metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[(4-methyl­phen­yl)di­phenyl­phosphane-κP](nitrato-κ2O,O′)silver(I)

crossmark logo

aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 23 September 2022; accepted 31 October 2022; online 8 November 2022)

The mol­ecular structure of the title AgI complex, [Ag(NO3)(C19H17P)2] or [Ag{(p-CH3C6H4)(C6H5)2P-κP}2-NO3-κ2O:O′], is described, where a distorted trigonal–planar coordination environment is exhibited about the central AgI atom; in this description, the two O atoms are assumed to occupy one position in the coordination sphere. The compound crystallized with half a mol­ecule in the asymmetric unit having the AgI atom lying on a twofold axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Silver(I) phosphine complexes have been found to exhibit high anti­microbial, anti­bacterial and anti­cancer activity (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]). The continuously expanding library of active compounds leads to a growing inter­est into their solid- and solution-state characterization, including by single-crystal X-ray diffraction.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The complex crystallized in the monoclinic space group C2/c, Z = 4 with the asymmetric unit comprising one half of the silver complex mol­ecule, as the central AgI atom, along with the nitrato-N and one nitrato-O atom, lying on a twofold axis. Coordinated to the AgI atom are two diphenyl-p-tolyl­phosphine ligands, and one nitrato ligand, via two O atoms; in this description, the two O atoms are assumed to occupy one position in the coordination environment. The symmetry present in the mol­ecule results in identical Ag—P1 [2.4095 (9) Å] and Ag—O1 [2.522 (3) Å] bond lengths, which fall within the ranges of related compounds (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]). The distorted trigonal–planar coordination displayed by the central AgI atom stems from the three coordinating ligands, with corresponding bond angles P1—Ag1—P1i [152.89 (5)°], P1—Ag1—O1 [109.76 (7)°], and P1—Ag1—O1i [94.92 (7)°]; symmetry operation: (i) 1 − x, y, [{3\over 2}] − z. The bidentate mode of coordination of the nitrato ligand is confirmed by the O1—Ag1—O1i bite angle of 50.63 (12)°. The ipso-aryl carbon atoms of each of the phosphine ligands overlap in a near-staggered fashion when viewed down the P1–Ag1–P1i axis, presumably due to the steric bulk of the phosphine ligands. The corresponding torsion angles are P1i—Ag1—P1—C1 = −148.40 (15)°, P1i—Ag1—P1—C8 = −24.78 (17)° and P1i—Ag1—P1—C14 = 92.91 (14)°. The plane defined by atoms P1, Ag, P1i and N1 inter­cepts the plane defined by Ag1, O1, O1i and O2 at an angle of 72.33 (9)°.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound showing thermal displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Unlabelled atoms are related by a twofold axis of symmetry.

In the crystal, the complex packs in three-dimensions as layers of isolated complexes. Within these layers a metal-containing NO3 layer is observed, which alternates with dense arene-ring-filled layers. A view of the unit-cell contents is shown in Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram viewed along the a-axis.

Synthesis and crystallization

Diphenyl-p-tolyl­phosphine (2 mmol) and silver nitrate (1 mmol) were dissolved separately in aceto­nitrile (10 ml). The solutions were carefully mixed together and heated to 353 K for approximately 2 h. The solution was left to crystallize, and small clear crystals were obtained.

Refinement

For full experimental details including crystal data, data collection and structure refinement details, refer to Table 1[link]. The maximum and minimum residual electron density peaks of 0.60 and 1.14 e Å−3 are located 1.29 and 0.83 Å, respectively, from the Ag1 atom, features ascribed to the presence of the strong absorber.

