organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(4-Fluoro­phen­yl)-1-[4-(4-methyl­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yl­oxy)phen­yl]-4,5-di­hydro-1H-pyrazole

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA 22312, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 October 2022; accepted 13 October 2022; online 25 October 2022)

In the title compound, C28H22FN3OS, four rings are almost coplanar, with the fluorophenyl ring substantially twisted. In the extended structure, aromatic ππ stacking inter­actions between the pyrazole ring and the tolyl ring link the mol­ecules into centrosymmetric dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles and thia­zoles are important scaffolds in developing target drug mol­ecules. They are five-membered nitro­gen heterocycles possessing a variety of pharmacological activities, including anti­bacterial (Tanitame et al., 2004[Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693-3696.]), anti­fungal (Hassan, 2013[Hassan, S. Y. (2013). Molecules, 18, 2683-2711.]), anti-inflammatory (Farghaly et al., 2000[Farghaly, A. A., Bekhit, A. A. & Young Park, J. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 53-57.]), anti­depressant (Secci et al., 2011[Secci, D., Bolasco, A., Chimenti, P. & Carradori, S. (2011). Curr. Med. Chem. 18, 5114-5144.]), anti-analgesic (Jamwal et al., 2013[Jamwal, A., Javed, A. & Bhardwaj, V. (2013). J. Pharm. Biol. Sci. 3, 114-123.]), anti­cancer (Keter & Darkwa, 2012[Keter, F. K. & Darkwa, J. (2012). Biometals, 25, 9-21.]), anti­tubercular (Kumar et al., 2020[Kumar, G., Siva Krishna, V., Sriram, D. & Jachak, S. M. (2020). Arch. Pharm. 353, 2000077.]), anti­viral (Rashad et al., 2008[Rashad, A. E., Hegab, M. I., Abdel-Megeid, R. E., Micky, J. A. & Abdel-Megeid, F. M. (2008). Bioorg. Med. Chem. 16, 7102-7106.]) and anti­diabetic (Datar & Jadhav, 2014[Datar, P. A. & Jadhav, S. R. (2014). Lett. Drug Design Discovery, 11, 686-703.]). The design, efficient synthesis and mol­ecular docking of some novel thia­zol­yl–pyrazole derivatives as anti­cancer reagents have been reported (Sayed et al., 2019[Sayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A. & Metz, P. (2019). BMC Chem. 13, 116.]). We have recently reported the formation of 1-(thia­zol-2-yl)-4,5-di­hydro­pyrazoles from simple precursors, as the synthesis, spectroscopic characterization and the structures of an inter­mediate and two products (Mahesha et al., 2021[Mahesha, N., Yathirajan, H. S., Nagma Banu, H. A., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2021). Acta Cryst. E77, 975-981.]).

A new series of 1,3-thia­zole integrated pyrazoline scaffolds have been synthesized and characterized [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes DADQIL and DADQEH; Salian et al., 2017[Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254-271.]]. The synthesis, fluorescence, TGA and crystal structure of a thia­zol­yl–pyrazoline derived from chalcones has been described (JUNRAN; Suwunwong et al., 2015[Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563-573.]). In addition, the follow­ing crystal structures of related compounds have been reported: 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (IDOMOF; Abdel-Wahab et al., 2013c[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.]), 2-[5-(4-fluoro­phen­yl)-3-(4-methyl­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (MEWQUC; Abdel-Wahab et al., 2013a[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392-o393.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-py­razol-1-yl]-4-phenyl-1,3-thia­zole (WIGQIO; Abdel-Wahab et al., 2013b[Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hy­dro-1H-pyrazol-1-yl]-8H-indeno­[1,2-d]thia­zole (WOC­FEC; El-Hiti et al., 2019[El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.]) and 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-8H-indeno­[1,2-d]thia­zole (PUVVAG; Alotaibi et al., 2020[Alotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Kristallogr. New Cryst. Struct. 235, 897-899.]).

