organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(4-Meth­­oxy­phen­yl)-1-[4-(4-meth­­oxy­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yl­oxy)phen­yl]-4,5-di­hydro-1H-pyrazole1

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 26 October 2022; accepted 31 October 2022; online 8 November 2022)

The title compound, C29H25N3O3S, crystallizes in the monoclinic space group P21/n. The mol­ecule contains a central four-ring system in which all of the rings are almost coplanar. Both the 4-meth­oxy­phenyl ring and the prop-2-yn­yloxy substituent are disordered over two equivalent conformations with occupancy ratios of 0.903 (2):0.097 (2) and 0.776 (5):0.224 (5), respectively. In the crystal, ππ inter­actions [centroid–centroid distance = 3.7327 (11) Å] between the di­hydro­pyrazole ring and the 4-meth­oxy­phenyl ring link the mol­ecules into centrosymmetric dimers. In addition, there are weak C—H⋯S, C—H⋯N and C—H⋯O inter­actions, which link the mol­ecules into a complex three-dimensional array.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles and thia­zoles are important scaffolds for developing target drug mol­ecules and exhibit a variety of pharmacological activities including anti­bacterial (Tanitame et al., 2004[Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693-3696.]), anti­fungal (Hassan, 2013[Hassan, S. Y. (2013). Molecules, 18, 2683-2711.]), anti-inflammatory (Farghaly et al., 2000[Farghaly, A. A., Bekhit, A. A. & Young Park, J. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 53-57.]), anti­depressant (Secci et al., 2011[Secci, D., Bolasco, A., Chimenti, P. & Carradori, S. (2011). Curr. Med. Chem. 18, 5114-5144.]), anti­analgesic (Jamwal et al., 2013[Jamwal, A., Javed, A. & Bhardwaj, V. (2013). J Pharm BioSci, 3, 114-123.]), anti­cancer (Keter & Darkwa, 2012[Keter, F. K. & Darkwa, J. (2012). Biometals, 25, 9-21.]), anitubercular (Kumar et al., 2020[Kumar, G., Siva Krishna, V., Sriram, D. & Jachak, S. M. (2020). Arch. Pharm. 353, 2000077.]), anti­viral (Rashad et al., 2008[Rashad, A. E., Hegab, M. I., Abdel-Megeid, R. E., Micky, J. A. & Abdel-Megeid, F. M. (2008). Bioorg. Med. Chem. 16, 7102-7106.]) and anti­diabetic activity (Datar & Jadhav, 2013[Datar, P. A. & Jadhav, S. R. (2013). Lett. Drug. Des. Discov. 11, 686-703.]). The design, efficient synthesis and mol­ecular docking of some thia­zolyl-pyrazole derivatives as anti­cancer reagents have been reported (Sayed et al., 2019[Sayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A. & Metz, P. (2019). BMC Chem. 13, 116.]). We have recently reported the formation of 1-(thia­zol-2-yl)-4,5-di­hydro­pyrazoles from simple precursors: synthesis, spectroscopic characterization and the structures of an inter­mediate and two products (Mahesha et al., 2021[Mahesha, N., Yathirajan, H. S., Nagma Banu, H. A., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2021). Acta Cryst. E77, 975-981.]). A series of 1,3-thia­zole integrated pyrazoline scaffolds have been synthesized and characterized (CSD refcodes DADQIL, DADQEH; Salian et al., 2017[Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254-271.]). The synthesis, fluorescence, TGA and crystal structure of a thia­zolyl-pyrazoline derived from chalcones has been described (JUNRAN; Suwunwong et al., 2015[Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563-573.]). In addition, the following crystal structures of related compounds have been reported: 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (IDOMOF; Abdel-Wahab et al., 2013c[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.]), 2-[5-(4-fluoro­phen­yl)-3-(4-meth­yl­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thi­a­zol (MEWQUC; Abdel-Wahab et al., 2013a[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392-o393.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (WIGQIO; Abdel-Wahab et al., 2013b[Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyra­zol-1-yl]-8H-indeno­[1,2-d]thia­zole (WOCFEC; El-Hiti et al., 2019[El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.]) and 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-8H-indeno­[1,2-d]thia­zole (PUVVAG; Alotaibi et al., 2020[Alotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897-899.]).

