organic compounds
Diethyl 4,4′-[octane-1,8-diylbis(oxy)]dibenzoate
aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Science, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com
The complete molecule of the title compound, C26H34O6, is generated by a crystallographic centre of symmetry and the central octyl chain adopts an extended conformation. In the extended structure, weak C—H⋯π interactions link the molecules.
Keywords: crystal structure; ester; ether.
CCDC reference: 2210835
Structure description
Alkylbenzoates possess interesting physical properties and applications in industry. For example, 4-hydroxybenzoic acid and its et al., 1999; Yang et al., 2014), and alkylbenzoates are used for preparing liquid crystalline compounds (Abser et al., 1993), and non-linear optical materials (Perumal et al., 2002). As part of our studies in this area, we now describe the synthesis and structure of the title compound, C26H34O6 (Fig. 1).
are known as parabens (GiordanoThe X-ray n-octyl alkyl chain exhibits an extended (all anti) conformation. The bond distances agree with those reported in similar compounds (Ma et al., 2011, 2012; Shi et al., 2014). The crystal packing shows the molecules connected by C3—H3A⋯π and C12—H12B⋯π interactions with H–ring centroid separations of 2.89 and 2.82 Å, respectively (Table 1, Fig. 2).
revealed that the title molecule is centrosymmmetric with the inversion center located in the middle of the alkyl chain. The mean plane through the non-hydrogen atoms indicates that they are almost coplanar with r.m.s. and maximum deviations of 0.101 and ±0.151 (2) Å (exhibited by atom C6), respectively. TheSynthesis and crystallization
A mixture of ethyl-4-hydroxybenzoate (8.3 g, 50 mmol) and 1,8-dibromo-octane (6.8 g, 25 mmol) in acetone (100 ml) was refluxed for 24 h over anhydrous potassium carbonate (13.8 g, 100 mmol). The solvent was removed under vacuum and the solid mass was dissolved in water and extracted with dichloromethane. Left overnight, a white precipitate formed, which was filtered off and washed with ethanol. The product was recrystallized from hot ethanol solution, resulting in colorless needle-shaped crystals suitable for X-ray diffraction. Yield: 9.6 g (86%), melting point: 372–373 K.
FT–IR (KBr), (cm−1): 1707 ν (C=Oester), 1606, 1580 ν (C=Caromatic), 3072, 3052 ν (C—Haromatic), 2914, 2942, 2874, 2858 ν (C—Haliphatic).
1H NMR (CDCl3, 400 MHz), δ: 7.99 (d, 2 × 2H, J = 8.8 Hz, C-2,6,2′,6′), 6.90 (d, 2 × 2H, J = 8.8 Hz, C-3,5,3′,5′), 4.35 (q, 2 × 2H, OCH2CH3), 4.0 (t, 2 × 2H, J = 7.6 Hz, OCH2CH2), 1.81 (p, 2 × 2H, OCH2CH2), 1.5 (p, 2 × 2H, OCH2CH2CH2), 1.41 (p, 2 × 2H, OCH2CH2CH2CH2), 1.40 (t, 2 × 3H, CH3).