Keeping this in mind, the present study was planned to synthesize a ring system that contains both pyrazole and thia­zole in a single hybrid mol­ecule with an acetyl­ene substit­uent, which can further be modified into highly functionalized heterocycles (Larock & Yum, 1991[Larock, R. C. & Yum, E. K. (1991). J. Am. Chem. Soc. 113, 6689-6690.]; Sonogashira, 2002[Sonogashira, K. (2002). J. Organomet. Chem. 653, 46-49.]).

We now describe the synthesis and structure of the title compound, 5-(4-fluoro­phen­yl)-1-[5-(4-methyl­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro-1H-pyrazole; the mol­ecule crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The four rings that make up the central core (A: phenyl ring C7–C12, B: the five-membered ring containing atom S1, C, the five-membered ring containing atoms N1 and N2, D: phenyl ring C20–C25) are almost co-planar, the dihedral angle between A and D, which shows the overall twist, is 3.65 (7)°, that between A and B is 12.27 (7)°, that between B and C is 3.26 (5)°, and that between C and D is 0.34 (7)°. Ring C, which contains the sp3 atoms C2 and C3,is almost planar (r.m.s. deviation = 0.006 Å), which we find surprising given the potential steric interactions of the H atoms connected to C2 and C3. The fluoro­phenyl substituent makes a dihedral angle of 87.84 (5)° with ring C.

[Figure 1]
Figure 1
Perspective view showing the mol­ecule and atom labelling. Intra­molecular C—H⋯N inter­actions are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, there are ππ inter­actions between rings A and C, which link the mol­ecules into a centrosymmetric dimer (centroid–centroid distance = 3.649 Å, with a slippage of 0.765 Å; Fig. 2[link]). In addition there are weak C—H⋯F and C—H⋯S interactions, which link the molecules into a three-dimensional array (see Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3 0.95 2.52 2.849 (2) 100
C16—H16⋯S1i 0.95 3.10 3.9986 (19) 159
C21—H21⋯N2 0.95 2.55 2.853 (2) 99
C22—H22⋯F1ii 0.95 2.53 3.245 (2) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram showing inter­molecular C—H⋯S and C—H⋯F inter­actions, as well as intra­molecular C—H⋯N inter­actions, as dashed lines.

Synthesis and crystallization

1-(p-Propyl­oxyphen­yl)-3-(4-flurophen­yl)prop-2-en-1-one (A) was obtained by the base-catalysed condensation of p-pro­pyl­yoxyaceto­phenone (3 g, 0.0174 mol) with 4-flurobenz­aldehyde (2.59 g, 0.020 mol) in an etha­nol medium employing sodium hydroxide as catalyst. Pro­panone (A) (2 g, 0.0075 mol), on treatment with thio­semicarbazide (1.3 g, 0.015 mol) in alcoholic potassium hydroxide, gave 3-(4-fluo­ro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro-pyrazole-1-carbo­thio­amide (B).

The synthesized B (1 g, 0.002 mol) and 4-methyl­phenacyl bromide (0.58 g, 0.002 mol) were added to ethanol (20 ml) and heated at reflux for 1 h. After cooling, the obtained product was collected by filtration and crystallized from the mixed solvents of ethanol and di­methyl­formamide (DMF) (3:2 v/v). The overall reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme for the synthesis of 5-(4-fluoro­phen­yl)-1-[5-(4-methyl­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro-1H-pyrazole.

Yield: 78%; m.p. 483–485 K.. Analysis for C28H22FN2OS: MS (m/z) 468.15 (M+ + 1). 1H NMR (400 MHz, CDCl3): δ 2.27 (s, 3H) 2.79 (s, 1H, triple-bonded C—H), 3.09 (dd, 1H, JAX = 18.2, JAB = 5.8 Hz), 3.83 (dd, 1H, JXA = 18.6, JXB = 13.2 Hz), 4.40 (s, 2H, O—CH2), 5.34 (dd, 1H, JBA = 5.8, JBX = 12.8 Hz), 7.08 (dd, 2H, J = 8.5 Hz, Ar-H), 7.13 (dd, 2H, J = 8.1 Hz, Ar-H), 7.26 (dd, 2H, J = 8.8 Hz, Ar-H), 7.39 (dd, 2H, J = 8.5 Hz, Ar-H), 7.41 (dd, 2H, J = 8.8 Hz, Ar-H), 7.69 (dd, 2H, J = 8.1 Hz, Ar-H), 8.09 (s, 1H-thia­zole-H).