With this in mind, the present study was planned to synthesize a ring system that contains both pyrazole and thia­zole in a single mol­ecule with an acetyl­ene substit­uent, which can further be modified into highly functionalized heterocycles (Larock & Yum, 1991[Larock, R. C. & Yum, E. K. (1991). J. Am. Chem. Soc. 113, 6689-6690.]; Sonogashira, 2002[Sonogashira, K. (2002). J. Organomet. Chem. 653, 46-49.]). A related mol­ecule, 4, [5-(4-fluoro­phen­yl)-1-[4-(4-methyl­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro-1H-pyrazole] has been published recently (Archana et al., 2022[Archana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x221003.]). This paper reports the synthesis and crystal structure of the title compound, C29H25N3O3S, (3), which crystallizes in the monoclinic space group, P21/n, with four mol­ecules in the asymmetric unit. In order to assist the discussion, the rings are labeled as C7–C12 (A), C4–C6/N3/S1 (B), C1–C3/N1/N2 (C), C21–C26 (D), and the major component of the disordered 4-meth­oxy­phenyl ring, C14–C19 (E). Ring E is disordered over two equivalent conformations with occupancies of 0.903 (2):0.097 (2) and the two components are slightly twisted with respect to each other [dihedral angle of 2.3 (9)°]. The prop-2-yn­yloxy substituent on ring D is also disordered over two equivalent conformations with occupancies of 0.776 (5) and 0.224 (5) (see Fig. 1[link]). The central four-ring system (rings AD) is almost planar [dihedral angles between A and B, B and C and C and D of 13.1 (1), 10.9 (1) and 4.6 (1)°, respectively]. These dihedral angles are not cumulative as the dihedral angle between the two terminal rings, A and D, is 3.1 (1)°. Inter­estingly and similar to the structure of 4, ring C, which contains two sp3 carbon atoms, C1 and C2, is close to planar with an r.m.s. deviation from planarity of only 0.044 (1) Å. One reason (or consequence) of this planarity is that it minimizes steric repulsion between the H atoms attached to C2 and H22A attached to C22 of the adjacent ring D. As would be expected, the dihedral angle between rings C and E is close to 90 [88.44 (6)°]. As in structure 4, there are ππ inter­actions between rings A and C, which link the mol­ecules into centrosymmetric dimers [centroid–centroid distance = 3.7327 (11) Å, with a slippage of 1.275 Å]. In addition, there are weak C—H⋯S and C—H⋯N inter­actions, which link the mol­ecules into a complex three-dimensional array (see Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯S1i 0.98 2.96 3.642 (2) 128
C23—H23A⋯N3ii 0.95 2.59 3.490 (2) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The major occupancy component of the title compound with atom labeling. Atomic displacement parameters are drawn at the 30% probability level.
[Figure 2]
Figure 2
Packing diagram for 3 viewed along the c axis. C—H⋯N inter­molecular inter­actions are shown as dashed lines.

Synthesis and crystallization

1-(p-Propyl­oxyphen­yl)-3-(p-fluoro­phen­yl)prop-2-ene-1-one (1) was obtained by the base-catalyzed condensation of p-propyl­yoxyaceto­phenone with p-fluoro­benaza­ldehyde in an ethanol medium employing sodium hydroxide as catalyst. This propenone (1) upon treatment with thio­semicarbazide in alcoholic potassium hydroxide gave compound (2).

4,5-Di­hydro-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]pyrazole-1-carbo­thio­amide (2) (1 g, 0.002 mol) in ethanol (20 ml), 4-meth­oxy­phenacyl bromide (0.5 g, 0.002 mol) and sodium acetate (0.162 g, 0.002 mol) were heated at reflux for 1 h. After cooling, the obtained product was collected by filtration and crystallized from the mixed solvents of ethanol and DMF (3:2). The reaction scheme shown in Fig. 3[link]. Yield: 84%, m.p.: 486–488 K. Analysis for C29H25N3O3S, MS (m/z) 496 (M+ + 1). 1H NMR (400 MHz, CDCl3, δ p.p.m.): 2.542 (s, 1H, triple bonded C—H), 3.25 (dd, 1H, JAX = 17.2 Hz and JAB = 6.4 Hz), 3.77 (s, 2H, OCH3), 3.80 (s, 3H, OCH3), 3.81 (dd, 1H, JXA = 17.2 Hz and JXB = 5.2 Hz), 4.738 (s, 2H, O—CH2), 5.60 (dd, 1H, JBA = 6.8 Hz and JBX = 12.0 Hz), 6.651 (s, 1H), 6.84 (m, 4H, Ar—H), 7.01 (dd, 2H, J = 8.8 Hz, Ar—H), 7.34 (dd, 2H, J = 8.4 Hz, Ar—H), 7.61(dd, 2H, J = 8.8 Hz, Ar—H), 7.71 (dd, 2H, J = 8.8 Hz, Ar—H).

[Figure 3]
Figure 3
Reaction scheme showing the synthesis of the title compound 3.

Refinement

Crystal data, data collection and structure refinement details for 3 are summarized in Table 2[link]. Both the 4-meth­oxy­phenyl and the 4-prop-2-yn­yloxy groups were found to be disordered over two conformations with occupancies of 0.903 (2)/0.097 (2) and 0.776 (5)/0.224 (5), respectively.