Table 1
Experimental details

Crystal data
Chemical formula [Ag(NO3){C19H17P)2]
Mr 722.47
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 18.1290 (6), 11.0936 (5), 17.9971 (7)
β (°) 104.849 (4)
V3) 3498.6 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.77
Crystal size (mm) 0.21 × 0.18 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.344, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20162, 3668, 3383
Rint 0.082
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.06
No. of reflections 3668
No. of parameters 206
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −1.14
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis[(4-methylphenyl)diphenylphosphane-κP](nitrato-κ2O,O')silver(I) top
Crystal data top
[Ag(NO3){C19H17P)2]F(000) = 1480
Mr = 722.47Dx = 1.372 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.1290 (6) ÅCell parameters from 14857 reflections
b = 11.0936 (5) Åθ = 4.7–78.5°
c = 17.9971 (7) ŵ = 5.77 mm1
β = 104.849 (4)°T = 150 K
V = 3498.6 (2) Å3Blade, colourless
Z = 40.21 × 0.18 × 0.10 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
3668 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3383 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.082
Detector resolution: 10.0000 pixels mm-1θmax = 79.2°, θmin = 4.7°
ω scansh = 2223
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1312
Tmin = 0.344, Tmax = 1.000l = 2222
20162 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.029P)2 + 20.5034P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3668 reflectionsΔρmax = 0.60 e Å3
206 parametersΔρmin = 1.13 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.42530 (4)0.75000.03274 (12)
P10.39526 (5)0.37440 (9)0.64210 (5)0.0295 (2)
O10.55106 (15)0.6308 (3)0.72975 (18)0.0428 (7)
O20.50000.7999 (4)0.75000.0573 (12)
N10.50000.6886 (4)0.75000.0361 (10)
C80.4038 (2)0.2263 (4)0.6014 (2)0.0332 (8)
C140.3048 (2)0.3676 (3)0.6690 (2)0.0317 (8)
C10.3777 (2)0.4809 (4)0.5629 (2)0.0329 (8)
C130.3896 (2)0.2044 (4)0.5231 (2)0.0378 (9)
H130.37460.26880.48770.045*
C180.1918 (2)0.2650 (4)0.6813 (2)0.0405 (9)
H180.16040.19520.67360.049*
C190.2580 (2)0.2661 (4)0.6569 (2)0.0349 (8)
H190.27170.19750.63180.042*
C150.2837 (2)0.4685 (4)0.7050 (2)0.0407 (9)
H150.31520.53810.71360.049*
C170.1711 (2)0.3650 (4)0.7169 (2)0.0448 (10)
H170.12540.36390.73360.054*
C20.3067 (2)0.4939 (4)0.5108 (2)0.0426 (9)
H20.26500.44560.51590.051*
C60.4374 (2)0.5548 (4)0.5552 (3)0.0449 (10)
H60.48630.54700.59020.054*
C30.2965 (3)0.5765 (5)0.4519 (3)0.0538 (12)
H30.24810.58260.41590.065*
C90.4264 (3)0.1314 (4)0.6525 (3)0.0466 (10)
H90.43700.14570.70620.056*
C120.3973 (3)0.0894 (4)0.4965 (3)0.0496 (11)
H120.38740.07540.44280.060*
C160.2163 (2)0.4664 (4)0.7282 (3)0.0456 (10)
H160.20140.53530.75210.055*
C40.3559 (3)0.6513 (5)0.4439 (3)0.0533 (11)
C110.4192 (3)0.0056 (4)0.5472 (3)0.0552 (12)
H110.42420.08450.52850.066*
C50.4258 (3)0.6397 (5)0.4970 (3)0.0555 (12)
H50.46670.69090.49340.067*
C100.4338 (3)0.0157 (4)0.6257 (3)0.0540 (11)
H100.44880.04890.66100.065*
C70.3448 (4)0.7468 (6)0.3819 (3)0.0817 (19)