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H22FN3OS
Mr 467.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.7859 (13), 14.5638 (16), 14.9956 (14)
β (°) 97.144 (3)
V3) 2337.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.24 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.667, 0.740
No. of measured, independent and observed [I > 2σ(I)] reflections 34158, 5339, 3999
Rint 0.055
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.05
No. of reflections 5339
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX 2 (Bruker, 2005); cell refinement: APEX 2 (Bruker, 2005); data reduction: APEX 2 (Bruker, 2005); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-(4-Fluorophenyl)-1-[4-(4-methylphenyl)thiazol-2-yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole top
Crystal data top
C28H22FN3OSF(000) = 976
Mr = 467.54Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7859 (13) ÅCell parameters from 8134 reflections
b = 14.5638 (16) Åθ = 2.3–19.4°
c = 14.9956 (14) ŵ = 0.17 mm1
β = 97.144 (3)°T = 100 K
V = 2337.3 (4) Å3Prism, pale yellow
Z = 40.24 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3999 reflections with I > 2σ(I)
ω & φ scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.667, Tmax = 0.740h = 1313
34158 measured reflectionsk = 1818
5339 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.4922P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5339 reflectionsΔρmax = 0.21 e Å3
312 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41974 (4)0.50137 (3)0.68772 (3)0.05135 (14)
F10.30040 (14)0.00083 (9)0.45510 (11)0.0947 (5)
O11.05115 (12)0.28517 (9)1.05004 (8)0.0620 (4)
N10.55591 (13)0.35607 (10)0.64338 (9)0.0504 (3)
N20.62314 (12)0.36498 (9)0.72765 (9)0.0458 (3)
N30.40086 (11)0.41449 (9)0.53590 (9)0.0416 (3)
C10.71955 (14)0.31161 (11)0.73107 (11)0.0429 (4)
C20.72870 (16)0.25989 (13)0.64542 (11)0.0519 (4)
H2A0.7259160.1927510.6553280.062*
H2B0.8066510.2754730.6202240.062*
C30.61252 (15)0.29284 (11)0.58290 (11)0.0453 (4)
H30.6392560.3279070.5312250.054*
C40.46340 (14)0.41667 (10)0.61583 (11)0.0421 (3)
C50.30581 (16)0.53433 (12)0.60280 (11)0.0501 (4)
H50.2481950.5829020.6074990.060*
C60.30918 (15)0.48190 (10)0.52848 (11)0.0415 (3)
C70.22498 (15)0.48815 (10)0.44307 (11)0.0428 (4)
C80.11627 (19)0.53946 (15)0.43594 (13)0.0641 (5)
H80.0966110.5738100.4861790.077*
C90.0357 (2)0.54138 (16)0.35642 (14)0.0711 (6)
H90.0387970.5766470.3536960.085*
C100.06012 (18)0.49389 (12)0.28146 (12)0.0542 (4)
C110.16914 (18)0.44361 (13)0.28824 (12)0.0554 (4)
H110.1893120.4105730.2373520.066*
C120.25025 (16)0.44011 (12)0.36778 (11)0.0499 (4)
H120.3241480.4041950.3705090.060*
C130.0308 (2)0.49575 (16)0.19603 (14)0.0742 (6)