Table 2
Experimental details

Crystal data
Chemical formula C29H25N3O3S
Mr 495.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.9677 (11), 9.7997 (5), 18.4125 (14)
β (°) 92.980 (3)
V3) 2516.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.37 × 0.28 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.687, 0.743
No. of measured, independent and observed [I > 2σ(I)] reflections 38138, 6228, 4412
Rint 0.057
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.153, 1.05
No. of reflections 6228
No. of parameters 405
No. of restraints 373
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.35
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

5-(4-Methoxyphenyl)-1-[4-(4-methoxyphenyl)thiazol-2-yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole top
Crystal data top
C29H25N3O3SF(000) = 1040
Mr = 495.58Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.9677 (11) ÅCell parameters from 8545 reflections
b = 9.7997 (5) Åθ = 2.2–27.5°
c = 18.4125 (14) ŵ = 0.17 mm1
β = 92.980 (3)°T = 100 K
V = 2516.9 (3) Å3Prism, yellow-orange
Z = 40.37 × 0.28 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4412 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.687, Tmax = 0.743h = 1818
38138 measured reflectionsk = 1013
6228 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.8521P]
where P = (Fo2 + 2Fc2)/3
6228 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.41 e Å3
373 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed geometrically and refined as riding atoms with their Uiso values 1.2 times that of their attached atoms (1.5 times for CH3 groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.48897 (4)0.77965 (6)0.35477 (3)0.05560 (16)
O10.48046 (12)0.71860 (17)0.79512 (8)0.0688 (4)
O30.71638 (11)0.50421 (15)0.05972 (7)0.0580 (4)
N10.64253 (11)0.61143 (15)0.34811 (8)0.0419 (3)
N20.63262 (11)0.62808 (14)0.27352 (8)0.0418 (3)
N30.57829 (10)0.65183 (14)0.46069 (8)0.0394 (3)
C10.70011 (13)0.48893 (17)0.37091 (9)0.0408 (4)
H1A0.6562120.4155820.3870490.049*
C20.74028 (14)0.44839 (19)0.29771 (9)0.0445 (4)
H2A0.8102170.4649270.2979070.053*
H2B0.7274910.3510230.2866360.053*
C30.68676 (13)0.54007 (17)0.24351 (9)0.0406 (4)
C40.57693 (12)0.66946 (17)0.39064 (9)0.0391 (4)
C50.45341 (15)0.8047 (2)0.44223 (11)0.0550 (5)
H5A0.4023160.8627350.4546850.066*
C60.50804 (13)0.73061 (17)0.49073 (10)0.0420 (4)
C70.50199 (12)0.72744 (17)0.57007 (10)0.0412 (4)
C80.55106 (13)0.62850 (18)0.61154 (10)0.0449 (4)
H8A0.5886890.5631530.5877290.054*
C90.54668 (14)0.62246 (19)0.68636 (10)0.0486 (4)
H9A0.5810930.5540790.7133670.058*
C100.49168 (14)0.7170 (2)0.72161 (10)0.0501 (4)
C110.44338 (15)0.8183 (2)0.68139 (11)0.0533 (5)
H11A0.4066650.8843240.7054880.064*
C120.44837 (14)0.82349 (19)0.60720 (11)0.0486 (4)
H12A0.4149770.8933040.5805560.058*
C130.5360 (2)0.6235 (3)0.83832 (12)0.0809 (8)
H13A0.5203800.6326790.8893760.121*
H13B0.6043040.6419780.8336290.121*
H13C0.5212580.5305070.8216110.121*
O20.96938 (12)0.63122 (18)0.60184 (9)0.0653 (5)0.9031 (18)
