metal-organic compounds
Bis(acetylacetonato-κ2O,O′)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)magnesium(II)
aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
The title complex, [Mg(C5H7O2)2(C6H16N2)], has been synthesized from magnesium acetylacetonate [Mg(acac)2] and tetramethylethylenediamine (TMEDA) in n-hexane. The monomeric complex consists of a central magnesium(II) atom, which is surrounded nearly octahedrally by two chelating acetylacetonato ligands and one chelating TMEDA ligand. [Mg(C5H7O2)2(C6H16N2)] is isotypic with its Zn analogue.
CCDC reference: 2215481
Structure description
Complexes of the type [M(acac)2(TMEDA)] (acac is acetylacetonate, TMEDA is tetramethylethylenediamine) are valuable starting materials for the preparation of coordination compounds (Kaschube et al., 1988; Nelkenbaum et al., 2005; Albrecht et al., 2019; Halz et al., 2021). Recently, we reported on the crystal structures of three complexes [M(acac)2(TMEDA)] with M = Mn, Fe, Zn (Halz et al., 2020), and in the course of these studies we were interested in a of the magnesium analogue from X-ray data. The of [Mg(acac)2(TMEDA)] is isotypic to that of the recently reported zinc(II) representative [Zn(acac)2(TMEDA)] (Halz et al., 2020). This fits well with the observation that the related complex pairs [Mg(acac)2(2,2′-bipyridine)]/[Zn(acac)2(2,2′-bipyridine)] and [Mg(acac)2(1,10-phenanthroline)]/[Zn(acac)2(1,10-phenanthroline)] are isostructural as well (Brahma et al., 2008, 2013).
The molecular structure of the title compound consists of a magnesium(II) atom, which is nearly octahedrally coordinated by two acetylacetonato ligands and a TMEDA ligand (Fig. 1). The Mg—O distances range from 2.0314 (10)– 2.0368 (10) Å, and comparable separations have been observed in [Mg(acac)2(H2O)2] [2.0299 (7)–2.0419 (7) Å; Janczak, 2018]. Currently, the CSD database (Groom et al., 2016) comprises two entries for mixed [Mg(acac)2L] complexes with bidentate N-donor ligands L. In the case of L = 1,10-phenanthroline, the Mg—O distances are 2.019 (2)–2.049 (2) Å and similar values [2.020 (3) – 2.044 (4) Å] have been reported for the 2,2′-bipyridine complex (Brahma et al., 2013). Both reference complexes exhibit a slight elongation of the Mg—O bonds trans to the acac units [2.038 (4) Å–2.049 (2) Å] compared to the remaining Mg—O bonds trans to the nitrogen atoms [2.019 (2)–2.024 (4) Å]. There is no comparable effect in the case of the title compound, and from this aspect [Mg(acac)2(TMEDA)] resembles the isotypic [Zn(acac)2(TMEDA)]. The Mg—N distances in [Mg(acac)2(TMEDA)] [2.3048 (11)–2.3132 (12) Å] are roughly comparable to those in [Mg(thd)2(TMEDA)] [thd = 2,2,6,6-tetramethyl-3,5-heptanedionate, 2.261 (2)–2.292 (3) Å; Hatanpää et al., 2001] and expectedly larger than in the 1,10-phenanthroline [2.238 (2) Å] and 2,2′-bipyridine derivatives [2.232 (4)–2.249 (4) Å]. [Mg(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) and [Mg(tfa)2(TMEDA)] (tfa = 1,1,1-trifluoropentane-2,4-dionate) exhibit shorter Mg—N distances [2.227 (2) Å and 2.262 (2)–2.287 (2) Å, respectively], obviously due to the electron-withdrawing effect of the hfa and tfa ligands (Wang et al., 2005; Vikulova et al., 2017). Regarding the trans O—Mg—O and O—Mg—N angles, the deviations from linearity are minor [O2—Mg—O4 = 177.16 (4)°] to medium [O3—Mg—N1 = 166.40 (4)°]. The acac bite angles [86.67 (4) and 86.98 (4)°] are comparable to those found in [Mg(acac)2(2,2′-bipyridine)] and [Mg(acac)2(1,10-phenanthroline)] [87.06 (7)–87.7 (2)°]. The TMEDA bite angle [78.77 (4)°] is slightly smaller. Both the acac-Mg six-membered chelate rings are nearly planar with a maximum deviation of 0.054 (1) Å from the mean C3O2Mg plane for O2. The five-membered C2N2Mg ring adopts a nearly C2-symmetric twist conformation with the non-crystallographic C2 axis running through the center of the C11—C12 bond and the magnesium atom. Fig. 1 displays the C2N2Mg chelate ring in λ conformation. As a result of the centrosymmetric the enantiomeric λ and δ conformers are present in an equal ratio.
