metal-organic compounds
Bis[(4-methylphenyl)diphenylphosphane-κP](nitrato-κ2O,O′)silver(I)
aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The molecular structure of the title AgI complex, [Ag(NO3)(C19H17P)2] or [Ag{(p-CH3C6H4)(C6H5)2P-κP}2-NO3-κ2O:O′], is described, where a distorted trigonal–planar coordination environment is exhibited about the central AgI atom; in this description, the two O atoms are assumed to occupy one position in the coordination sphere. The compound crystallized with half a molecule in the having the AgI atom lying on a twofold axis.
Keywords: silver(I) complex; diphenyl-p-tolyl phosphine; nitrate; crystal structure.
CCDC reference: 2216475
Structure description
Silver(I) phosphine complexes have been found to exhibit high antimicrobial, antibacterial and anticancer activity (Potgieter et al., 2016). The continuously expanding library of active compounds leads to a growing interest into their solid- and solution-state characterization, including by single-crystal X-ray diffraction.
The molecular structure of the title compound is shown in Fig. 1. The complex crystallized in the monoclinic C2/c, Z = 4 with the comprising one half of the silver complex molecule, as the central AgI atom, along with the nitrato-N and one nitrato-O atom, lying on a twofold axis. Coordinated to the AgI atom are two diphenyl-p-tolylphosphine ligands, and one nitrato ligand, via two O atoms; in this description, the two O atoms are assumed to occupy one position in the coordination environment. The symmetry present in the molecule results in identical Ag—P1 [2.4095 (9) Å] and Ag—O1 [2.522 (3) Å] bond lengths, which fall within the ranges of related compounds (Potgieter et al., 2016). The distorted trigonal–planar coordination displayed by the central AgI atom stems from the three coordinating ligands, with corresponding bond angles P1—Ag1—P1i [152.89 (5)°], P1—Ag1—O1 [109.76 (7)°], and P1—Ag1—O1i [94.92 (7)°]; (i) 1 − x, y, − z. The bidentate mode of coordination of the nitrato ligand is confirmed by the O1—Ag1—O1i bite angle of 50.63 (12)°. The ipso-aryl carbon atoms of each of the phosphine ligands overlap in a near-staggered fashion when viewed down the P1–Ag1–P1i axis, presumably due to the steric bulk of the phosphine ligands. The corresponding torsion angles are P1i—Ag1—P1—C1 = −148.40 (15)°, P1i—Ag1—P1—C8 = −24.78 (17)° and P1i—Ag1—P1—C14 = 92.91 (14)°. The plane defined by atoms P1, Ag, P1i and N1 intercepts the plane defined by Ag1, O1, O1i and O2 at an angle of 72.33 (9)°.
In the crystal, the complex packs in three-dimensions as layers of isolated complexes. Within these layers a metal-containing NO3 layer is observed, which alternates with dense arene-ring-filled layers. A view of the unit-cell contents is shown in Fig. 2.
Synthesis and crystallization
Diphenyl-p-tolylphosphine (2 mmol) and silver nitrate (1 mmol) were dissolved separately in acetonitrile (10 ml). The solutions were carefully mixed together and heated to 353 K for approximately 2 h. The solution was left to crystallize, and small clear crystals were obtained.
Refinement
For full experimental details including crystal data, data collection and structure . The maximum and minimum residual electron density peaks of 0.60 and 1.14 e Å−3 are located 1.29 and 0.83 Å, respectively, from the Ag1 atom, features ascribed to the presence of the strong absorber.