C140.77537 (9)0.52104 (14)0.43282 (6)0.0390 (4)0.9031 (18)
C150.84871 (10)0.61382 (15)0.42253 (6)0.0475 (5)0.9031 (18)
H15A0.8548840.6546870.3762260.057*0.9031 (18)
C160.91302 (9)0.64680 (15)0.48000 (7)0.0531 (5)0.9031 (18)
H16A0.9631440.7102130.4729690.064*0.9031 (18)
C170.90399 (10)0.58700 (15)0.54776 (6)0.0490 (5)0.9031 (18)
C180.83065 (11)0.49422 (15)0.55805 (5)0.0501 (5)0.9031 (18)
H18A0.8244830.4533540.6043570.060*0.9031 (18)
C190.76634 (9)0.46124 (13)0.50058 (7)0.0463 (4)0.9031 (18)
H19A0.7162220.3978260.5076150.056*0.9031 (18)
C200.9610 (2)0.5818 (3)0.67135 (12)0.0777 (8)0.9031 (18)
H20A1.0100490.6238560.7041150.117*0.9031 (18)
H20B0.9696620.4826000.6714420.117*0.9031 (18)
H20C0.8972410.6039530.6878900.117*0.9031 (18)
O2A0.9164 (9)0.5416 (13)0.6245 (4)0.0582 (13)0.0969 (18)
C14A0.7577 (9)0.4962 (15)0.4289 (4)0.0432 (12)0.0969 (18)
C15A0.8359 (10)0.5840 (14)0.4354 (5)0.0453 (11)0.0969 (18)
H15B0.8526590.6378620.3951130.054*0.0969 (18)
C16A0.8895 (9)0.5930 (14)0.5010 (5)0.0489 (11)0.0969 (18)
H16B0.9429300.6529440.5054900.059*0.0969 (18)
C17A0.8650 (9)0.5142 (14)0.5600 (4)0.0505 (11)0.0969 (18)
C18A0.7868 (9)0.4264 (13)0.5534 (5)0.0479 (13)0.0969 (18)
H18B0.7700800.3725430.5937240.057*0.0969 (18)
C19A0.7332 (8)0.4174 (14)0.4878 (6)0.0459 (12)0.0969 (18)
H19B0.6798080.3574600.4833470.055*0.0969 (18)
C20A0.9051 (19)0.460 (2)0.6841 (6)0.082 (3)0.0969 (18)
H20D0.9625330.4034900.6928640.123*0.0969 (18)
H20E0.8491700.4007390.6750990.123*0.0969 (18)
H20F0.8956490.5170200.7267750.123*0.0969 (18)
C210.69613 (13)0.53308 (17)0.16510 (9)0.0402 (4)
C220.74989 (14)0.42971 (18)0.13576 (10)0.0442 (4)
H22A0.7818850.3662160.1675610.053*
C230.75834 (14)0.41626 (18)0.06136 (10)0.0467 (4)
H23A0.7951080.3439450.0426910.056*
C240.71301 (14)0.50857 (19)0.01473 (10)0.0450 (4)
C250.66104 (16)0.6156 (2)0.04303 (11)0.0541 (5)
H25A0.6314010.6809600.0110910.065*
C260.65219 (16)0.6276 (2)0.11689 (10)0.0524 (5)
H26A0.6159400.7006230.1353630.063*
C27A0.7636 (6)0.3881 (8)0.08931 (18)0.0595 (7)0.776 (5)
H27A0.7398980.3035030.0669370.071*0.776 (5)
H27B0.8334610.3944820.0778310.071*0.776 (5)
C28A0.7450 (3)0.3823 (4)0.16871 (16)0.0668 (8)0.776 (5)
C29A0.7342 (3)0.3741 (5)0.23140 (18)0.0949 (13)0.776 (5)
H29A0.7252920.3673150.2827780.114*0.776 (5)
C27B0.760 (2)0.389 (3)0.0900 (5)0.0633 (15)0.224 (5)
H27C0.7172760.3076910.0893210.076*0.224 (5)
H27D0.8218880.3667560.0643440.076*0.224 (5)
C28B0.7724 (10)0.4367 (14)0.1646 (4)0.0670 (15)0.224 (5)
C29B0.7878 (11)0.4729 (16)0.2228 (5)0.089 (2)0.224 (5)
H29B0.8003570.5026570.2704330.107*0.224 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0604 (3)0.0595 (3)0.0466 (3)0.0194 (2)0.0006 (2)0.0083 (2)
O10.0788 (11)0.0863 (11)0.0411 (8)0.0198 (9)0.0030 (7)0.0116 (7)
O30.0703 (9)0.0672 (9)0.0365 (7)0.0163 (7)0.0031 (6)0.0021 (6)
N10.0473 (8)0.0432 (8)0.0348 (7)0.0073 (6)0.0008 (6)0.0003 (6)
N20.0480 (8)0.0412 (7)0.0357 (7)0.0014 (6)0.0023 (6)0.0000 (6)
N30.0393 (8)0.0382 (7)0.0406 (8)0.0018 (6)0.0017 (6)0.0013 (6)
C10.0434 (9)0.0384 (8)0.0406 (9)0.0035 (7)0.0015 (7)0.0013 (7)