The crystal packing of [Mg(acac)2TMEDA] (Fig. 2) is governed by van der Waals interactions and displays no particular supramolecular features.
Synthesis and crystallization
A mixture of [Mg(acac)2] (2.08 g, 9.35 mmol), TMEDA (2.4 ml, 19 mmol) and 5 ml of n-hexane was gently heated to give a clear solution. After cooling down to room temperature, the solution was stored at 248 K to precipitate clear colorless crystals of [Mg(acac)2(TMEDA)]. The crystals were separated by filtration, washed with a few ml of cold n-hexane and carefully dried in vacuum. Yield: 2.5 g (83%). On exposure to air the crystals slowly turn turbid due to the loss of TMEDA.
[Mg(acac)2TMEDA] (338.73) C16H30N2O4Mg, Mg (complexometric) 7.17%, calc. 7.18%; TGA: 34.33% mass loss between 333 K and 398 K, calc. 34.31% for [Mg(acac)2(TMEDA)] - TMEDA, 1H NMR (C6D6, 399.962 MHz) δ = 5.27 [s, 2H, C(O)CHC(O)], 2.16 (s, 4H, Me2N—CH2), 2.03 (s, 12H, (CH3)2N), 1.76 [s, 12H, CH3C(O)]; 13C NMR (C6D6,100.581 MHz) δ = 190.3 [C(O)], 99.2 [C(O)CHC(O)], 56.1 (NCH2), 45.9 [(CH3)2N], 27.7 [C(O)CH3] p.p.m.; IR (ATR): ν = 2972 w, 2765 w, 1670 w, 1602 m, 1517 s, 1468 s, 1397 vs, 1354 m, 1288 m, 1259 m, 1188 w, 1127 w, 1099 w, 1062 w, 1015 s, 953 w, 919 w, 798 w, 766 w, 660 w, 583 w, 435 w, 405 m, 311 m, 247 m, 220 w cm−1.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2215481
https://doi.org/10.1107/S2414314622010355/wm4173sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622010355/wm4173Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2016); cell
X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Mg(C5H7O2)2(C6H16N2)] | F(000) = 736 |
Mr = 338.73 | Dx = 1.150 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3036 (3) Å | Cell parameters from 10102 reflections |
b = 14.1907 (5) Å | θ = 1.4–29.6° |
c = 13.6808 (7) Å | µ = 0.11 mm−1 |
β = 101.967 (2)° | T = 170 K |
V = 1956.87 (14) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.30 × 0.30 mm |
Stoe IPDS2 diffractometer | Rint = 0.027 |
rotation scans | θmax = 27.0°, θmin = 2.1° |
10632 measured reflections | h = −12→13 |
4259 independent reflections | k = −18→16 |
3462 reflections with I > 2σ(I) | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3308P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4259 reflections | Δρmax = 0.21 e Å−3 |
216 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mg | 0.73539 (4) | 0.26603 (3) | 0.54050 (3) | 0.03160 (12) | |
O3 | 0.57619 (9) | 0.17878 (7) | 0.50564 (7) | 0.0406 (2) | |
O4 | 0.61060 (8) | 0.36201 (6) | 0.58213 (7) | 0.0352 (2) | |
O1 | 0.73219 (9) | 0.33737 (7) | 0.41083 (7) | 0.0407 (2) | |