13C NMR (CDCl3, 400 MHz), δ: 14.47 (2 C, CH3), 26.00 (2 C, OCH2CH2CH2CH2), 29.17 (2 C, OCH2CH2CH2), 29.33 (2 C, OCH2CH2), 60.67 (2 C, OCH2CH2), 68.13 (2 C, OCH2CH3), 122.78 (2 C, C-4,4′), 163 (2 C, C-1,1′), 114 (2 × 2 C, C-3,5,3′,5′), 131.59 (2 × 2 C, C-2,6,2′,6′), 166.51 (2 C, OCO)
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2210835
https://doi.org/10.1107/S241431462201080X/hb4419sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462201080X/hb4419Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462201080X/hb4419Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 2010); cell
RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999).C26H34O6 | Z = 1 |
Mr = 442.53 | F(000) = 238 |
Triclinic, P1 | Dx = 1.223 Mg m−3 |
a = 6.6734 (5) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 9.8044 (8) Å | Cell parameters from 4497 reflections |
c = 10.5156 (7) Å | θ = 2.4–25.9° |
α = 65.804 (5)° | µ = 0.09 mm−1 |
β = 89.894 (6)° | T = 173 K |
γ = 74.736 (5)° | Plate, colorless |
V = 601.03 (8) Å3 | 0.29 × 0.21 × 0.06 mm |
Rigaku R-AXIS RAPID diffractometer | 2065 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.506, Tmax = 0.995 | k = −12→12 |
5815 measured reflections | l = −13→12 |
2739 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.0845P)2 + 0.0881P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2739 reflections | Δρmax = 0.48 e Å−3 |
146 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.50078 (18) | 0.61698 (14) | 0.26687 (11) | 0.0379 (3) | |
O2 | −0.15521 (19) | 0.27118 (15) | 0.20288 (12) | 0.0448 (4) | |
O3 | −0.13007 (18) | 0.21468 (14) | 0.43290 (12) | 0.0373 (3) | |
C1 | 0.9557 (3) | 0.95272 (19) | 0.06471 (16) | 0.0340 (4) | |
H1A | 0.875445 | 1.023516 | 0.104138 | 0.041* | |
H1B | 1.073077 | 0.875112 | 0.136554 | 0.041* | |
C2 | 0.8136 (2) | 0.86753 (19) | 0.03467 (16) | 0.0331 (4) | |
H2A | 0.696733 | 0.944785 | −0.037757 | 0.040* | |
H2B | 0.894056 | 0.795510 | −0.003499 | 0.040* | |
C3 | 0.7246 (3) | 0.77505 (19) | 0.16506 (16) | 0.0341 (4) | |
H3A | 0.841692 | 0.697379 | 0.237046 | 0.041* | |
H3B | 0.645698 | 0.847111 | 0.203703 | 0.041* | |
C4 | 0.5820 (3) | 0.69140 (19) | 0.13702 (16) | 0.0335 (4) | |
H4A | 0.466187 | 0.766566 | 0.062869 | 0.040* | |
H4B | 0.660781 | 0.612463 | 0.105526 | 0.040* | |
C5 | 0.3632 (2) | 0.53601 (18) | 0.26868 (16) | 0.0306 (4) | |
C6 | 0.3009 (3) | 0.51230 (19) | 0.15451 (16) | 0.0338 (4) | |
H6 | 0.354087 | 0.554669 | 0.067383 | 0.041* | |
C7 | 0.1604 (3) | 0.42621 (19) | 0.16981 (17) | 0.0340 (4) | |
H7 | 0.118981 | 0.409221 | 0.092424 | 0.041* | |
C8 | 0.0786 (2) | 0.36409 (18) | 0.29588 (16) | 0.0301 (4) | |
C9 | 0.1424 (2) | 0.38832 (19) | 0.40981 (16) | 0.0319 (4) | |
H9 | 0.088819 | 0.346062 | 0.496787 | 0.038* | |
C10 | 0.2826 (3) | 0.4731 (2) | 0.39638 (16) | 0.0339 (4) | |
