organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Hy­dr­oxy-4-methyl­pyridinium chloride

crossmark logo

aDepartment of Chemistry, School of Chemical Sciences and Pharmacy, Central, University of Rajasthan, NH8, Bandarsindri, Ajmer-305817, India
*Correspondence e-mail: thirumoorthi@curaj.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 26 September 2022; accepted 23 October 2022; online 28 October 2022)

The title salt, C6H8NO+·Cl, contains two cations and two anions in the asymmetric unit. The components are linked by O—H⋯Cl and C—H⋯Cl hydrogen bonds, leading to tetra- (square-planar) or penta-coordinated (square-pyramidal) chloride ions. The title salt is isostructural with its bromide analogue.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title mol­ecular salt, C6H8NO+·Cl, 1, crystallizes with two 1-hy­droxy-4-methyl­pyridinium cations and two chloride anions in the asymmetric unit in space group P21/c, indicating that proton transfer has occurred from HCl to the N-oxide O atoms (Fig. 1[link]). The N—O bond lengths are 1.371 (2) and 1.379 (2) Å, which are comparable to its bromide analogue 2 (1.373 and 1.374 Å; Ryzhakova et al., 2012[Ryzhakova, A. V., Andreevb, V. P., Sobolevb, P. S. & Tafeenko, V. A. (2012). Russ. J. Gen. Chem. 82, 729-735.]). The average N—O—H bond angle in 1 [103.9 (19)°] is significantly smaller compared to 2 (110.9°). However, the torsion angles CAr—N—O—H in 1 (62.9 and 57.4°) are very similar to those in 2 (62.8 and 57.6°).

[Figure 1]
Figure 1
ORTEP diagram of 1 with 50% displacement ellipsoid probability level.

In the extended structure of 1, one of the cations provides four hydrogen-bond donors (three C—H groupings and one O—H group) while the other cation provides five hydrogen-bond donors, i.e., one from the O—H group and four from C—H centres, all with chloride ion acceptors to form tetra­/penta-coordinated anions (Table 1[link]; Fig. 2[link]). As expected, the H⋯Cl separation for the O—H⋯Cl hydrogen bonds (mean 1.97 Å) is much shorter than the H⋯Cl separation for the C—H⋯Cl hydrogen bonds (mean 2.79 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2 0.86 (3) 2.03 (3) 2.8847 (19) 175 (3)
O2—H2A⋯Cl1 0.98 (3) 1.91 (3) 2.879 (2) 172 (3)
C2—H2⋯Cl1i 0.93 2.81 3.567 (2) 139
C5—H5⋯Cl1 0.93 2.73 3.519 (2) 143
C7—H7⋯Cl2 0.93 2.79 3.652 (3) 154
C8—H8⋯Cl1ii 0.93 2.72 3.618 (3) 162
C10—H10⋯Cl1iii 0.93 2.81 3.672 (2) 155
C11—H11⋯Cl2iv 0.93 2.74 3.646 (2) 164
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [x, y, z-1].
[Figure 2]
Figure 2
Two-dimensional packing diagram of 1.

Synthesis and crystallization

A 2.0 M solution of hydro­chloric acid in Et2O (0.167 ml, 5.49 mmol) was added dropwise to an ethanol (3 ml) solution of 4-methyl­pyridine N-oxide (0.2 g, 1.83 mmol). The reaction scheme is shown in Fig. 3[link]. The reaction mixture was stirred for 2 h at room temperature followed by solvent evaporation using a rotary evaporator to obtain a solid. The obtained product was washed with diethyl ether and dried to get colorless solid. Yield: 82%, m.p. 114°C. 1H NMR (500 MHz, CDCl3, p.p.m.) δ 8.81 (d, 2H, J = 6.5 Hz), 7.70 (d, 2H, J = 6.5 Hz), 2.62 (s, 3H). 1H NMR (CD3OD, 500 MHz, p.p.m.): δ 8.70 (d, 2H, J = 6.5 Hz), 7.96 (d, 2H, J = 6 Hz), 2.70 (s, 3H). 13C{1H} NMR (CDCl3, 125 MHz, p.p.m.): 154.0, 138.9, 128.5, 21.7.

[Figure 3]
Figure 3
Reaction scheme.