details, refer to Table 1Structural data
CCDC reference: 2216475
https://doi.org/10.1107/S2414314622010458/tk4086sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622010458/tk4086Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622010458/tk4086Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Ag(NO3){C19H17P)2] | F(000) = 1480 |
Mr = 722.47 | Dx = 1.372 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 18.1290 (6) Å | Cell parameters from 14857 reflections |
b = 11.0936 (5) Å | θ = 4.7–78.5° |
c = 17.9971 (7) Å | µ = 5.77 mm−1 |
β = 104.849 (4)° | T = 150 K |
V = 3498.6 (2) Å3 | Blade, colourless |
Z = 4 | 0.21 × 0.18 × 0.10 mm |
XtaLAB Synergy R, DW system, HyPix diffractometer | 3668 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 3383 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.082 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 79.2°, θmin = 4.7° |
ω scans | h = −22→23 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −13→12 |
Tmin = 0.344, Tmax = 1.000 | l = −22→22 |
20162 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.029P)2 + 20.5034P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3668 reflections | Δρmax = 0.60 e Å−3 |
206 parameters | Δρmin = −1.13 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.5000 | 0.42530 (4) | 0.7500 | 0.03274 (12) | |
P1 | 0.39526 (5) | 0.37440 (9) | 0.64210 (5) | 0.0295 (2) | |
O1 | 0.55106 (15) | 0.6308 (3) | 0.72975 (18) | 0.0428 (7) | |
O2 | 0.5000 | 0.7999 (4) | 0.7500 | 0.0573 (12) | |
N1 | 0.5000 | 0.6886 (4) | 0.7500 | 0.0361 (10) | |
C8 | 0.4038 (2) | 0.2263 (4) | 0.6014 (2) | 0.0332 (8) | |
C14 | 0.3048 (2) | 0.3676 (3) | 0.6690 (2) | 0.0317 (8) | |
C1 | 0.3777 (2) | 0.4809 (4) | 0.5629 (2) | 0.0329 (8) | |
C13 | 0.3896 (2) | 0.2044 (4) | 0.5231 (2) | 0.0378 (9) | |
H13 | 0.3746 | 0.2688 | 0.4877 | 0.045* | |
C18 | 0.1918 (2) | 0.2650 (4) | 0.6813 (2) | 0.0405 (9) | |
H18 | 0.1604 | 0.1952 | 0.6736 | 0.049* | |
C19 | 0.2580 (2) | 0.2661 (4) | 0.6569 (2) | 0.0349 (8) | |
H19 | 0.2717 | 0.1975 | 0.6318 | 0.042* | |
C15 | 0.2837 (2) | 0.4685 (4) | 0.7050 (2) | 0.0407 (9) | |
H15 | 0.3152 | 0.5381 | 0.7136 | 0.049* | |
C17 | 0.1711 (2) | 0.3650 (4) | 0.7169 (2) | 0.0448 (10) | |
H17 | 0.1254 | 0.3639 | 0.7336 | 0.054* | |
C2 | 0.3067 (2) | 0.4939 (4) | 0.5108 (2) | 0.0426 (9) | |
H2 | 0.2650 | 0.4456 | 0.5159 | 0.051* | |
C6 | 0.4374 (2) | 0.5548 (4) | 0.5552 (3) | 0.0449 (10) | |
H6 | 0.4863 | 0.5470 | 0.5902 | 0.054* | |