C20.0512 (10)0.0452 (9)0.0370 (9)0.0064 (8)0.0000 (8)0.0012 (7)
C30.0447 (9)0.0370 (8)0.0396 (9)0.0032 (7)0.0032 (7)0.0001 (7)
C40.0385 (9)0.0355 (8)0.0430 (9)0.0006 (7)0.0002 (7)0.0007 (7)
C50.0560 (12)0.0572 (11)0.0523 (11)0.0203 (9)0.0065 (9)0.0052 (9)
C60.0398 (9)0.0375 (8)0.0488 (10)0.0031 (7)0.0038 (7)0.0007 (7)
C70.0375 (9)0.0381 (8)0.0480 (10)0.0000 (7)0.0033 (7)0.0020 (7)
C80.0433 (10)0.0440 (9)0.0478 (10)0.0074 (7)0.0066 (8)0.0033 (7)
C90.0491 (10)0.0495 (10)0.0468 (10)0.0083 (8)0.0009 (8)0.0011 (8)
C100.0504 (11)0.0570 (11)0.0430 (10)0.0005 (9)0.0022 (8)0.0091 (8)
C110.0538 (11)0.0518 (10)0.0545 (11)0.0112 (9)0.0051 (9)0.0133 (9)
C120.0495 (10)0.0423 (9)0.0540 (11)0.0085 (8)0.0026 (9)0.0045 (8)
C130.0922 (19)0.107 (2)0.0423 (12)0.0244 (16)0.0058 (12)0.0021 (12)
O20.0609 (10)0.0750 (11)0.0582 (9)0.0034 (8)0.0138 (8)0.0081 (8)
C140.0414 (10)0.0405 (9)0.0350 (8)0.0054 (8)0.0014 (7)0.0004 (7)
C150.0459 (10)0.0530 (11)0.0433 (10)0.0013 (8)0.0003 (8)0.0058 (8)
C160.0470 (11)0.0566 (12)0.0550 (11)0.0064 (9)0.0034 (9)0.0027 (9)
C170.0489 (10)0.0543 (10)0.0427 (9)0.0053 (8)0.0084 (8)0.0067 (8)
C180.0567 (11)0.0570 (11)0.0363 (9)0.0042 (9)0.0013 (8)0.0020 (8)
C190.0500 (10)0.0489 (10)0.0397 (9)0.0011 (8)0.0010 (8)0.0031 (8)
C200.0746 (17)0.103 (2)0.0528 (13)0.0058 (15)0.0228 (12)0.0144 (13)
O2A0.057 (2)0.071 (2)0.045 (2)0.003 (2)0.011 (2)0.006 (2)
C14A0.043 (2)0.048 (2)0.038 (2)0.001 (2)0.001 (2)0.001 (2)
C15A0.046 (2)0.049 (2)0.041 (2)0.0004 (19)0.002 (2)0.004 (2)
C16A0.048 (2)0.055 (2)0.0433 (19)0.001 (2)0.0039 (19)0.001 (2)
C17A0.050 (2)0.058 (2)0.0418 (18)0.0006 (19)0.0055 (19)0.0013 (19)
C18A0.051 (3)0.054 (3)0.039 (2)0.000 (2)0.003 (2)0.002 (2)
C19A0.049 (2)0.050 (2)0.038 (2)0.000 (2)0.002 (2)0.001 (2)
C20A0.086 (7)0.105 (7)0.055 (5)0.005 (7)0.012 (6)0.006 (5)
C210.0445 (9)0.0376 (8)0.0381 (9)0.0030 (7)0.0015 (7)0.0001 (7)
C220.0526 (10)0.0396 (9)0.0400 (9)0.0040 (8)0.0007 (8)0.0041 (7)
C230.0557 (11)0.0413 (9)0.0432 (10)0.0044 (8)0.0031 (8)0.0004 (7)
C240.0484 (10)0.0483 (10)0.0382 (9)0.0008 (8)0.0004 (8)0.0007 (7)
C250.0663 (13)0.0536 (11)0.0416 (10)0.0142 (9)0.0037 (9)0.0057 (8)
C260.0662 (13)0.0485 (10)0.0421 (10)0.0138 (9)0.0009 (9)0.0003 (8)
C27A0.0708 (17)0.0651 (14)0.0433 (12)0.0111 (13)0.0087 (12)0.0033 (12)
C28A0.0751 (19)0.0782 (19)0.0477 (13)0.0140 (15)0.0078 (13)0.0069 (13)
C29A0.105 (3)0.130 (3)0.0498 (16)0.037 (2)0.0049 (17)0.0135 (19)
C27B0.074 (3)0.072 (3)0.045 (2)0.013 (3)0.008 (3)0.006 (3)
C28B0.077 (3)0.079 (3)0.045 (2)0.017 (3)0.011 (2)0.007 (2)
C29B0.102 (5)0.117 (5)0.050 (4)0.019 (5)0.016 (4)0.004 (4)
Geometric parameters (Å, º) top
S1—C51.727 (2)C16—H16A0.9500
S1—C41.7399 (18)C17—C181.3900
O1—C101.371 (2)C18—C191.3900
O1—C131.428 (3)C18—H18A0.9500
O3—C241.375 (2)C19—H19A0.9500
O3—C27B1.41 (3)C20—H20A0.9800
O3—C27A1.437 (8)C20—H20B0.9800
N1—C41.360 (2)C20—H20C0.9800
N1—N21.3829 (19)O2A—C20A1.374 (6)
N1—C11.493 (2)O2A—C17A1.382 (4)
N2—C31.290 (2)C14A—C15A1.3900
N3—C41.300 (2)C14A—C19A1.3900
N3—C61.386 (2)C15A—C16A1.3900