O2 | 0.85612 (9) | 0.17168 (7) | 0.49172 (7) | 0.0397 (2) | |
N2 | 0.78681 (11) | 0.19671 (8) | 0.69609 (8) | 0.0380 (3) | |
N1 | 0.91223 (11) | 0.35780 (9) | 0.61862 (9) | 0.0413 (3) | |
C6 | 0.36376 (16) | 0.11102 (13) | 0.48657 (12) | 0.0555 (4) | |
H6A | 0.372979 | 0.084281 | 0.422318 | 0.083* | |
H6B | 0.272363 | 0.132687 | 0.481885 | 0.083* | |
H6C | 0.384978 | 0.062753 | 0.538676 | 0.083* | |
C7 | 0.45770 (13) | 0.19322 (10) | 0.51253 (9) | 0.0385 (3) | |
C8 | 0.40896 (12) | 0.27786 (11) | 0.54250 (10) | 0.0396 (3) | |
H8 | 0.316681 | 0.281565 | 0.541694 | 0.048* | |
C9 | 0.48651 (12) | 0.35783 (9) | 0.57373 (9) | 0.0342 (3) | |
C10 | 0.41890 (14) | 0.44581 (11) | 0.59948 (12) | 0.0466 (3) | |
H10A | 0.477538 | 0.478764 | 0.654427 | 0.070* | |
H10B | 0.336241 | 0.428760 | 0.619890 | 0.070* | |
H10C | 0.398936 | 0.487131 | 0.540888 | 0.070* | |
C1 | 0.76348 (16) | 0.38372 (11) | 0.25150 (11) | 0.0487 (3) | |
H1A | 0.670005 | 0.402333 | 0.233031 | 0.073* | |
H1B | 0.790149 | 0.353958 | 0.194086 | 0.073* | |
H1C | 0.818365 | 0.439616 | 0.271684 | 0.073* | |
C2 | 0.78188 (12) | 0.31474 (10) | 0.33739 (9) | 0.0369 (3) | |
C3 | 0.85356 (14) | 0.23238 (10) | 0.33053 (10) | 0.0415 (3) | |
H3 | 0.881122 | 0.220325 | 0.269621 | 0.050* | |
C4 | 0.88733 (13) | 0.16657 (10) | 0.40757 (10) | 0.0380 (3) | |
C5 | 0.97013 (17) | 0.08251 (12) | 0.39097 (12) | 0.0537 (4) | |
H5A | 1.049281 | 0.079154 | 0.444786 | 0.081* | |
H5B | 0.996978 | 0.089060 | 0.326650 | 0.081* | |
H5C | 0.917846 | 0.024787 | 0.390710 | 0.081* | |
C12 | 0.91892 (14) | 0.23291 (13) | 0.74428 (11) | 0.0529 (4) | |
H12A | 0.987902 | 0.198867 | 0.717547 | 0.063* | |
H12B | 0.934479 | 0.220931 | 0.817066 | 0.063* | |
C11 | 0.93036 (16) | 0.33683 (14) | 0.72627 (11) | 0.0554 (4) | |
H11A | 0.862464 | 0.371005 | 0.754102 | 0.066* | |
H11B | 1.018785 | 0.359273 | 0.761306 | 0.066* | |
C15 | 0.68884 (14) | 0.22022 (12) | 0.75699 (10) | 0.0460 (3) | |
H15A | 0.684183 | 0.288791 | 0.764016 | 0.069* | |
H15B | 0.715659 | 0.191433 | 0.823219 | 0.069* | |
H15C | 0.601543 | 0.196056 | 0.724211 | 0.069* | |
C16 | 0.79117 (18) | 0.09384 (11) | 0.68770 (12) | 0.0549 (4) | |
H16A | 0.703083 | 0.070324 | 0.655925 | 0.082* | |
H16B | 0.818003 | 0.066168 | 0.754468 | 0.082* | |
H16C | 0.855325 | 0.076251 | 0.647080 | 0.082* | |
C13 | 0.88414 (16) | 0.45858 (11) | 0.60113 (14) | 0.0547 (4) | |
H13A | 0.869596 | 0.471786 | 0.529373 | 0.082* | |
H13B | 0.959599 | 0.495693 | 0.636548 | 0.082* | |
H13C | 0.804472 | 0.475507 | 0.625816 | 0.082* | |
C14 | 1.03394 (14) | 0.33530 (13) | 0.58274 (13) | 0.0529 (4) | |