H13A0.1159820.4870800.2108090.111*
H13B0.0102530.4463210.1560140.111*
H13C0.0249300.5550580.1659650.111*
C140.52458 (14)0.21655 (11)0.54827 (10)0.0417 (3)
C150.50313 (16)0.19735 (12)0.45752 (11)0.0513 (4)
H150.5402760.2348340.4162830.062*
C160.42798 (18)0.12400 (13)0.42561 (13)0.0605 (5)
H160.4148060.1099380.3632860.073*
C170.37364 (18)0.07275 (13)0.48627 (15)0.0615 (5)
C180.3914 (2)0.08969 (13)0.57641 (15)0.0645 (5)
H180.3523030.0527680.6170460.077*
C190.46802 (17)0.16219 (12)0.60694 (12)0.0537 (4)
H190.4819960.1748340.6695330.064*
C200.80833 (14)0.30375 (11)0.81275 (10)0.0425 (3)
C210.79227 (15)0.35436 (12)0.88945 (11)0.0484 (4)
H210.7227610.3945750.8884100.058*
C220.87487 (16)0.34712 (13)0.96621 (11)0.0515 (4)
H220.8624600.3822761.0177190.062*
C230.97723 (15)0.28819 (12)0.96889 (11)0.0459 (4)
C240.99600 (16)0.23779 (12)0.89378 (11)0.0503 (4)
H241.0657680.1977710.8951450.060*
C250.91183 (15)0.24615 (12)0.81614 (11)0.0493 (4)
H250.9251940.2118530.7642980.059*
C261.15665 (16)0.22557 (13)1.05765 (11)0.0520 (4)
H26A1.2216240.2501221.0229690.062*
H26B1.1319670.1637861.0342900.062*
C271.20376 (17)0.22073 (13)1.15271 (12)0.0553 (4)
C281.2393 (2)0.21588 (18)1.22951 (16)0.0804 (7)
H281.256 (3)0.209 (2)1.2914 (19)0.121 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0563 (3)0.0476 (2)0.0466 (2)0.00514 (19)0.00782 (18)0.00366 (18)
F10.0895 (9)0.0677 (8)0.1199 (12)0.0298 (7)0.0144 (8)0.0172 (7)
O10.0650 (8)0.0700 (8)0.0460 (7)0.0306 (7)0.0132 (6)0.0083 (6)
N10.0508 (8)0.0449 (8)0.0497 (8)0.0081 (6)0.0162 (6)0.0063 (6)
N20.0465 (7)0.0418 (7)0.0454 (7)0.0022 (6)0.0085 (6)0.0006 (6)
N30.0399 (7)0.0379 (7)0.0445 (7)0.0016 (5)0.0049 (5)0.0027 (5)
C10.0404 (8)0.0409 (8)0.0454 (9)0.0008 (6)0.0026 (6)0.0003 (7)
C20.0448 (9)0.0569 (10)0.0511 (10)0.0043 (8)0.0060 (7)0.0070 (8)
C30.0450 (8)0.0438 (9)0.0447 (9)0.0004 (7)0.0039 (7)0.0011 (7)
C40.0401 (8)0.0359 (8)0.0477 (9)0.0024 (6)0.0045 (6)0.0026 (6)
C50.0523 (9)0.0466 (9)0.0487 (10)0.0080 (8)0.0042 (7)0.0019 (7)
C60.0406 (8)0.0371 (8)0.0454 (8)0.0012 (6)0.0003 (6)0.0063 (6)
C70.0427 (8)0.0383 (8)0.0458 (9)0.0022 (6)0.0012 (7)0.0060 (6)
C80.0623 (11)0.0692 (12)0.0569 (11)0.0230 (10)0.0086 (9)0.0102 (9)
C90.0638 (12)0.0771 (14)0.0658 (13)0.0250 (11)0.0178 (10)0.0050 (11)
C100.0587 (10)0.0510 (10)0.0489 (10)0.0079 (8)0.0096 (8)0.0093 (8)
C110.0636 (11)0.0578 (11)0.0435 (9)0.0051 (9)0.0017 (8)0.0012 (8)
C120.0483 (9)0.0517 (10)0.0488 (9)0.0014 (7)0.0032 (7)0.0040 (7)
C130.0806 (15)0.0761 (14)0.0581 (12)0.0112 (11)0.0225 (10)0.0095 (10)
C140.0432 (8)0.0388 (8)0.0408 (8)0.0043 (6)0.0039 (6)0.0010 (6)
C150.0566 (10)0.0523 (10)0.0425 (9)0.0013 (8)0.0036 (7)0.0028 (7)
C160.0681 (12)0.0584 (11)0.0489 (10)0.0040 (9)0.0161 (9)0.0086 (8)