C3 | 0.2965 (3) | 0.5765 (5) | 0.4519 (3) | 0.0538 (12) | |
H3 | 0.2481 | 0.5826 | 0.4159 | 0.065* | |
C9 | 0.4264 (3) | 0.1314 (4) | 0.6525 (3) | 0.0466 (10) | |
H9 | 0.4370 | 0.1457 | 0.7062 | 0.056* | |
C12 | 0.3973 (3) | 0.0894 (4) | 0.4965 (3) | 0.0496 (11) | |
H12 | 0.3874 | 0.0754 | 0.4428 | 0.060* | |
C16 | 0.2163 (2) | 0.4664 (4) | 0.7282 (3) | 0.0456 (10) | |
H16 | 0.2014 | 0.5353 | 0.7521 | 0.055* | |
C4 | 0.3559 (3) | 0.6513 (5) | 0.4439 (3) | 0.0533 (11) | |
C11 | 0.4192 (3) | −0.0056 (4) | 0.5472 (3) | 0.0552 (12) | |
H11 | 0.4242 | −0.0845 | 0.5285 | 0.066* | |
C5 | 0.4258 (3) | 0.6397 (5) | 0.4970 (3) | 0.0555 (12) | |
H5 | 0.4667 | 0.6909 | 0.4934 | 0.067* | |
C10 | 0.4338 (3) | 0.0157 (4) | 0.6257 (3) | 0.0540 (11) | |
H10 | 0.4488 | −0.0489 | 0.6610 | 0.065* | |
C7 | 0.3448 (4) | 0.7468 (6) | 0.3819 (3) | 0.0817 (19) | |
H7A | 0.3270 | 0.7088 | 0.3313 | 0.123* | |
H7B | 0.3934 | 0.7878 | 0.3852 | 0.123* | |
H7C | 0.3069 | 0.8055 | 0.3891 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02296 (18) | 0.0399 (2) | 0.0335 (2) | 0.000 | 0.00388 (14) | 0.000 |
P1 | 0.0214 (4) | 0.0375 (5) | 0.0295 (4) | −0.0018 (3) | 0.0064 (3) | 0.0016 (4) |
O1 | 0.0279 (13) | 0.0427 (16) | 0.0639 (18) | −0.0022 (12) | 0.0233 (13) | −0.0038 (14) |
O2 | 0.045 (3) | 0.033 (2) | 0.095 (4) | 0.000 | 0.020 (2) | 0.000 |
N1 | 0.026 (2) | 0.035 (2) | 0.045 (3) | 0.000 | 0.0062 (19) | 0.000 |
C8 | 0.0216 (16) | 0.041 (2) | 0.0380 (19) | −0.0008 (14) | 0.0088 (14) | 0.0016 (16) |
C14 | 0.0285 (17) | 0.040 (2) | 0.0271 (16) | −0.0037 (15) | 0.0079 (14) | 0.0028 (15) |
C1 | 0.0276 (17) | 0.0384 (19) | 0.0331 (18) | −0.0005 (15) | 0.0084 (14) | 0.0022 (15) |
C13 | 0.0292 (18) | 0.045 (2) | 0.038 (2) | 0.0015 (16) | 0.0074 (16) | −0.0025 (17) |
C18 | 0.0287 (19) | 0.052 (2) | 0.042 (2) | −0.0087 (17) | 0.0118 (16) | 0.0056 (18) |
C19 | 0.0301 (18) | 0.042 (2) | 0.0329 (18) | −0.0043 (16) | 0.0082 (15) | 0.0011 (16) |
C15 | 0.0294 (19) | 0.048 (2) | 0.047 (2) | −0.0053 (17) | 0.0130 (17) | −0.0059 (19) |
C17 | 0.031 (2) | 0.062 (3) | 0.046 (2) | −0.0012 (19) | 0.0179 (18) | 0.004 (2) |
C2 | 0.033 (2) | 0.050 (2) | 0.041 (2) | −0.0052 (18) | 0.0032 (17) | 0.0079 (18) |
C6 | 0.0280 (19) | 0.056 (3) | 0.051 (2) | 0.0009 (18) | 0.0112 (17) | 0.013 (2) |
C3 | 0.046 (3) | 0.064 (3) | 0.045 (2) | 0.002 (2) | 0.000 (2) | 0.013 (2) |
C9 | 0.042 (2) | 0.049 (2) | 0.047 (2) | 0.0025 (19) | 0.0088 (19) | 0.0061 (19) |
