organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4,4′-[octane-1,8-diylbis(­­oxy)]dibenzoate

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Science, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 9 November 2022; accepted 10 November 2022; online 17 November 2022)

The complete mol­ecule of the title compound, C26H34O6, is generated by a crystallographic centre of symmetry and the central octyl chain adopts an extended conformation. In the extended structure, weak C—H⋯π inter­actions link the mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Alkyl­benzoates possess inter­esting physical properties and applications in industry. For example, 4-hy­droxy­benzoic acid and its esters are known as parabens (Giordano et al., 1999[Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210-1216.]; Yang et al., 2014[Yang, H., Svärd, M., Zeglinski, J. & Rasmuson, Å. C. (2014). Cryst. Growth Des. 14, 3890-3902.]), and alkyl­benzoates are used for preparing liquid crystalline compounds (Abser et al., 1993[Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062-1063.]), and non-linear optical materials (Perumal et al., 2002[Perumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200-205.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound, C26H34O6 (Fig. 1[link]).

[Figure 1]
Figure 1
ORTEP view (ellipsoids drawn at the 50% probability level) of the title mol­ecule. C1′ and unlabelled atoms are generated by the symmetry operationx + 2, −y + 2, −z.

The X-ray diffraction analysis revealed that the title mol­ecule is centrosymmmetric with the inversion center located in the middle of the alkyl chain. The mean plane through the non-hydrogen atoms indicates that they are almost coplanar with r.m.s. and maximum deviations of 0.101 and ±0.151 (2) Å (exhibited by atom C6), respectively. The n-octyl alkyl chain exhibits an extended (all anti) conformation. The bond distances agree with those reported in similar compounds (Ma et al., 2011[Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.], 2012[Ma, Z., Qin, H., Lai, G. & Fan, J. (2012). Acta Cryst. E68, o714.]; Shi et al., 2014[Shi, H., Qin, H. & Ma, Z. (2014). Acta Cryst. E70, o552.]). The crystal packing shows the mol­ecules connected by C3—H3Aπ and C12—H12Bπ inter­actions with H–ring centroid separations of 2.89 and 2.82 Å, respectively (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.99 2.89 3.728 (2) 143
C12—H12BCg1ii 0.99 2.82 3.744 (2) 155
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z].
[Figure 2]
Figure 2
Detail of the crystal packing showing the C—H⋯π inter­actions.

Synthesis and crystallization

A mixture of ethyl-4-hy­droxy­benzoate (8.3 g, 50 mmol) and 1,8-di­bromo-octane (6.8 g, 25 mmol) in acetone (100 ml) was refluxed for 24 h over anhydrous potassium carbonate (13.8 g, 100 mmol). The solvent was removed under vacuum and the solid mass was dissolved in water and extracted with di­chloro­methane. Left overnight, a white precipitate formed, which was filtered off and washed with ethanol. The product was recrystallized from hot ethanol solution, resulting in colorless needle-shaped crystals suitable for X-ray diffraction. Yield: 9.6 g (86%), melting point: 372–373 K.

FT–IR (KBr), (cm−1): 1707 ν (C=Oester), 1606, 1580 ν (C=Caromatic), 3072, 3052 ν (C—Haromatic), 2914, 2942, 2874, 2858 ν (C—Haliphatic).

1H NMR (CDCl3, 400 MHz), δ: 7.99 (d, 2 × 2H, J = 8.8 Hz, C-2,6,2,6′), 6.90 (d, 2 × 2H, J = 8.8 Hz, C-3,5,3′,5′), 4.35 (q, 2 × 2H, OCH2CH3), 4.0 (t, 2 × 2H, J = 7.6 Hz, OCH2CH2), 1.81 (p, 2 × 2H, OCH2CH2), 1.5 (p, 2 × 2H, OCH2CH2CH2), 1.41 (p, 2 × 2H, OCH2CH2CH2CH2), 1.40 (t, 2 × 3H, CH3).

13C NMR (CDCl3, 400 MHz), δ: 14.47 (2 C, CH3), 26.00 (2 C, OCH2CH2CH2CH2), 29.17 (2 C, OCH2CH2CH2), 29.33 (2 C, OCH2CH2), 60.67 (2 C, OCH2CH2), 68.13 (2 C, OCH2CH3), 122.78 (2 C, C-4,4′), 163 (2 C, C-1,1′), 114 (2 × 2 C, C-3,5,3′,5′), 131.59 (2 × 2 C, C-2,6,2′,6′), 166.51 (2 C, OCO)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H34O6
Mr 442.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.6734 (5), 9.8044 (8), 10.5156 (7)
α, β, γ (°) 65.804 (5), 89.894 (6), 74.736 (5)
V3) 601.03 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.29 × 0.21 × 0.06
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.506, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 5815, 2739, 2065
Rint 0.030
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.10
No. of reflections 2739
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.26
Computer programs: RAPID-AUTO (Rigaku, 2010[Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2010); cell refinement: RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999).