C170.0570 (11)0.0439 (10)0.0800 (14)0.0070 (8)0.0058 (10)0.0063 (9)
C180.0711 (12)0.0482 (10)0.0755 (13)0.0109 (9)0.0145 (10)0.0017 (9)
C190.0651 (11)0.0480 (9)0.0475 (10)0.0006 (8)0.0052 (8)0.0003 (7)
C200.0396 (8)0.0431 (8)0.0429 (8)0.0008 (6)0.0021 (6)0.0016 (6)
C210.0442 (8)0.0516 (9)0.0474 (9)0.0145 (7)0.0021 (7)0.0003 (7)
C220.0535 (9)0.0570 (10)0.0427 (9)0.0163 (8)0.0001 (7)0.0055 (7)
C230.0458 (8)0.0488 (9)0.0407 (8)0.0091 (7)0.0041 (6)0.0016 (7)
C240.0450 (9)0.0550 (10)0.0488 (9)0.0161 (8)0.0026 (7)0.0037 (8)
C250.0482 (9)0.0518 (10)0.0458 (9)0.0094 (7)0.0020 (7)0.0072 (7)
C260.0464 (9)0.0547 (10)0.0517 (10)0.0109 (8)0.0064 (7)0.0000 (8)
C270.0515 (10)0.0570 (10)0.0539 (11)0.0114 (8)0.0068 (8)0.0014 (8)
C280.0879 (16)0.0896 (17)0.0579 (14)0.0258 (13)0.0137 (11)0.0045 (12)
Geometric parameters (Å, º) top
S1—C41.7412 (17)C11—C121.390 (2)
S1—C51.7241 (17)C12—H120.9500
F1—C171.359 (2)C13—H13A0.9800
O1—C231.3701 (19)C13—H13B0.9800
O1—C261.4243 (19)C13—H13C0.9800
N1—N21.3827 (17)C14—C151.380 (2)
N1—C31.477 (2)C14—C191.381 (2)
N1—C41.357 (2)C15—H150.9500
N2—C11.294 (2)C15—C161.390 (2)
N3—C41.3005 (19)C16—H160.9500
N3—C61.388 (2)C16—C171.364 (3)
C1—C21.503 (2)C17—C181.364 (3)
C1—C201.462 (2)C18—H180.9500
C2—H2A0.9900C18—C191.383 (3)
C2—H2B0.9900C19—H190.9500
C2—C31.545 (2)C20—C211.395 (2)
C3—H31.0000C20—C251.392 (2)
C3—C141.510 (2)C21—H210.9500
C5—H50.9500C21—C221.369 (2)
C5—C61.355 (2)C22—H220.9500
C6—C71.478 (2)C22—C231.395 (2)
C7—C81.383 (2)C23—C241.380 (2)
C7—C121.384 (2)C24—H240.9500
C8—H80.9500C24—C251.390 (2)
C8—C91.386 (3)C25—H250.9500
C9—H90.9500C26—H26A0.9900
C9—C101.373 (3)C26—H26B0.9900
C10—C111.378 (3)C26—C271.454 (2)
C10—C131.513 (2)C27—C281.170 (3)
C11—H110.9500C28—H280.93 (3)
C5—S1—C487.87 (8)C10—C13—H13B109.5
C23—O1—C26117.49 (13)C10—C13—H13C109.5
N2—N1—C3114.19 (12)H13A—C13—H13B109.5
C4—N1—N2119.95 (13)H13A—C13—H13C109.5
C4—N1—C3124.26 (13)H13B—C13—H13C109.5
C1—N2—N1107.90 (13)C15—C14—C3120.60 (15)
C4—N3—C6109.84 (13)C15—C14—C19118.61 (15)
N2—C1—C2113.90 (13)C19—C14—C3120.74 (14)
N2—C1—C20121.29 (14)C14—C15—H15119.5
C20—C1—C2124.81 (14)C14—C15—C16120.95 (17)
C1—C2—H2A111.1C16—C15—H15119.5
C1—C2—H2B111.1C15—C16—H16120.9
C1—C2—C3103.20 (13)C17—C16—C15118.14 (17)
H2A—C2—H2B109.1C17—C16—H16120.9
C3—C2—H2A111.1F1—C17—C16118.16 (19)
C3—C2—H2B111.1F1—C17—C18118.96 (19)
N1—C3—C2100.79 (12)C18—C17—C16122.87 (17)
N1—C3—H3109.8C17—C18—H18121.0
N1—C3—C14112.32 (13)C17—C18—C19118.08 (18)
C2—C3—H3109.8C19—C18—H18121.0
C14—C3—C2114.04 (14)C14—C19—C18121.33 (17)
C14—C3—H3109.8C14—C19—H19119.3
N1—C4—S1121.16 (12)C18—C19—H19119.3
N3—C4—S1116.01 (12)C21—C20—C1120.91 (14)
N3—C4—N1122.82 (15)C25—C20—C1121.08 (14)