H14A | 1.019513 | 0.347677 | 0.510815 | 0.079* | |
H14B | 1.056192 | 0.268678 | 0.595527 | 0.079* | |
H14C | 1.107062 | 0.374585 | 0.617995 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg | 0.0288 (2) | 0.0357 (2) | 0.0315 (2) | 0.00339 (16) | 0.00908 (16) | −0.00113 (16) |
O3 | 0.0387 (5) | 0.0404 (5) | 0.0423 (5) | −0.0016 (4) | 0.0074 (4) | −0.0055 (4) |
O4 | 0.0277 (4) | 0.0387 (5) | 0.0411 (5) | 0.0020 (3) | 0.0109 (3) | −0.0018 (4) |
O1 | 0.0453 (5) | 0.0420 (5) | 0.0373 (5) | 0.0097 (4) | 0.0144 (4) | 0.0037 (4) |
O2 | 0.0423 (5) | 0.0423 (5) | 0.0376 (5) | 0.0097 (4) | 0.0152 (4) | 0.0014 (4) |
N2 | 0.0360 (5) | 0.0453 (6) | 0.0335 (5) | 0.0063 (5) | 0.0090 (4) | 0.0023 (5) |
N1 | 0.0303 (5) | 0.0505 (7) | 0.0442 (6) | −0.0040 (5) | 0.0104 (4) | −0.0044 (5) |
C6 | 0.0529 (9) | 0.0614 (10) | 0.0510 (9) | −0.0206 (8) | 0.0077 (7) | −0.0071 (7) |
C7 | 0.0370 (6) | 0.0486 (8) | 0.0282 (6) | −0.0076 (6) | 0.0027 (5) | 0.0019 (5) |
C8 | 0.0275 (6) | 0.0542 (8) | 0.0374 (7) | −0.0013 (6) | 0.0070 (5) | 0.0019 (6) |
C9 | 0.0310 (6) | 0.0435 (7) | 0.0296 (6) | 0.0057 (5) | 0.0097 (4) | 0.0053 (5) |
C10 | 0.0383 (7) | 0.0497 (8) | 0.0563 (9) | 0.0104 (6) | 0.0202 (6) | 0.0028 (7) |
C1 | 0.0573 (9) | 0.0501 (9) | 0.0401 (7) | −0.0013 (7) | 0.0134 (6) | 0.0064 (6) |
C2 | 0.0343 (6) | 0.0427 (7) | 0.0337 (6) | −0.0037 (5) | 0.0073 (5) | 0.0000 (5) |
C3 | 0.0462 (7) | 0.0479 (8) | 0.0339 (6) | 0.0030 (6) | 0.0161 (5) | −0.0031 (6) |
C4 | 0.0362 (6) | 0.0405 (7) | 0.0391 (7) | 0.0021 (5) | 0.0119 (5) | −0.0061 (5) |
C5 | 0.0618 (9) | 0.0520 (9) | 0.0521 (9) | 0.0171 (7) | 0.0231 (7) | −0.0050 (7) |
C12 | 0.0368 (7) | 0.0808 (12) | 0.0385 (7) | 0.0037 (7) | 0.0017 (6) | 0.0081 (7) |
C11 | 0.0439 (8) | 0.0797 (12) | 0.0406 (8) | −0.0160 (8) | 0.0043 (6) | −0.0119 (7) |
C15 | 0.0441 (7) | 0.0621 (9) | 0.0345 (7) | 0.0057 (7) | 0.0142 (6) | 0.0042 (6) |
C16 | 0.0710 (10) | 0.0460 (9) | 0.0503 (9) | 0.0150 (8) | 0.0183 (7) | 0.0125 (7) |
C13 | 0.0450 (8) | 0.0457 (9) | 0.0748 (11) | −0.0115 (7) | 0.0155 (7) | −0.0107 (7) |
C14 | 0.0304 (6) | 0.0688 (10) | 0.0617 (9) | −0.0053 (7) | 0.0145 (6) | −0.0049 (8) |
Mg—O1 | 2.0368 (10) | N1—C13 | 1.469 (2) |
Mg—O2 | 2.0322 (10) | N1—C14 | 1.4734 (17) |
Mg—O3 | 2.0314 (10) | N1—C11 | 1.476 (2) |
Mg—O4 | 2.0338 (9) | C6—C7 | 1.510 (2) |
Mg—N1 | 2.3132 (12) | C7—C8 | 1.396 (2) |
Mg—N2 | 2.3048 (11) | C8—C9 | 1.4027 (19) |
O3—C7 | 1.2607 (16) | C9—C10 | 1.5066 (19) |
O4—C9 | 1.2611 (14) | C1—C2 | 1.5107 (19) |
O1—C2 | 1.2603 (15) | C2—C3 | 1.396 (2) |
O2—C4 | 1.2600 (15) | C3—C4 | 1.397 (2) |
N2—C16 | 1.466 (2) | C4—C5 | 1.5109 (19) |