Diethyl 4,4'-[octane-1,8-diylbis(oxy)]dibenzoate top
Crystal data top
C26H34O6Z = 1
Mr = 442.53F(000) = 238
Triclinic, P1Dx = 1.223 Mg m3
a = 6.6734 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.8044 (8) ÅCell parameters from 4497 reflections
c = 10.5156 (7) Åθ = 2.4–25.9°
α = 65.804 (5)°µ = 0.09 mm1
β = 89.894 (6)°T = 173 K
γ = 74.736 (5)°Plate, colorless
V = 601.03 (8) Å30.29 × 0.21 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2065 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.030
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.506, Tmax = 0.995k = 1212
5815 measured reflectionsl = 1312
2739 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2739 reflectionsΔρmax = 0.48 e Å3
146 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50078 (18)0.61698 (14)0.26687 (11)0.0379 (3)
O20.15521 (19)0.27118 (15)0.20288 (12)0.0448 (4)
O30.13007 (18)0.21468 (14)0.43290 (12)0.0373 (3)
C10.9557 (3)0.95272 (19)0.06471 (16)0.0340 (4)
H1A0.8754451.0235160.1041380.041*
H1B1.0730770.8751120.1365540.041*
C20.8136 (2)0.86753 (19)0.03467 (16)0.0331 (4)
H2A0.6967330.9447850.0377570.040*
H2B0.8940560.7955100.0034990.040*
C30.7246 (3)0.77505 (19)0.16506 (16)0.0341 (4)
H3A0.8416920.6973790.2370460.041*
H3B0.6456980.8471110.2037030.041*
C40.5820 (3)0.69140 (19)0.13702 (16)0.0335 (4)
H4A0.4661870.7665660.0628690.040*
H4B0.6607810.6124630.1055260.040*
C50.3632 (2)0.53601 (18)0.26868 (16)0.0306 (4)
C60.3009 (3)0.51230 (19)0.15451 (16)0.0338 (4)
H60.3540870.5546690.0673830.041*
C70.1604 (3)0.42621 (19)0.16981 (17)0.0340 (4)
H70.1189810.4092210.0924240.041*
C80.0786 (2)0.36409 (18)0.29588 (16)0.0301 (4)
C90.1424 (2)0.38832 (19)0.40981 (16)0.0319 (4)
H90.0888190.3460620.4967870.038*
C100.2826 (3)0.4731 (2)0.39638 (16)0.0339 (4)
H100.3248720.4891320.4741690.041*
C110.0794 (2)0.28025 (18)0.30258 (17)0.0328 (4)
C120.2826 (3)0.1275 (2)0.45125 (18)0.0373 (4)
H12A0.2259210.0354010.4311340.045*
H12B0.4130880.1942840.3872940.045*
C130.3244 (3)0.0773 (2)0.60203 (19)0.0454 (5)
H13A0.4237560.0154100.6208660.054*
H13B0.3835250.1698140.6195710.054*
H13C0.1930890.0140770.6638410.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (7)0.0495 (7)0.0316 (6)0.0276 (6)0.0102 (5)0.0163 (5)
O20.0479 (8)0.0588 (8)0.0391 (7)0.0288 (6)0.0045 (5)0.0236 (6)
O30.0362 (6)0.0433 (7)0.0389 (7)0.0228 (5)0.0073 (5)0.0170 (5)
C10.0341 (9)0.0348 (8)0.0357 (9)0.0156 (7)0.0060 (7)0.0141 (7)
C20.0322 (8)0.0345 (8)0.0354 (9)0.0159 (7)0.0063 (6)0.0136 (7)
C30.0339 (9)0.0361 (9)0.0342 (9)0.0152 (7)0.0060 (6)0.0137 (7)
C40.0327 (8)0.0369 (9)0.0330 (9)0.0176 (7)0.0081 (6)0.0123 (7)
C50.0274 (8)0.0324 (8)0.0323 (8)0.0106 (6)0.0023 (6)0.0128 (6)
C60.0358 (9)0.0394 (9)0.0280 (8)0.0151 (7)0.0074 (6)0.0135 (7)
C70.0330 (9)0.0394 (9)0.0334 (9)0.0123 (7)0.0022 (6)0.0181 (7)
C80.0273 (8)0.0303 (8)0.0335 (9)0.0096 (6)0.0021 (6)0.0134 (6)
C90.0309 (8)0.0377 (9)0.0291 (8)0.0146 (7)0.0061 (6)0.0131 (6)
C100.0331 (8)0.0438 (9)0.0300 (8)0.0167 (7)0.0038 (6)0.0171 (7)
C110.0297 (8)0.0322 (8)0.0380 (9)0.0095 (7)0.0039 (6)0.0159 (7)
C120.0331 (9)0.0388 (9)0.0466 (10)0.0186 (7)0.0071 (7)0.0196 (7)