S1—C5—H5124.4C25—C20—C21118.01 (14)
C6—C5—S1111.16 (13)C20—C21—H21119.4
C6—C5—H5124.4C22—C21—C20121.19 (15)
N3—C6—C7117.90 (14)C22—C21—H21119.4
C5—C6—N3115.10 (14)C21—C22—H22119.9
C5—C6—C7126.98 (15)C21—C22—C23120.10 (15)
C8—C7—C6121.59 (16)C23—C22—H22119.9
C8—C7—C12117.46 (16)O1—C23—C22114.61 (14)
C12—C7—C6120.92 (15)O1—C23—C24125.41 (14)
C7—C8—H8119.6C24—C23—C22119.97 (15)
C7—C8—C9120.82 (18)C23—C24—H24120.3
C9—C8—H8119.6C23—C24—C25119.35 (15)
C8—C9—H9119.0C25—C24—H24120.3
C10—C9—C8122.04 (18)C20—C25—H25119.3
C10—C9—H9119.0C24—C25—C20121.37 (15)
C9—C10—C11117.13 (16)C24—C25—H25119.3
C9—C10—C13120.92 (19)O1—C26—H26A110.4
C11—C10—C13121.93 (19)O1—C26—H26B110.4
C10—C11—H11119.2O1—C26—C27106.64 (14)
C10—C11—C12121.54 (17)H26A—C26—H26B108.6
C12—C11—H11119.2C27—C26—H26A110.4
C7—C12—C11120.99 (16)C27—C26—H26B110.4
C7—C12—H12119.5C28—C27—C26178.5 (2)
C11—C12—H12119.5C27—C28—H28171.9 (19)
C10—C13—H13A109.5
S1—C5—C6—N30.04 (19)C4—N3—C6—C7177.89 (13)
S1—C5—C6—C7178.66 (13)C5—S1—C4—N1177.59 (15)
F1—C17—C18—C19178.88 (18)C5—S1—C4—N31.24 (13)
O1—C23—C24—C25178.61 (17)C5—C6—C7—C812.2 (3)
N1—N2—C1—C20.80 (19)C5—C6—C7—C12170.00 (17)
N1—N2—C1—C20178.53 (14)C6—N3—C4—S11.41 (17)
N1—C3—C14—C15129.54 (16)C6—N3—C4—N1177.40 (15)
N1—C3—C14—C1953.1 (2)C6—C7—C8—C9177.19 (18)
N2—N1—C3—C21.52 (18)C6—C7—C12—C11177.95 (15)
N2—N1—C3—C14123.29 (14)C7—C8—C9—C100.7 (4)
N2—N1—C4—S14.6 (2)C8—C7—C12—C110.0 (3)
N2—N1—C4—N3176.69 (14)C8—C9—C10—C110.0 (3)
N2—C1—C2—C30.14 (19)C8—C9—C10—C13178.8 (2)
N2—C1—C20—C210.6 (2)C9—C10—C11—C120.8 (3)
N2—C1—C20—C25179.91 (16)C10—C11—C12—C70.8 (3)
N3—C6—C7—C8166.41 (17)C12—C7—C8—C90.7 (3)
N3—C6—C7—C1211.4 (2)C13—C10—C11—C12178.06 (17)
C1—C2—C3—N10.93 (16)C14—C15—C16—C171.5 (3)
C1—C2—C3—C14121.48 (15)C15—C14—C19—C180.1 (3)
C1—C20—C21—C22179.82 (16)C15—C16—C17—F1179.82 (17)
C1—C20—C25—C24179.47 (16)C15—C16—C17—C181.0 (3)
C2—C1—C20—C21179.83 (16)C16—C17—C18—C190.0 (3)
C2—C1—C20—C250.7 (3)C17—C18—C19—C140.4 (3)
C2—C3—C14—C15116.59 (17)C19—C14—C15—C161.1 (3)
C2—C3—C14—C1960.7 (2)C20—C1—C2—C3179.44 (15)
C3—N1—N2—C11.52 (19)C20—C21—C22—C230.2 (3)
C3—N1—C4—S1169.30 (12)C21—C20—C25—C241.0 (3)
C3—N1—C4—N311.9 (3)C21—C22—C23—O1178.37 (16)
C3—C14—C15—C16176.31 (16)C21—C22—C23—C240.7 (3)
C3—C14—C19—C18177.27 (17)C22—C23—C24—C250.3 (3)
C4—S1—C5—C60.66 (14)C23—O1—C26—C27168.80 (16)
C4—N1—N2—C1167.73 (15)C23—C24—C25—C200.5 (3)
C4—N1—C3—C2167.05 (15)C25—C20—C21—C220.7 (3)
C4—N1—C3—C1471.2 (2)C26—O1—C23—C22179.37 (16)
C4—N3—C6—C50.9 (2)C26—O1—C23—C240.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N30.952.522.849 (2)100
C16—H16···S1i0.953.103.9986 (19)159
C21—H21···N20.952.552.853 (2)99
C22—H22···F1ii0.952.533.245 (2)132
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