C1—C14A1.305 (7)C15A—H15B0.9500
C1—C21.539 (2)C16A—C17A1.3900
C1—C141.5424 (19)C16A—H16B0.9500
C1—H1A1.0000C17A—C18A1.3900
C2—C31.511 (2)C18A—C19A1.3900
C2—H2A0.9900C18A—H18B0.9500
C2—H2B0.9900C19A—H19B0.9500
C3—C211.458 (2)C20A—H20D0.9800
C5—C61.355 (3)C20A—H20E0.9800
C5—H5A0.9500C20A—H20F0.9800
C6—C71.468 (3)C21—C221.387 (2)
C7—C81.392 (2)C21—C261.402 (2)
C7—C121.403 (2)C22—C231.387 (2)
C8—C91.384 (3)C22—H22A0.9500
C8—H8A0.9500C23—C241.378 (3)
C9—C101.386 (3)C23—H23A0.9500
C9—H9A0.9500C24—C251.392 (3)
C10—C111.392 (3)C25—C261.377 (3)
C11—C121.372 (3)C25—H25A0.9500
C11—H11A0.9500C26—H26A0.9500
C12—H12A0.9500C27A—C28A1.472 (4)
C13—H13A0.9800C27A—H27A0.9900
C13—H13B0.9800C27A—H27B0.9900
C13—H13C0.9800C28A—C29A1.159 (4)
O2—C201.379 (3)C29A—H29A0.9500
O2—C171.3852 (17)C27B—C28B1.473 (6)
C14—C151.3900C27B—H27C0.9900
C14—C191.3900C27B—H27D0.9900
C15—C161.3900C28B—C29B1.159 (5)
C15—H15A0.9500C29B—H29B0.9500
C16—C171.3900
C5—S1—C488.05 (9)C17—C18—C19120.0
C10—O1—C13117.13 (17)C17—C18—H18A120.0
C24—O3—C27B117.1 (5)C19—C18—H18A120.0
C24—O3—C27A116.29 (19)C18—C19—C14120.0
C4—N1—N2119.12 (14)C18—C19—H19A120.0
C4—N1—C1122.91 (14)C14—C19—H19A120.0
N2—N1—C1113.50 (13)O2—C20—H20A109.5
C3—N2—N1108.41 (14)O2—C20—H20B109.5
C4—N3—C6110.35 (15)H20A—C20—H20B109.5
C14A—C1—N1119.1 (7)O2—C20—H20C109.5
C14A—C1—C2119.5 (6)H20A—C20—H20C109.5
N1—C1—C2100.19 (13)H20B—C20—H20C109.5
N1—C1—C14112.35 (13)C20A—O2A—C17A119.8 (8)
C2—C1—C14115.75 (14)C1—C14A—C15A123.6 (8)
N1—C1—H1A109.4C1—C14A—C19A116.2 (8)
C2—C1—H1A109.4C15A—C14A—C19A120.0
C14—C1—H1A109.4C16A—C15A—C14A120.0
C3—C2—C1103.56 (14)C16A—C15A—H15B120.0
C3—C2—H2A111.0C14A—C15A—H15B120.0
C1—C2—H2A111.0C15A—C16A—C17A120.0
C3—C2—H2B111.0C15A—C16A—H16B120.0
C1—C2—H2B111.0C17A—C16A—H16B120.0
H2A—C2—H2B109.0O2A—C17A—C16A115.2 (5)
N2—C3—C21122.71 (15)O2A—C17A—C18A124.5 (5)
N2—C3—C2113.29 (15)C16A—C17A—C18A120.0
C21—C3—C2123.99 (15)C19A—C18A—C17A120.0
N3—C4—N1122.67 (16)C19A—C18A—H18B120.0
N3—C4—S1115.63 (13)C17A—C18A—H18B120.0
N1—C4—S1121.63 (13)C18A—C19A—C14A120.0
C6—C5—S1111.04 (15)C18A—C19A—H19B120.0
C6—C5—H5A124.5C14A—C19A—H19B120.0
S1—C5—H5A124.5O2A—C20A—H20D109.5
C5—C6—N3114.93 (17)O2A—C20A—H20E109.5
C5—C6—C7127.42 (17)H20D—C20A—H20E109.5
N3—C6—C7117.64 (15)O2A—C20A—H20F109.5
C8—C7—C12117.40 (17)H20D—C20A—H20F109.5
C8—C7—C6120.55 (16)H20E—C20A—H20F109.5
C12—C7—C6122.05 (16)C22—C21—C26117.63 (17)
C9—C8—C7122.00 (16)C22—C21—C3119.89 (15)
C9—C8—H8A119.0C26—C21—C3122.48 (16)
C7—C8—H8A119.0C23—C22—C21121.97 (16)
C8—C9—C10119.47 (17)C23—C22—H22A119.0
C8—C9—H9A120.3C21—C22—H22A119.0
C10—C9—H9A120.3C24—C23—C22119.53 (17)
O1—C10—C9124.39 (18)C24—C23—H23A120.2
O1—C10—C11116.10 (17)C22—C23—H23A120.2
C9—C10—C11119.51 (18)O3—C24—C23124.22 (17)
C12—C11—C10120.53 (17)O3—C24—C25116.25 (16)
C12—C11—H11A119.7C23—C24—C25119.52 (17)
C10—C11—H11A119.7C26—C25—C24120.63 (17)
C11—C12—C7121.07 (18)C26—C25—H25A119.7
C11—C12—H12A119.5C24—C25—H25A119.7
C7—C12—H12A119.5C25—C26—C21120.67 (18)
O1—C13—H13A109.5C25—C26—H26A119.7
O1—C13—H13B109.5C21—C26—H26A119.7
