710050.7541020.066*
H11B1.0187850.3592730.7613060.066*
C150.68884 (14)0.22022 (12)0.75699 (10)0.0460 (3)
H15A0.6841830.2887910.7640160.069*
H15B0.7156590.1914330.8232190.069*
H15C0.6015430.1960560.7242110.069*
C160.79117 (18)0.09384 (11)0.68770 (12)0.0549 (4)
H16A0.7030830.0703240.6559250.082*
H16B0.8180030.0661680.7544680.082*
H16C0.8553250.0762510.6470800.082*
C130.88414 (16)0.45858 (11)0.60113 (14)0.0547 (4)
H13A0.8695960.4717860.5293730.082*
H13B0.9595990.4956930.6365480.082*
H13C0.8044720.4755070.6258160.082*
C141.03394 (14)0.33530 (13)0.58274 (13)0.0529 (4)
H14A1.0195130.3476770.5108150.079*
H14B1.0561920.2686780.5955270.079*
H14C1.1070620.3745850.6179950.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0288 (2)0.0357 (2)0.0315 (2)0.00339 (16)0.00908 (16)0.00113 (16)
O30.0387 (5)0.0404 (5)0.0423 (5)0.0016 (4)0.0074 (4)0.0055 (4)
O40.0277 (4)0.0387 (5)0.0411 (5)0.0020 (3)0.0109 (3)0.0018 (4)
O10.0453 (5)0.0420 (5)0.0373 (5)0.0097 (4)0.0144 (4)0.0037 (4)
O20.0423 (5)0.0423 (5)0.0376 (5)0.0097 (4)0.0152 (4)0.0014 (4)
N20.0360 (5)0.0453 (6)0.0335 (5)0.0063 (5)0.0090 (4)0.0023 (5)
N10.0303 (5)0.0505 (7)0.0442 (6)0.0040 (5)0.0104 (4)0.0044 (5)
C60.0529 (9)0.0614 (10)0.0510 (9)0.0206 (8)0.0077 (7)0.0071 (7)
C70.0370 (6)0.0486 (8)0.0282 (6)0.0076 (6)0.0027 (5)0.0019 (5)
C80.0275 (6)0.0542 (8)0.0374 (7)0.0013 (6)0.0070 (5)0.0019 (6)
C90.0310 (6)0.0435 (7)0.0296 (6)0.0057 (5)0.0097 (4)0.0053 (5)
C100.0383 (7)0.0497 (8)0.0563 (9)0.0104 (6)0.0202 (6)0.0028 (7)
C10.0573 (9)0.0501 (9)0.0401 (7)0.0013 (7)0.0134 (6)0.0064 (6)
C20.0343 (6)0.0427 (7)0.0337 (6)0.0037 (5)0.0073 (5)0.0000 (5)
C30.0462 (7)0.0479 (8)0.0339 (6)0.0030 (6)0.0161 (5)0.0031 (6)
C40.0362 (6)0.0405 (7)0.0391 (7)0.0021 (5)0.0119 (5)0.0061 (5)
C50.0618 (9)0.0520 (9)0.0521 (9)0.0171 (7)0.0231 (7)0.0050 (7)
C120.0368 (7)0.0808 (12)0.0385 (7)0.0037 (7)0.0017 (6)0.0081 (7)
C110.0439 (8)0.0797 (12)0.0406 (8)0.0160 (8)0.0043 (6)0.0119 (7)
C150.0441 (7)0.0621 (9)0.0345 (7)0.0057 (7)0.0142 (6)0.0042 (6)
C160.0710 (10)0.0460 (9)0.0503 (9)0.0150 (8)0.0183 (7)0.0125 (7)
C130.0450 (8)0.0457 (9)0.0748 (11)0.0115 (7)0.0155 (7)0.0107 (7)
C140.0304 (6)0.0688 (10)0.0617 (9)0.0053 (7)0.0145 (6)0.0049 (8)
Geometric parameters (Å, º) top
Mg—O12.0368 (10)N1—C131.469 (2)
Mg—O22.0322 (10)N1—C141.4734 (17)
Mg—O32.0314 (10)N1—C111.476 (2)
Mg—O42.0338 (9)C6—C71.510 (2)
Mg—N12.3132 (12)C7—C81.396 (2)
Mg—N22.3048 (11)C8—C91.4027 (19)
O3—C71.2607 (16)C9—C101.5066 (19)
O4—C91.2611 (14)C1—C21.5107 (19)
O1—C21.2603 (15)C2—C31.396 (2)
O2—C41.2600 (15)C3—C41.397 (2)
N2—C161.466 (2)C4—C51.5109 (19)
N2—C151.4741 (16)C12—C111.504 (3)
N2—C121.4762 (19)
O3—Mg—O292.34 (4)C12—N2—Mg106.14 (9)
O3—Mg—O486.98 (4)C13—N1—C14108.02 (12)
O2—Mg—O4177.16 (4)C13—N1—C11109.80 (13)
O3—Mg—O1103.42 (4)C14—N1—C11110.39 (12)
O2—Mg—O186.67 (4)C13—N1—Mg111.29 (9)
O4—Mg—O190.80 (4)C14—N1—Mg111.55 (9)
O3—Mg—N288.65 (4)C11—N1—Mg105.79 (9)
O2—Mg—N289.02 (4)O3—C7—C8125.09 (12)
O4—Mg—N293.72 (4)O3—C7—C6116.12 (13)
O1—Mg—N2167.33 (4)C8—C7—C6118.79 (13)
O3—Mg—N1166.40 (4)C7—C8—C9124.66 (12)
O2—Mg—N192.60 (4)O4—C9—C8124.65 (12)
O4—Mg—N188.67 (4)O4—C9—C10116.68 (12)
O1—Mg—N189.51 (4)C8—C9—C10118.67 (11)
N2—Mg—N178.77 (4)O1—C2—C3125.10 (12)
C7—O3—Mg129.11 (9)O1—C2—C1116.66 (12)
C9—O4—Mg129.11 (9)C3—C2—C1118.23 (12)
C2—O1—Mg129.19 (9)C2—C3—C4124.16 (12)
C4—O2—Mg128.86 (9)O2—C4—C3125.45 (12)
C16—N2—C15107.78 (12)O2—C4—C5116.21 (12)
C16—N2—C12109.95 (12)C3—C4—C5118.33 (12)
C15—N2—C12110.18 (12)N2—C12—C11111.38 (12)
C16—N2—Mg110.95 (9)N1—C11—C12111.30 (13)
C15—N2—Mg111.85 (8)
 

Acknowledgements

We thank Dr Roberto Köferstein for the TGA analysis and Andreas Kiowski for technical support.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationAlbrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrahma, S., Srinidhi, M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2013). J. Mol. Struct. 1035, 416–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalz, J. H., Heiser, C., Wagner, C. & Merzweiler, K. (2020). Acta Cryst. E76, 66–71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHalz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930.  Web of Science CSD CrossRef CAS Google Scholar
First citationHatanpää, T., Kansikas, J., Mutikainen, I. & Leskelä, M. (2001). Inorg. Chem. 40, 788–794.  Web of Science PubMed Google Scholar
First citationJanczak, J. (2018). Inorg. Chim. Acta, 478, 88–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532.  CrossRef CAS Web of Science Google Scholar
First citationNelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVikulova, E. S., Zherikova, K. V., Piryazev, D. A., Korol'kov, I. V., Morozova, N. B. & Igumenov, I. K. (2017). J. Struct. Chem. 58, 1681–1684.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Yang, Y., Ni, J., Stern, C. L. & Marks, T. J. (2005). Chem. Mater. 17, 5697–5704.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146