The slow evaporation of a di­chloro­methane solution of 1 produced good quality, pale-yellow, rhombus-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8NO+·Cl
Mr 145.58
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.1610 (16), 26.271 (6), 7.7474 (17)
β (°) 95.495 (3)
V3) 1450.8 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.11 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 41123, 3354, 2663
Rint 0.051
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.06
No. of reflections 3354
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.26
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Hydroxy-4-methylpyridinium chloride top
Crystal data top
C6H8NO+·ClF(000) = 608
Mr = 145.58Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1610 (16) ÅCell parameters from 9290 reflections
b = 26.271 (6) Åθ = 2.8–24.5°
c = 7.7474 (17) ŵ = 0.44 mm1
β = 95.495 (3)°T = 296 K
V = 1450.8 (6) Å3Needle, colorless
Z = 80.11 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2663 reflections with I > 2σ(I)
ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.6°, θmin = 1.6°
Tmin = 0.953, Tmax = 0.974h = 99
41123 measured reflectionsk = 3434
3354 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4782P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3354 reflectionsΔρmax = 0.34 e Å3
171 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3022 (3)0.78000 (7)0.4800 (3)0.0457 (4)
H10.4003190.8003030.4496200.055*
C20.1436 (3)0.80150 (8)0.5313 (3)0.0500 (5)
H20.1332070.8367650.5345770.060*
C30.0028 (3)0.77163 (8)0.5785 (2)0.0448 (4)
C40.0191 (3)0.71936 (8)0.5702 (3)0.0496 (5)
H40.0754020.6980630.6022490.060*
C50.1785 (3)0.69878 (8)0.5152 (3)0.0488 (5)
H50.1915400.6636770.5065890.059*
C60.1788 (3)0.79546 (12)0.6313 (3)0.0711 (7)
H6A0.1669530.8318490.6291040.107*
H6B0.2833570.7851940.5521160.107*
H6C0.1987910.7846060.7463820.107*
C70.6459 (3)0.54962 (9)0.3558 (3)0.0571 (5)
H70.6080470.5649250.4549010.069*
C80.7375 (3)0.50418 (9)0.3661 (3)0.0564 (5)
H80.7617570.4882080.4729870.068*
C90.7952 (3)0.48143 (8)0.2181 (3)0.0485 (5)
C100.7595 (3)0.50710 (8)0.0630 (3)0.0477 (5)
H100.7995990.4933060.0376610.057*
C110.6660 (3)0.55255 (8)0.0555 (3)0.0477 (5)
H110.6410240.5696800.0492250.057*
C120.8943 (4)0.43125 (10)0.2289 (4)0.0741 (7)
H12A0.9058800.4195210.3468070.111*
H12B0.8236830.4069430.1567570.111*
H12C1.0168520.4350670.1900730.111*
N10.3148 (2)0.72972 (6)0.47417 (19)0.0405 (4)
N20.6116 (2)0.57173 (6)0.2021 (2)0.0474 (4)
CL10.15453 (8)0.58405 (2)0.27982 (7)0.05342 (17)
CL20.59963 (8)0.64306 (2)0.69818 (7)0.05963 (19)
O10.4730 (2)0.70951 (7)0.4144 (2)0.0599 (4)
O20.5160 (3)0.61737 (6)0.1905 (3)0.0670 (5)
H1A0.517 (4)0.6892 (11)0.495 (4)0.084 (10)*
H2A0.393 (4)0.6090 (12)0.228 (4)0.088 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (10)0.0393 (10)0.0525 (11)0.0037 (8)0.0041 (8)0.0030 (8)
C20.0510 (11)0.0393 (10)0.0586 (12)0.0063 (8)0.0000 (9)0.0050 (9)
C30.0394 (9)0.0594 (12)0.0348 (9)0.0058 (8)0.0009 (7)0.0047 (8)
C40.0439 (10)0.0559 (12)0.0493 (11)0.0069 (9)0.0056 (8)0.0053 (9)
C50.0588 (12)0.0363 (10)0.0524 (11)0.0026 (8)0.0114 (9)0.0003 (8)
C60.0472 (12)0.099 (2)0.0664 (15)0.0218 (12)0.0036 (11)0.0100 (14)
C70.0726 (14)0.0504 (12)0.0525 (12)0.0004 (10)0.0271 (10)0.0030 (10)
C80.0690 (14)0.0532 (12)0.0494 (12)0.0051 (10)0.0174 (10)0.0066 (10)
C90.0457 (10)0.0430 (10)0.0585 (12)0.0016 (8)0.0146 (9)0.0006 (9)
C100.0516 (11)0.0458 (11)0.0476 (11)0.0038 (9)0.0145 (9)0.0070 (9)