H13A—C13—H13B109.5O3—C27A—C28A110.3 (5)
O1—C13—H13C109.5O3—C27A—H27A109.6
H13A—C13—H13C109.5C28A—C27A—H27A109.6
H13B—C13—H13C109.5O3—C27A—H27B109.6
C20—O2—C17118.21 (19)C28A—C27A—H27B109.6
C15—C14—C19120.0H27A—C27A—H27B108.1
C15—C14—C1120.76 (10)C29A—C28A—C27A176.8 (5)
C19—C14—C1119.16 (10)C28A—C29A—H29A180.0
C16—C15—C14120.0O3—C27B—C28B100.7 (15)
C16—C15—H15A120.0O3—C27B—H27C111.6
C14—C15—H15A120.0C28B—C27B—H27C111.6
C17—C16—C15120.0O3—C27B—H27D111.6
C17—C16—H16A120.0C28B—C27B—H27D111.6
C15—C16—H16A120.0H27C—C27B—H27D109.4
O2—C17—C16115.22 (12)C29B—C28B—C27B176.2 (19)
O2—C17—C18124.73 (12)C28B—C29B—H29B180.0
C16—C17—C18120.0
C4—N1—N2—C3164.73 (16)C19—C14—C15—C160.0
C1—N1—N2—C37.73 (19)C1—C14—C15—C16176.71 (14)
C4—N1—C1—C14A61.3 (7)C14—C15—C16—C170.0
N2—N1—C1—C14A142.7 (7)C20—O2—C17—C16176.35 (18)
C4—N1—C1—C2166.41 (16)C20—O2—C17—C181.0 (3)
N2—N1—C1—C210.40 (18)C15—C16—C17—O2177.48 (14)
C4—N1—C1—C1470.1 (2)C15—C16—C17—C180.0
N2—N1—C1—C14133.85 (14)O2—C17—C18—C19177.23 (16)
C14A—C1—C2—C3140.7 (7)C16—C17—C18—C190.0
N1—C1—C2—C38.68 (17)C17—C18—C19—C140.0
C14—C1—C2—C3129.73 (15)C15—C14—C19—C180.0
N1—N2—C3—C21177.66 (15)C1—C14—C19—C18176.76 (13)
N1—N2—C3—C21.1 (2)N1—C1—C14A—C15A62.8 (10)
C1—C2—C3—N25.4 (2)C2—C1—C14A—C15A60.5 (11)
C1—C2—C3—C21175.90 (16)N1—C1—C14A—C19A112.5 (7)
C6—N3—C4—N1175.47 (16)C2—C1—C14A—C19A124.2 (7)
C6—N3—C4—S11.41 (19)C1—C14A—C15A—C16A175.1 (13)
N2—N1—C4—N3175.93 (15)C19A—C14A—C15A—C16A0.0
C1—N1—C4—N321.2 (3)C14A—C15A—C16A—C17A0.0
N2—N1—C4—S17.4 (2)C20A—O2A—C17A—C16A173.0 (16)
C1—N1—C4—S1162.11 (13)C20A—O2A—C17A—C18A14 (2)
C5—S1—C4—N30.97 (15)C15A—C16A—C17A—O2A173.4 (13)
C5—S1—C4—N1175.95 (16)C15A—C16A—C17A—C18A0.0
C4—S1—C5—C60.22 (16)O2A—C17A—C18A—C19A172.7 (14)
S1—C5—C6—N30.5 (2)C16A—C17A—C18A—C19A0.0
S1—C5—C6—C7178.12 (15)C17A—C18A—C19A—C14A0.0
C4—N3—C6—C51.2 (2)C1—C14A—C19A—C18A175.5 (12)
C4—N3—C6—C7177.54 (15)C15A—C14A—C19A—C18A0.0
C5—C6—C7—C8168.4 (2)N2—C3—C21—C22175.21 (17)
N3—C6—C7—C813.0 (2)C2—C3—C21—C226.2 (3)
C5—C6—C7—C1212.4 (3)N2—C3—C21—C264.6 (3)
N3—C6—C7—C12166.16 (17)C2—C3—C21—C26174.07 (18)
C12—C7—C8—C91.0 (3)C26—C21—C22—C231.9 (3)
C6—C7—C8—C9179.83 (17)C3—C21—C22—C23177.88 (17)
C7—C8—C9—C100.3 (3)C21—C22—C23—C240.6 (3)
C13—O1—C10—C95.6 (3)C27B—O3—C24—C237.7 (14)
C13—O1—C10—C11174.6 (2)C27A—O3—C24—C235.7 (4)
C8—C9—C10—O1178.44 (18)C27B—O3—C24—C25173.3 (13)
C8—C9—C10—C111.4 (3)C27A—O3—C24—C25175.3 (4)
O1—C10—C11—C12178.57 (19)C22—C23—C24—O3179.70 (18)
C9—C10—C11—C121.3 (3)C22—C23—C24—C251.3 (3)
C10—C11—C12—C70.0 (3)O3—C24—C25—C26178.99 (19)
C8—C7—C12—C111.1 (3)C23—C24—C25—C262.0 (3)
C6—C7—C12—C11179.72 (18)C24—C25—C26—C210.7 (3)
N1—C1—C14—C1562.36 (16)C22—C21—C26—C251.2 (3)
C2—C1—C14—C1551.90 (17)C3—C21—C26—C25178.52 (18)
N1—C1—C14—C19114.38 (13)C24—O3—C27A—C28A168.6 (4)
C2—C1—C14—C19131.37 (13)C24—O3—C27B—C28B165.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···S1i0.982.963.642 (2)128
C20A—H20D···O1ii0.981.992.87 (2)148
C23—H23A···N3iii0.952.593.490 (2)159
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+1/2.
 