H10 | 0.324872 | 0.489132 | 0.474169 | 0.041* | |
C11 | −0.0794 (2) | 0.28025 (18) | 0.30258 (17) | 0.0328 (4) | |
C12 | −0.2826 (3) | 0.1275 (2) | 0.45125 (18) | 0.0373 (4) | |
H12A | −0.225921 | 0.035401 | 0.431134 | 0.045* | |
H12B | −0.413088 | 0.194284 | 0.387294 | 0.045* | |
C13 | −0.3244 (3) | 0.0773 (2) | 0.60203 (19) | 0.0454 (5) | |
H13A | −0.423756 | 0.015410 | 0.620866 | 0.054* | |
H13B | −0.383525 | 0.169814 | 0.619571 | 0.054* | |
H13C | −0.193089 | 0.014077 | 0.663841 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0408 (7) | 0.0495 (7) | 0.0316 (6) | −0.0276 (6) | 0.0102 (5) | −0.0163 (5) |
O2 | 0.0479 (8) | 0.0588 (8) | 0.0391 (7) | −0.0288 (6) | 0.0045 (5) | −0.0236 (6) |
O3 | 0.0362 (6) | 0.0433 (7) | 0.0389 (7) | −0.0228 (5) | 0.0073 (5) | −0.0170 (5) |
C1 | 0.0341 (9) | 0.0348 (8) | 0.0357 (9) | −0.0156 (7) | 0.0060 (7) | −0.0141 (7) |
C2 | 0.0322 (8) | 0.0345 (8) | 0.0354 (9) | −0.0159 (7) | 0.0063 (6) | −0.0136 (7) |
C3 | 0.0339 (9) | 0.0361 (9) | 0.0342 (9) | −0.0152 (7) | 0.0060 (6) | −0.0137 (7) |
C4 | 0.0327 (8) | 0.0369 (9) | 0.0330 (9) | −0.0176 (7) | 0.0081 (6) | −0.0123 (7) |
C5 | 0.0274 (8) | 0.0324 (8) | 0.0323 (8) | −0.0106 (6) | 0.0023 (6) | −0.0128 (6) |
C6 | 0.0358 (9) | 0.0394 (9) | 0.0280 (8) | −0.0151 (7) | 0.0074 (6) | −0.0135 (7) |
C7 | 0.0330 (9) | 0.0394 (9) | 0.0334 (9) | −0.0123 (7) | 0.0022 (6) | −0.0181 (7) |
C8 | 0.0273 (8) | 0.0303 (8) | 0.0335 (9) | −0.0096 (6) | 0.0021 (6) | −0.0134 (6) |
C9 | 0.0309 (8) | 0.0377 (9) | 0.0291 (8) | −0.0146 (7) | 0.0061 (6) | −0.0131 (6) |
C10 | 0.0331 (8) | 0.0438 (9) | 0.0300 (8) | −0.0167 (7) | 0.0038 (6) | −0.0171 (7) |
C11 | 0.0297 (8) | 0.0322 (8) | 0.0380 (9) | −0.0095 (7) | 0.0039 (6) | −0.0159 (7) |
C12 | 0.0331 (9) | 0.0388 (9) | 0.0466 (10) | −0.0186 (7) | 0.0071 (7) | −0.0196 (7) |
C13 | 0.0458 (11) | 0.0490 (11) | 0.0504 (11) | −0.0260 (9) | 0.0160 (8) | −0.0223 (8) |
O1—C5 | 1.3581 (18) | C5—C6 | 1.396 (2) |
O1—C4 | 1.4421 (18) | C5—C10 | 1.402 (2) |
O2—C11 | 1.2105 (19) | C6—C7 | 1.386 (2) |
O3—C11 | 1.3403 (19) | C6—H6 | 0.9500 |
O3—C12 | 1.4581 (18) | C7—C8 | 1.392 (2) |
C1—C1i | 1.520 (3) | C7—H7 | 0.9500 |
C1—C2 | 1.527 (2) | C8—C9 | 1.400 (2) |
C1—H1A | 0.9900 | C8—C11 | 1.484 (2) |
C1—H1B | 0.9900 | C9—C10 | 1.378 (2) |
C2—C3 | 1.522 (2) | C9—H9 | 0.9500 |
C2—H2A | 0.9900 | C10—H10 | 0.9500 |
C2—H2B | 0.9900 | C12—C13 | 1.505 (2) |
C3—C4 | 1.508 (2) | C12—H12A | 0.9900 |
C3—H3A | 0.9900 | C12—H12B | 0.9900 |
C3—H3B | 0.9900 | C13—H13A | 0.9800 |
C4—H4A | 0.9900 | C13—H13B | 0.9800 |
C4—H4B | 0.9900 | C13—H13C | 0.9800 |
C5—O1—C4 | 118.70 (12) | C7—C6—H6 | 120.4 |
C11—O3—C12 | 116.54 (12) | C5—C6—H6 | 120.4 |
C1i—C1—C2 | 113.30 (16) | C6—C7—C8 | 121.54 (14) |
C1i—C1—H1A | 108.9 | C6—C7—H7 | 119.2 |
C2—C1—H1A | 108.9 | C8—C7—H7 | 119.2 |
C1i—C1—H1B | 108.9 | C7—C8—C9 | 118.79 (14) |