C110.0477 (10)0.0474 (11)0.0492 (11)0.0048 (8)0.0116 (8)0.0034 (9)
C120.0871 (19)0.0566 (14)0.0821 (18)0.0209 (13)0.0252 (14)0.0068 (13)
N10.0429 (8)0.0426 (8)0.0373 (8)0.0066 (7)0.0097 (6)0.0004 (6)
N20.0494 (9)0.0346 (8)0.0616 (10)0.0001 (7)0.0216 (8)0.0019 (7)
CL10.0606 (3)0.0456 (3)0.0555 (3)0.0034 (2)0.0130 (2)0.0013 (2)
CL20.0654 (4)0.0611 (4)0.0534 (3)0.0105 (3)0.0104 (2)0.0046 (2)
O10.0613 (9)0.0643 (10)0.0585 (9)0.0200 (8)0.0288 (8)0.0073 (8)
O20.0717 (11)0.0387 (8)0.0967 (13)0.0096 (7)0.0401 (9)0.0097 (8)
Geometric parameters (Å, º) top
C1—N11.325 (3)C7—H70.9300
C1—C21.361 (3)C8—C91.390 (3)
C1—H10.9300C8—H80.9300
C2—C31.386 (3)C9—C101.380 (3)
C2—H20.9300C9—C121.495 (3)
C3—C41.384 (3)C10—C111.367 (3)
C3—C61.499 (3)C10—H100.9300
C4—C51.367 (3)C11—N21.335 (3)
C4—H40.9300C11—H110.9300
C5—N11.332 (3)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C6—H6A0.9600C12—H12C0.9600
C6—H6B0.9600N1—O11.371 (2)
C6—H6C0.9600N2—O21.379 (2)
C7—N21.326 (3)O1—H1A0.86 (3)
C7—C81.361 (3)O2—H2A0.98 (3)
N1—C1—C2118.98 (19)C7—C8—H8119.7
N1—C1—H1120.5C9—C8—H8119.7
C2—C1—H1120.5C10—C9—C8117.57 (19)
C1—C2—C3121.03 (19)C10—C9—C12121.8 (2)
C1—C2—H2119.5C8—C9—C12120.7 (2)
C3—C2—H2119.5C11—C10—C9120.85 (19)
C4—C3—C2117.21 (18)C11—C10—H10119.6
C4—C3—C6122.0 (2)C9—C10—H10119.6
C2—C3—C6120.8 (2)N2—C11—C10118.36 (19)
C5—C4—C3120.56 (19)N2—C11—H11120.8
C5—C4—H4119.7C10—C11—H11120.8
C3—C4—H4119.7C9—C12—H12A109.5
N1—C5—C4119.06 (19)C9—C12—H12B109.5
N1—C5—H5120.5H12A—C12—H12B109.5
C4—C5—H5120.5C9—C12—H12C109.5
C3—C6—H6A109.5H12A—C12—H12C109.5
C3—C6—H6B109.5H12B—C12—H12C109.5
H6A—C6—H6B109.5C1—N1—C5123.14 (17)
C3—C6—H6C109.5C1—N1—O1117.29 (16)
H6A—C6—H6C109.5C5—N1—O1119.49 (16)
H6B—C6—H6C109.5C7—N2—C11123.68 (18)
N2—C7—C8118.9 (2)C7—N2—O2119.18 (17)
N2—C7—H7120.5C11—N2—O2117.14 (18)
C8—C7—H7120.5N1—O1—H1A104 (2)
C7—C8—C9120.6 (2)N2—O2—H2A103.9 (18)
N1—C1—C2—C30.6 (3)C12—C9—C10—C11178.9 (2)
C1—C2—C3—C40.4 (3)C9—C10—C11—N20.6 (3)
C1—C2—C3—C6178.7 (2)C2—C1—N1—C50.4 (3)
C2—C3—C4—C50.8 (3)C2—C1—N1—O1177.09 (18)
C6—C3—C4—C5177.5 (2)C4—C5—N1—C11.6 (3)
C3—C4—C5—N11.8 (3)C4—C5—N1—O1178.24 (18)
N2—C7—C8—C90.4 (4)C8—C7—N2—C111.7 (3)
C7—C8—C9—C101.3 (3)C8—C7—N2—O2178.9 (2)
C7—C8—C9—C12179.4 (2)C10—C11—N2—C71.2 (3)
C8—C9—C10—C111.8 (3)C10—C11—N2—O2179.39 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl20.86 (3)2.03 (3)2.8847 (19)175 (3)
O2—H2A···Cl10.98 (3)1.91 (3)2.879 (2)172 (3)
C2—H2···Cl1i0.932.813.567 (2)139
C5—H5···Cl10.932.733.519 (2)143
C7—H7···Cl20.932.793.652 (3)154
C8—H8···Cl1ii0.932.723.618 (3)162
C10—H10···Cl1iii0.932.813.672 (2)155
C11—H11···Cl2iv0.932.743.646 (2)164
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z1.
 

Acknowledgements

We thank IIT Kanpur for Single-crystal XRD data collection and CURaj for infrastructure facilities. Authors contributions are as follows. Conceptualization, RT; methodology, AS, KD and RT; investigation, RT; writing (original draft), AS; writing (review and editing of the manuscript), RT; visualization, RT; funding acquisition, RT; resources, RT; supervision, RT.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research, India [grant No. 01(2970)/19/EMR-II dated: 20th June 2019 to Ramalingam Thirumoorthi] and DST, India for FIST to Department of Chemistry, CURaj [grant No. SR/FST/CSI-257/2014(C)].

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRyzhakova, A. V., Andreevb, V. P., Sobolevb, P. S. & Tafeenko, V. A. (2012). Russ. J. Gen. Chem. 82, 729–735.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146