Footnotes

1Dedicated to the memory of Professor Jerry P. Jasinski.

Acknowledgements

SDA and HAN are grateful to Mysore and Mangalore Universities, respectively, for research facilities.

Funding information

Funding for this research was provided by: University Grants Commission, UGC–DAE Consortium for Scientific Research (grant to Hemmige S. Yathirajan, Balakrishna Kalluraya).

References

First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392–o393.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.  CSD CrossRef IUCr Journals Google Scholar
First citationAlotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897–899.  CAS Google Scholar
First citationArchana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x221003.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatar, P. A. & Jadhav, S. R. (2013). Lett. Drug. Des. Discov. 11, 686–703.  CrossRef Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.  Google Scholar
First citationFarghaly, A. A., Bekhit, A. A. & Young Park, J. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 53–57.  CrossRef CAS Google Scholar
First citationHassan, S. Y. (2013). Molecules, 18, 2683–2711.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJamwal, A., Javed, A. & Bhardwaj, V. (2013). J Pharm BioSci, 3, 114–123.  Google Scholar
First citationKeter, F. K. & Darkwa, J. (2012). Biometals, 25, 9–21.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, G., Siva Krishna, V., Sriram, D. & Jachak, S. M. (2020). Arch. Pharm. 353, 2000077.  Web of Science CrossRef Google Scholar
First citationLarock, R. C. & Yum, E. K. (1991). J. Am. Chem. Soc. 113, 6689–6690.  CrossRef CAS Web of Science Google Scholar
First citationMahesha, N., Yathirajan, H. S., Nagma Banu, H. A., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2021). Acta Cryst. E77, 975–981.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRashad, A. E., Hegab, M. I., Abdel-Megeid, R. E., Micky, J. A. & Abdel-Megeid, F. M. (2008). Bioorg. Med. Chem. 16, 7102–7106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254–271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A. & Metz, P. (2019). BMC Chem. 13, 116.  Google Scholar
First citationSecci, D., Bolasco, A., Chimenti, P. & Carradori, S. (2011). Curr. Med. Chem. 18, 5114–5144.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K. (2002). J. Organomet. Chem. 653, 46–49.  Web of Science CrossRef CAS Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563–573.  Web of Science CSD CrossRef CAS Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–3696.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146