C2—C1—H1B | 108.9 | C7—C8—C11 | 118.64 (14) |
H1A—C1—H1B | 107.7 | C9—C8—C11 | 122.51 (14) |
C3—C2—C1 | 112.54 (13) | C10—C9—C8 | 120.34 (14) |
C3—C2—H2A | 109.1 | C10—C9—H9 | 119.8 |
C1—C2—H2A | 109.1 | C8—C9—H9 | 119.8 |
C3—C2—H2B | 109.1 | C9—C10—C5 | 120.44 (14) |
C1—C2—H2B | 109.1 | C9—C10—H10 | 119.8 |
H2A—C2—H2B | 107.8 | C5—C10—H10 | 119.8 |
C4—C3—C2 | 113.26 (13) | O2—C11—O3 | 123.23 (15) |
C4—C3—H3A | 108.9 | O2—C11—C8 | 124.60 (15) |
C2—C3—H3A | 108.9 | O3—C11—C8 | 112.17 (13) |
C4—C3—H3B | 108.9 | O3—C12—C13 | 106.08 (14) |
C2—C3—H3B | 108.9 | O3—C12—H12A | 110.5 |
H3A—C3—H3B | 107.7 | C13—C12—H12A | 110.5 |
O1—C4—C3 | 107.07 (12) | O3—C12—H12B | 110.5 |
O1—C4—H4A | 110.3 | C13—C12—H12B | 110.5 |
C3—C4—H4A | 110.3 | H12A—C12—H12B | 108.7 |
O1—C4—H4B | 110.3 | C12—C13—H13A | 109.5 |
C3—C4—H4B | 110.3 | C12—C13—H13B | 109.5 |
H4A—C4—H4B | 108.6 | H13A—C13—H13B | 109.5 |
O1—C5—C6 | 124.62 (14) | C12—C13—H13C | 109.5 |
O1—C5—C10 | 115.71 (13) | H13A—C13—H13C | 109.5 |
C6—C5—C10 | 119.67 (14) | H13B—C13—H13C | 109.5 |
C7—C6—C5 | 119.21 (14) | ||
C1i—C1—C2—C3 | −179.35 (16) | C11—C8—C9—C10 | −177.00 (15) |
C1—C2—C3—C4 | 179.44 (14) | C8—C9—C10—C5 | −0.1 (2) |
C5—O1—C4—C3 | 178.54 (13) | O1—C5—C10—C9 | −179.73 (14) |
C2—C3—C4—O1 | −176.76 (13) | C6—C5—C10—C9 | 0.0 (2) |
C4—O1—C5—C6 | 3.3 (2) | C12—O3—C11—O2 | 0.8 (2) |
C4—O1—C5—C10 | −176.98 (13) | C12—O3—C11—C8 | −179.24 (13) |
O1—C5—C6—C7 | 179.46 (15) | C7—C8—C11—O2 | −5.7 (2) |
C10—C5—C6—C7 | −0.2 (2) | C9—C8—C11—O2 | 171.73 (16) |
C5—C6—C7—C8 | 0.6 (2) | C7—C8—C11—O3 | 174.33 (13) |
C6—C7—C8—C9 | −0.7 (2) | C9—C8—C11—O3 | −8.2 (2) |
C6—C7—C8—C11 | 176.84 (14) | C11—O3—C12—C13 | −175.71 (14) |
C7—C8—C9—C10 | 0.4 (2) |
Symmetry code: (i) −x+2, −y+2, −z. |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cg1ii | 0.99 | 2.89 | 3.728 (2) | 143 |
C12—H12B···Cg1iii | 0.99 | 2.82 | 3.744 (2) | 155 |
Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z. |
Acknowledgements
MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MBHH is indebted to Rajshahi University for financial support. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.
References
Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062–1063. CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210–1216. Web of Science CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ma, Z., Qin, H., Lai, G. & Fan, J. (2012). Acta Cryst. E68, o714. CSD CrossRef IUCr Journals Google Scholar
Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200–205. Web of Science CrossRef CAS Google Scholar
Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, H., Qin, H. & Ma, Z. (2014). Acta Cryst. E70, o552. CSD CrossRef IUCr Journals Google Scholar
Yang, H., Svärd, M., Zeglinski, J. & Rasmuson, Å. C. (2014). Cryst. Growth Des. 14, 3890–3902. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.