N2—C15 | 1.4741 (16) | C12—C11 | 1.504 (3) |
N2—C12 | 1.4762 (19) | ||
O3—Mg—O2 | 92.34 (4) | C12—N2—Mg | 106.14 (9) |
O3—Mg—O4 | 86.98 (4) | C13—N1—C14 | 108.02 (12) |
O2—Mg—O4 | 177.16 (4) | C13—N1—C11 | 109.80 (13) |
O3—Mg—O1 | 103.42 (4) | C14—N1—C11 | 110.39 (12) |
O2—Mg—O1 | 86.67 (4) | C13—N1—Mg | 111.29 (9) |
O4—Mg—O1 | 90.80 (4) | C14—N1—Mg | 111.55 (9) |
O3—Mg—N2 | 88.65 (4) | C11—N1—Mg | 105.79 (9) |
O2—Mg—N2 | 89.02 (4) | O3—C7—C8 | 125.09 (12) |
O4—Mg—N2 | 93.72 (4) | O3—C7—C6 | 116.12 (13) |
O1—Mg—N2 | 167.33 (4) | C8—C7—C6 | 118.79 (13) |
O3—Mg—N1 | 166.40 (4) | C7—C8—C9 | 124.66 (12) |
O2—Mg—N1 | 92.60 (4) | O4—C9—C8 | 124.65 (12) |
O4—Mg—N1 | 88.67 (4) | O4—C9—C10 | 116.68 (12) |
O1—Mg—N1 | 89.51 (4) | C8—C9—C10 | 118.67 (11) |
N2—Mg—N1 | 78.77 (4) | O1—C2—C3 | 125.10 (12) |
C7—O3—Mg | 129.11 (9) | O1—C2—C1 | 116.66 (12) |
C9—O4—Mg | 129.11 (9) | C3—C2—C1 | 118.23 (12) |
C2—O1—Mg | 129.19 (9) | C2—C3—C4 | 124.16 (12) |
C4—O2—Mg | 128.86 (9) | O2—C4—C3 | 125.45 (12) |
C16—N2—C15 | 107.78 (12) | O2—C4—C5 | 116.21 (12) |
C16—N2—C12 | 109.95 (12) | C3—C4—C5 | 118.33 (12) |
C15—N2—C12 | 110.18 (12) | N2—C12—C11 | 111.38 (12) |
C16—N2—Mg | 110.95 (9) | N1—C11—C12 | 111.30 (13) |
C15—N2—Mg | 111.85 (8) |
Acknowledgements
We thank Dr Roberto Köferstein for the TGA analysis and Andreas Kiowski for technical support.
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240. Web of Science CSD CrossRef CAS Google Scholar
Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brahma, S., Srinidhi, M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2013). J. Mol. Struct. 1035, 416–420. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halz, J. H., Heiser, C., Wagner, C. & Merzweiler, K. (2020). Acta Cryst. E76, 66–71. Web of Science CSD CrossRef IUCr Journals Google Scholar
Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930. Web of Science CSD CrossRef CAS Google Scholar
Hatanpää, T., Kansikas, J., Mutikainen, I. & Leskelä, M. (2001). Inorg. Chem. 40, 788–794. Web of Science PubMed Google Scholar
Janczak, J. (2018). Inorg. Chim. Acta, 478, 88–103. Web of Science CSD CrossRef CAS Google Scholar
Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532. CrossRef CAS Web of Science Google Scholar
Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vikulova, E. S., Zherikova, K. V., Piryazev, D. A., Korol'kov, I. V., Morozova, N. B. & Igumenov, I. K. (2017). J. Struct. Chem. 58, 1681–1684. Web of Science CSD CrossRef CAS Google Scholar
Wang, L., Yang, Y., Ni, J., Stern, C. L. & Marks, T. J. (2005). Chem. Mater. 17, 5697–5704. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.