H7A0.32700.70880.33130.123*
H7B0.39340.78780.38520.123*
H7C0.30690.80550.38910.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02296 (18)0.0399 (2)0.0335 (2)0.0000.00388 (14)0.000
P10.0214 (4)0.0375 (5)0.0295 (4)0.0018 (3)0.0064 (3)0.0016 (4)
O10.0279 (13)0.0427 (16)0.0639 (18)0.0022 (12)0.0233 (13)0.0038 (14)
O20.045 (3)0.033 (2)0.095 (4)0.0000.020 (2)0.000
N10.026 (2)0.035 (2)0.045 (3)0.0000.0062 (19)0.000
C80.0216 (16)0.041 (2)0.0380 (19)0.0008 (14)0.0088 (14)0.0016 (16)
C140.0285 (17)0.040 (2)0.0271 (16)0.0037 (15)0.0079 (14)0.0028 (15)
C10.0276 (17)0.0384 (19)0.0331 (18)0.0005 (15)0.0084 (14)0.0022 (15)
C130.0292 (18)0.045 (2)0.038 (2)0.0015 (16)0.0074 (16)0.0025 (17)
C180.0287 (19)0.052 (2)0.042 (2)0.0087 (17)0.0118 (16)0.0056 (18)
C190.0301 (18)0.042 (2)0.0329 (18)0.0043 (16)0.0082 (15)0.0011 (16)
C150.0294 (19)0.048 (2)0.047 (2)0.0053 (17)0.0130 (17)0.0059 (19)
C170.031 (2)0.062 (3)0.046 (2)0.0012 (19)0.0179 (18)0.004 (2)
C20.033 (2)0.050 (2)0.041 (2)0.0052 (18)0.0032 (17)0.0079 (18)
C60.0280 (19)0.056 (3)0.051 (2)0.0009 (18)0.0112 (17)0.013 (2)
C30.046 (3)0.064 (3)0.045 (2)0.002 (2)0.000 (2)0.013 (2)
C90.042 (2)0.049 (2)0.047 (2)0.0025 (19)0.0088 (19)0.0061 (19)
C120.043 (2)0.053 (3)0.051 (2)0.004 (2)0.009 (2)0.009 (2)
C160.036 (2)0.054 (3)0.051 (2)0.0006 (19)0.0193 (19)0.005 (2)
C40.056 (3)0.062 (3)0.043 (2)0.002 (2)0.014 (2)0.015 (2)
C110.045 (3)0.047 (3)0.072 (3)0.003 (2)0.013 (2)0.009 (2)
C50.046 (3)0.065 (3)0.058 (3)0.006 (2)0.018 (2)0.018 (2)
C100.050 (3)0.046 (3)0.065 (3)0.007 (2)0.013 (2)0.012 (2)
C70.096 (5)0.083 (4)0.058 (3)0.010 (4)0.003 (3)0.025 (3)
Geometric parameters (Å, º) top
Ag1—P1i2.4095 (9)C1—C61.393 (5)
Ag1—P12.4095 (9)C13—C121.383 (6)
Ag1—O1i2.522 (3)C18—C191.380 (5)
Ag1—O12.522 (3)C18—C171.380 (6)
P1—C81.822 (4)C15—C161.388 (5)
P1—C141.827 (4)C17—C161.375 (6)
P1—C11.815 (4)C2—C31.377 (6)
O1—N11.255 (3)C6—C51.384 (6)
O2—N11.235 (6)C3—C41.395 (7)
N1—O1i1.255 (3)C9—C101.390 (7)
C8—C131.386 (5)C12—C111.383 (7)
C8—C91.389 (6)C4—C51.385 (7)
C14—C191.393 (5)C4—C71.514 (7)
C14—C151.395 (6)C11—C101.389 (7)
C1—C21.392 (5)
P1i—Ag1—P1152.89 (5)C15—C14—P1117.5 (3)
P1—Ag1—O1109.76 (7)C2—C1—P1122.9 (3)
P1i—Ag1—O1i109.76 (7)C2—C1—C6118.6 (4)
P1i—Ag1—O194.92 (7)C6—C1—P1118.5 (3)
P1—Ag1—O1i94.92 (7)C12—C13—C8120.3 (4)
O1—Ag1—O1i50.63 (12)C19—C18—C17120.2 (4)
C8—P1—Ag1113.90 (12)C18—C19—C14120.1 (4)
C8—P1—C14104.11 (17)C16—C15—C14119.6 (4)
C14—P1—Ag1111.84 (12)C16—C17—C18120.2 (4)
C1—P1—Ag1115.07 (12)C3—C2—C1120.4 (4)
C1—P1—C8106.68 (18)C5—C6—C1120.4 (4)
C1—P1—C14104.22 (17)C2—C3—C4121.3 (4)
N1—O1—Ag195.4 (2)C8—C9—C10120.5 (4)
O1—N1—O1i118.5 (4)C13—C12—C11120.8 (4)
O2—N1—O1120.8 (2)C17—C16—C15120.4 (4)
O2—N1—O1i120.8 (2)C3—C4—C7122.2 (5)
C13—C8—P1123.6 (3)C5—C4—C3117.9 (4)
C13—C8—C9119.1 (4)C5—C4—C7119.9 (5)
C9—C8—P1117.3 (3)C12—C11—C10119.3 (4)
C19—C14—P1122.9 (3)C6—C5—C4121.3 (4)
C19—C14—C15119.5 (3)C11—C10—C9120.0 (4)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

We would like to acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPotgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146