C130.0458 (11)0.0490 (11)0.0504 (11)0.0260 (9)0.0160 (8)0.0223 (8)
Geometric parameters (Å, º) top
O1—C51.3581 (18)C5—C61.396 (2)
O1—C41.4421 (18)C5—C101.402 (2)
O2—C111.2105 (19)C6—C71.386 (2)
O3—C111.3403 (19)C6—H60.9500
O3—C121.4581 (18)C7—C81.392 (2)
C1—C1i1.520 (3)C7—H70.9500
C1—C21.527 (2)C8—C91.400 (2)
C1—H1A0.9900C8—C111.484 (2)
C1—H1B0.9900C9—C101.378 (2)
C2—C31.522 (2)C9—H90.9500
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C12—C131.505 (2)
C3—C41.508 (2)C12—H12A0.9900
C3—H3A0.9900C12—H12B0.9900
C3—H3B0.9900C13—H13A0.9800
C4—H4A0.9900C13—H13B0.9800
C4—H4B0.9900C13—H13C0.9800
C5—O1—C4118.70 (12)C7—C6—H6120.4
C11—O3—C12116.54 (12)C5—C6—H6120.4
C1i—C1—C2113.30 (16)C6—C7—C8121.54 (14)
C1i—C1—H1A108.9C6—C7—H7119.2
C2—C1—H1A108.9C8—C7—H7119.2
C1i—C1—H1B108.9C7—C8—C9118.79 (14)
C2—C1—H1B108.9C7—C8—C11118.64 (14)
H1A—C1—H1B107.7C9—C8—C11122.51 (14)
C3—C2—C1112.54 (13)C10—C9—C8120.34 (14)
C3—C2—H2A109.1C10—C9—H9119.8
C1—C2—H2A109.1C8—C9—H9119.8
C3—C2—H2B109.1C9—C10—C5120.44 (14)
C1—C2—H2B109.1C9—C10—H10119.8
H2A—C2—H2B107.8C5—C10—H10119.8
C4—C3—C2113.26 (13)O2—C11—O3123.23 (15)
C4—C3—H3A108.9O2—C11—C8124.60 (15)
C2—C3—H3A108.9O3—C11—C8112.17 (13)
C4—C3—H3B108.9O3—C12—C13106.08 (14)
C2—C3—H3B108.9O3—C12—H12A110.5
H3A—C3—H3B107.7C13—C12—H12A110.5
O1—C4—C3107.07 (12)O3—C12—H12B110.5
O1—C4—H4A110.3C13—C12—H12B110.5
C3—C4—H4A110.3H12A—C12—H12B108.7
O1—C4—H4B110.3C12—C13—H13A109.5
C3—C4—H4B110.3C12—C13—H13B109.5
H4A—C4—H4B108.6H13A—C13—H13B109.5
O1—C5—C6124.62 (14)C12—C13—H13C109.5
O1—C5—C10115.71 (13)H13A—C13—H13C109.5
C6—C5—C10119.67 (14)H13B—C13—H13C109.5
C7—C6—C5119.21 (14)
C1i—C1—C2—C3179.35 (16)C11—C8—C9—C10177.00 (15)
C1—C2—C3—C4179.44 (14)C8—C9—C10—C50.1 (2)
C5—O1—C4—C3178.54 (13)O1—C5—C10—C9179.73 (14)
C2—C3—C4—O1176.76 (13)C6—C5—C10—C90.0 (2)
C4—O1—C5—C63.3 (2)C12—O3—C11—O20.8 (2)
C4—O1—C5—C10176.98 (13)C12—O3—C11—C8179.24 (13)
O1—C5—C6—C7179.46 (15)C7—C8—C11—O25.7 (2)
C10—C5—C6—C70.2 (2)C9—C8—C11—O2171.73 (16)
C5—C6—C7—C80.6 (2)C7—C8—C11—O3174.33 (13)
C6—C7—C8—C90.7 (2)C9—C8—C11—O38.2 (2)
C6—C7—C8—C11176.84 (14)C11—O3—C12—C13175.71 (14)
C7—C8—C9—C100.4 (2)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1ii0.992.893.728 (2)143
C12—H12B···Cg1iii0.992.823.744 (2)155
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MBHH is indebted to Rajshahi University for financial support. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationAbser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062–1063.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGiordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210–1216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, Z., Qin, H., Lai, G. & Fan, J. (2012). Acta Cryst. E68, o714.  CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200–205.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, H., Qin, H. & Ma, Z. (2014). Acta Cryst. E70, o552.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, H., Svärd, M., Zeglinski, J. & Rasmuson, Å. C. (2014). Cryst. Growth Des. 14, 3890–3902.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146