C12 | 0.043 (2) | 0.053 (3) | 0.051 (2) | 0.004 (2) | 0.009 (2) | −0.009 (2) |
C16 | 0.036 (2) | 0.054 (3) | 0.051 (2) | −0.0006 (19) | 0.0193 (19) | −0.005 (2) |
C4 | 0.056 (3) | 0.062 (3) | 0.043 (2) | 0.002 (2) | 0.014 (2) | 0.015 (2) |
C11 | 0.045 (3) | 0.047 (3) | 0.072 (3) | 0.003 (2) | 0.013 (2) | −0.009 (2) |
C5 | 0.046 (3) | 0.065 (3) | 0.058 (3) | −0.006 (2) | 0.018 (2) | 0.018 (2) |
C10 | 0.050 (3) | 0.046 (3) | 0.065 (3) | 0.007 (2) | 0.013 (2) | 0.012 (2) |
C7 | 0.096 (5) | 0.083 (4) | 0.058 (3) | −0.010 (4) | 0.003 (3) | 0.025 (3) |
Ag1—P1i | 2.4095 (9) | C1—C6 | 1.393 (5) |
Ag1—P1 | 2.4095 (9) | C13—C12 | 1.383 (6) |
Ag1—O1i | 2.522 (3) | C18—C19 | 1.380 (5) |
Ag1—O1 | 2.522 (3) | C18—C17 | 1.380 (6) |
P1—C8 | 1.822 (4) | C15—C16 | 1.388 (5) |
P1—C14 | 1.827 (4) | C17—C16 | 1.375 (6) |
P1—C1 | 1.815 (4) | C2—C3 | 1.377 (6) |
O1—N1 | 1.255 (3) | C6—C5 | 1.384 (6) |
O2—N1 | 1.235 (6) | C3—C4 | 1.395 (7) |
N1—O1i | 1.255 (3) | C9—C10 | 1.390 (7) |
C8—C13 | 1.386 (5) | C12—C11 | 1.383 (7) |
C8—C9 | 1.389 (6) | C4—C5 | 1.385 (7) |
C14—C19 | 1.393 (5) | C4—C7 | 1.514 (7) |
C14—C15 | 1.395 (6) | C11—C10 | 1.389 (7) |
C1—C2 | 1.392 (5) | ||
P1i—Ag1—P1 | 152.89 (5) | C15—C14—P1 | 117.5 (3) |
P1—Ag1—O1 | 109.76 (7) | C2—C1—P1 | 122.9 (3) |
P1i—Ag1—O1i | 109.76 (7) | C2—C1—C6 | 118.6 (4) |
P1i—Ag1—O1 | 94.92 (7) | C6—C1—P1 | 118.5 (3) |
P1—Ag1—O1i | 94.92 (7) | C12—C13—C8 | 120.3 (4) |
O1—Ag1—O1i | 50.63 (12) | C19—C18—C17 | 120.2 (4) |
C8—P1—Ag1 | 113.90 (12) | C18—C19—C14 | 120.1 (4) |
C8—P1—C14 | 104.11 (17) | C16—C15—C14 | 119.6 (4) |
C14—P1—Ag1 | 111.84 (12) | C16—C17—C18 | 120.2 (4) |
C1—P1—Ag1 | 115.07 (12) | C3—C2—C1 | 120.4 (4) |
C1—P1—C8 | 106.68 (18) | C5—C6—C1 | 120.4 (4) |
C1—P1—C14 | 104.22 (17) | C2—C3—C4 | 121.3 (4) |
N1—O1—Ag1 | 95.4 (2) | C8—C9—C10 | 120.5 (4) |
O1—N1—O1i | 118.5 (4) | C13—C12—C11 | 120.8 (4) |
O2—N1—O1 | 120.8 (2) | C17—C16—C15 | 120.4 (4) |
O2—N1—O1i | 120.8 (2) | C3—C4—C7 | 122.2 (5) |
C13—C8—P1 | 123.6 (3) | C5—C4—C3 | 117.9 (4) |
C13—C8—C9 | 119.1 (4) | C5—C4—C7 | 119.9 (5) |
C9—C8—P1 | 117.3 (3) | C12—C11—C10 | 119.3 (4) |
C19—C14—P1 | 122.9 (3) | C6—C5—C4 | 121.3 (4) |
C19—C14—C15 | 119.5 (3) | C11—C10—C9 | 120.0 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Acknowledgements
We would like to acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.
Funding information
Funding for this research was provided by: National Research Foundation (grant No. 138280).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.