SDA and HAN are grateful to Mysore and Mangalore Universities, respectively, for research facilities. HSY and BK are grateful to the UGC, New Delhi, for the award of BSR Faculty Fellowships.

References

First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392–o393.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.  CSD CrossRef IUCr Journals Google Scholar
First citationAlotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Kristallogr. New Cryst. Struct. 235, 897–899.  CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatar, P. A. & Jadhav, S. R. (2014). Lett. Drug Design Discovery, 11, 686–703.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.  Google Scholar
First citationFarghaly, A. A., Bekhit, A. A. & Young Park, J. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 53–57.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassan, S. Y. (2013). Molecules, 18, 2683–2711.  CrossRef CAS PubMed Google Scholar
First citationJamwal, A., Javed, A. & Bhardwaj, V. (2013). J. Pharm. Biol. Sci. 3, 114–123.  Google Scholar
First citationKeter, F. K. & Darkwa, J. (2012). Biometals, 25, 9–21.  CrossRef CAS PubMed Google Scholar
First citationKumar, G., Siva Krishna, V., Sriram, D. & Jachak, S. M. (2020). Arch. Pharm. 353, 2000077.  CrossRef Google Scholar
First citationLarock, R. C. & Yum, E. K. (1991). J. Am. Chem. Soc. 113, 6689–6690.  CrossRef CAS Google Scholar
First citationMahesha, N., Yathirajan, H. S., Nagma Banu, H. A., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2021). Acta Cryst. E77, 975–981.  CSD CrossRef IUCr Journals Google Scholar
First citationRashad, A. E., Hegab, M. I., Abdel-Megeid, R. E., Micky, J. A. & Abdel-Megeid, F. M. (2008). Bioorg. Med. Chem. 16, 7102–7106.  CrossRef PubMed CAS Google Scholar
First citationSalian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254–271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A. & Metz, P. (2019). BMC Chem. 13, 116.  Google Scholar
First citationSecci, D., Bolasco, A., Chimenti, P. & Carradori, S. (2011). Curr. Med. Chem. 18, 5114–5144.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K. (2002). J. Organomet. Chem. 653, 46–49.  Web of Science CrossRef CAS Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563–573.  Web of Science CSD CrossRef CAS Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–3696.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146